
Improvement of Filtering Algorithm for RFID
Middleware Using KDB-tree Query Index

Xiaobo Zhang

Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
Email: zxb_leng@163.com

Lianglun Cheng

Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
Email: lcheng@gdut.edu.cn

Quanmin Zhu

Intelligent Autonomous Systems Lab, University of the West of England, Bristol,
Coldharbour Lane, Bristol BS16 1QY, UK

Email:QuanZhu@uwe.ac.uk

Abstract—RFID middleware collects and filters RFID
streaming data gathered continuously by numerous readers
to process requests from applications. These requests are
called continuous queries. The problem when using any of
the existing query indexes on these continuous queries is
that it takes a long time to build the index because it is
necessary to insert a large number of segments into the
index. KDB-tree is an index which can dispose
multidimensional data. It is also a dynamic balance tree that
has a good query performance and high spatial usage. This
paper propose an aggregate transformation algorithm for
querydata filtering, and applies KDB-tree into RFID event
filtering to improve the performance of query. Comparing
to other indexes, the result of simulation shows that
KDB-tree index outperforms others in synthesized
consideration of storage cost, insertion time cost and query
time cost. In particular the query time cost of KDB-tree is
distinctly lower than others because it provides single path
traverse in the query process.

Index Terms—RFID middleware; filtering algorithm;
KDB-tree; querydata; pointquery

I. INTRODUCTION
RFID middleware collects and filters the data

transferred by readers. This work will bring high load for
RFID system with two reason, one is the reader’s
continual action will produce continual data, the other is
multiple ECSpec prescribes multiple query processes for
RFID events and these query processes could make RFID
middleware continually filter tag data according to
multiple conditions. For these reasons, RFID middleware

must have a good algorithm in order to filter events from
tag data quickly and accurately.

To present, the researches about event filtering of
RFID middleware mostly focused on the theory of
memory database[1-3]. The method is to search better
index to improve the query process. A better way for
improvement of the query process is to construct various
multidimensional indexes[4-5]. There are many indexes
could be applied into RFID event filtering such as
Hash,CQI,VCR,R-tree etc. CQI(Cell-based Query Index)
is a kind of index on the basis of memory[6]. In such
index, query scope is divided into various cells. Every
cell has a query table which intersects or joins query
conditions, the cell uses this query table to filter results.
VCR(Virtual Construct Rectangle) index is also a kind of
index on the basis of memory[7]. In such index, query
scope is divided into multiple segments. These segments
are encapsulated by VCs(virtual constructs) with inserted
ID. We can search these VCs for results. CQI and VCR
both are two-dimensional space composed of
RID(Reader Identification Domain) and TID(Tag
Identification Domain) ,and both regard constant query as
a whole domain, while ECSpec is not a domain but
segment. If such indexes were applied into RFID query,
there must be enough memory for distribution and the
times of insertion will be high. An improvement method
is to use multidimensional indexes such as R-tree [8-10].
While in such index, there are four-dimensional data
should be stored: RID, manager, product and serial
number [11]. For this reason, the performance of this
index will decline for high dimensions. As we know, the
query performance of the index deteriorates exponentially
with higher dimensions [12]. Thus, the traditional indexes
can decrease many insertions of querydata, but they are
not efficient for query.

Due to the disadvantages of these multidimensional
indexes, this paper provides a new index like KDB-tree
for RFID middleware [13]. KDB-tree is also a kind of

This work was supported in part by the Guangdong Natural Science
Foundation(#8351009001000002 and #07117421), the Major Program
of Guangdong Natural Science Foundation(#2009A080207008), the
Joint Funds of the National Natural Science Foundation of China and
Guangdong Natural Science Foundation(#U0935002) , the Youth
Foundation of Guangdong University of Technology(#405095245).
Corresponding author.: zxb_leng@163.com (Xiaobo Zhang)

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2521

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2521-2527

multidimensional index composed of RID, SID and TID,
but it can decrease the number of insertion and the space
cost, and also keep the tree in balance. Besides these, in
KDB-tree index, a pointquery has only one path from
root to leaf.

II. AGGREGATION AND CONVERSION OF
QUERYDATA

Definition 1: RFID middleware collects and filters a
tagdata from reader for once. This process is called a
pointquery, the expression can be described as
PointQuery (RIDi, TIDj).

Definition 2: querydata is a continual query based
on ECSpec and is a filtering condition for reader and tag.
RID is the scope of readers and TID is the filtering
condition for tags.

Definition 3: querydata with only one segment is
called simple querydata and querydata with two or more
segments is called complicated querydata.

Querydata includes one or more segments which are
composed of RID and TID in two-dimensional space. A
segment is the smallest unit in complicated querydata. if
querydata is set to d (d={d1,…,dn}, 1<=n<=224), then the
segment of querydata could be set to
di={(minrid,mintid),(maxrid,maxtid)}, di∈d.

In two-dimensional space of (RID, TID), the
querydata is composed of discrete segments. If user
wants to search “the Nokia cellphones made in this year
in warehouse A”, the system will send an ECSpec
request including CQ1:
“readerID=2,EPC-Pattern=<10.[1-3].[3001-4000]>”[14].
It shows that the readerID in warehouse A is 2, CQ1
arrives RFID middleware and is inserted into query index,
then the querydata has three discrete segments, the first is
{(1, 10·260+ 1·236 + 3001), (1, 10·260+ 1·236+ 4000)},

the second is {(1, 10·260+ 2·236+ 3001), (1, 10·260+
2·236+ 4000)}, and the last is {(1, 10·260+ 3·236+ 3001),
(1, 10·260+ 3·236+ 4000)}.

From above we can see that if a product ID P with
EPC mode is a scope, the querydata will include multiple
segments. The size of the segment is determined by the
scope of serial number. Querydata is a complicated
object which includes 224 segments at most. When a
continual ECSpec query is executing, we must insert
segments into index. Too many times of insertion will
make index much larger and the performance of
pointquery will decline.

To reduce the insertion quantity, the number of
segments must be declined. This paper provides an
aggregation and conversion method that transform two
dimensional data (RID,TID) to three dimensional data
(RID,SID,TID). ECSpec provides 27 different modes
while only 11 modes have actual significance. The
querydata is determined by EPC mode which includes
Manager, Serial Number and Product. In EPC mode,
every part is a constant number, or [low-high] ,or *.

Definition 4: there are three dimensionalities:(s,t are
two dimensionalities in two-dimensional space.)

 S: m*224+s;
 R:RID;
 T:t
Then any querydata in this three-dimensional space

can be expressed as one segment:
d={(minRID,minSID,minTID),(maxRID,maxSID,maxTID
)}.

Every querydata only need to be transformed into a
three-dimensional query segment by RFID middleware
(see in Fig.1.). In this way, the quantity of insertion could
be declined.

CQ1

 (CQ1: readerID=2,EPC-Pattern=<10.[1-3].[3001-4000]>)

Fig.1. aggregation and conversion of querydata

III. FILTERING ALGORITHMS OF KDB-TREE

A. Data Structure of KDB-tree Index
Like B-tree, KDB-tree consists of a collection of

pages and a variable root ID that gives the page ID of the
root page. There are two types of pages in a KDB-tree:

1)Region pages: region pages contain a collection of
pairs(region, page ID).

2)Point pages: point pages contain a collection of
pairs(point, location), in which location gives the
location of a database record. The pair (point, location)
is an index record.

KDB-tree has following properties:
1)Considering each page as a node and each page ID

in a region page as a node pointer, the resulting graph
structure is a tree with root root ID. Furthermore, no
region page contains a null pointer, and no region page is

2522 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

empty.
2)The path length, from root page to leaf page is the

same for all leaf pages. That is, the KDB-tree is a balance
tree.

3)In every region page, the regions in the page are
disjoint, and their union is a region.

4)If the root page is a region page, the union of its
regions is domain0×domain1×…×domainK-1.

5)If (region,child ID) occurs in a region page, and the
child page referred to by child ID is a region page, then
the union of the regions in the child page is region.

6)Referring to (5), if the child page is a point page,

then all the points in the page must be in region.
In RFID middleware, KDB-tree index is a

three-dimensional structure with the three-dimensional
data aggregated and conversed from two-dimensional
data, including non-leaf node structure and leaf node
structure. The items of non-leaf node store three
dimensional information {(Rmin，Smin，Pmin)，(Rmax，
Smax,Pmax)} and a pointer to the lower layer, while the
items of leaf node store the query scope of ECSpec
{(Rmin，Smin，Pmin)，(Rmax，Smax,Pmax)} and a
pointer to the ECSpec list. As is shown in Fig.2.

(a) Data Structure of Index in Non-leaf Node

(b) Data Structure of Non-leaf Node

(c) Data Structure of Index in Leaf Node

(d) Data Structure of Leaf Node

Fig.2. data structure of KDB-tree index

B. Pointquery Algorithm of KDB-tree Index
KDB-tree is a kind of multidimensional index, and

has a higher query performance, especially in pointquery.
KDB-tree provides a kind of traverse with single path.
Every pointquery has one path from root to leaf, and can
always keep the tree balance in dynamic insertion.

While RFID middleware collects a tagdata from
RFID reader and transforms it into three-dimensional
data (RID,SID,TID), then searches the suitable querydata
in KDB-tree index. This process is called a pointquery.
The process can be described with function
PointQuery(root,d) in which d is a querydata. Following
is the pointquery algorithm:

Algorithm 1: PointQuery(root,d)
PointQuery(root,d)
{

If root is NULL return FALSE;
 for each entry root.e {

 If Contain(root.e,p) is TRUE {
 If root is a leaf Return TRUE;
 If root is not a leaf PointQuery(e,d);
 }

 }
}
Pointquery starts from root. If the visited node is

NULL, it shows that pointquery did not find the
querydata segment with d, then it traverses every node in
prior order, transfer Contain(e,p) for every segment e. If

the result is TRUE, pointquery will go on judging
whether it is a leaf node. If it is a leaf node, then it
indicates that the pointquery has found the querydata
segment with d, otherwise recursivly transfer the
pointquery procedure.

Fig.3 is an example of pointquery. In Fig.3(a), the
rectangle represents every querydata segment. Every
querydata segment could be displayed in
two-dimensional space due to RID=1. Then RFID
middleware transfers the function transform() to
converse (RID,TID) to d=(RID,SID,TID) before
pointquery procedure.

In Fig.3(b), the rectangle in the left top expresses the
position of the goal D in KDB-tree index and its space
scope. Every other rectangle expresses an index item, the
size and position of the rectangle is the space scope and
the position in the KDB-tree index. Several index items
compose to a node, like the colored parts in the rectangle.
In leaf node, the rectangle with a dot expresses the scope
of the querydata. The bold line is the path of the goal D in
traversing KDB-tree. When in traversing, we should start
from root node, find the index item with the scope of goal
D and visit the next node by the pointer in index item.
Repeat this process till we find the index item with the
scope of goal D in leaf node. Then we can visit ECSpec
list by the pointer in this index item and the pointquery
ends.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2523

© 2011 ACADEMY PUBLISHER

(a) Segments for Querydata d=(RID,SID,TID)

(b) Process of Pointquery

Fig.3. Example of Pointquery

C. Insertion Algorithm of KDB-tree Index
When RFID middleware accepts an ECSpec request,

it converses the querydata into a node N, as is shown in
the left top in Fig.4. The insertion procedure is composed
of two steps, the transformation step and the insertion
step. Before querydata is inserted into the query index, it
should firstly be converted into aggregated data. This
process is executed by the transform function. After
conversion, the insertion process of the aggregated data is
the same as the original KDB-tree algorithm. The
insertion algorithm of KDB-tree index could be described
as following:

Algorithm 2:Insertion Algorithm
①Firstly traverse the index from the root node with

single path till a leaf node LN.
②If LN has already had an index item, and its scope

is the node N’s scope, then a new ECSpec1 list should be
added to the existing ECSpec list.

③Otherwise find an index item which scope includes
the node N’s scope and execute the split algorithm.

④Adjust the scope of the index item and add a new
ECSpec1 list to its existing ECSpec list.

⑤Create a new node newLN which scope equals the
node N’s scope, and create a new ECSpec list newEL and
insert to ECSpec1.

⑥make newLN point to newEL.
The split strategy is based on two aspects. The first is

to determine an efficient split axis in (RID,SID,TID). The
complexities of the axes could be calculated in the node.
The complexity of an axis is the ratio of data to the space
of the axis when the data in the node are projected onto
the axis. The complexity of an axis is a value dividing the
summation of lengths of data in the node by the entire
length of the node on the axis. We choose the axis that
has the minimum complexity value as the split axis
because an uncomplicated axis minimizes the number of
duplications of data.

The second is to determine an effective split position
on the split axis. It considers dispersion and duplication.
The degree of dispersion is the distribution ratio of data
in the overflow node. The degree of duplication is the
amount of data stored in both sides of the split. The
equation that finds the split position by accommodating
these two factors is as following.

)10(
2
1)1(

2

1 ≤≤⎟
⎠
⎞

⎜
⎝
⎛⋅−+⋅= eeDeSP

D

i ⑴

SPi is the ith split position on the split axis, D1 is the
distributed ratio of data in the overflow node, D2 is the
number of data stored on both sides of the split, and e is a
constant value to give more weight between the two
factors. According to Equation 1, the SP value increases

2524 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

as the degree of dispersion (D1) increases and the degree
of duplication (D2) decreases. We choose the maximum
SPi from the values calculated by Equation 1. Then, the
data in the overflow node are distributed more uniformly
and duplicated less by the split. Following is the split
algorithm:

Algorithm 3: Split(Nold, Nnew, obj)
axis = FindSplitAxis(Nold, obj);
sp = FindSplitPosition(Nold, obj, axis);

if Nold is leaf node
store obj into sp on axis in Nnew and delete them in

Nold;
else{

store MBBs into sp on axis in Nnew and delete them
in Nold;

add the entry pointing Nnew to parent node of Nold;
}

Fig.4. Insertion process of KDB-tree

IV. SIMULATION AND PERFORMANCE COMPARISON
In this simulation, we do a comparison with

KDB-tree、R-tree、CQI and VCR index. KDB-tree index
is based on three-dimensional space (RID,SID,TID),
R-tree index is based on four-dimensional space (RID,
Manager, Product, Serial number), while CQI and VCR
are based on two-dimensional space (RID, TID). These
indexes are stored in memory and use Wall Clock Time as
measurement. The simulation of these indexes use the
same ECSpec data and pointquery data. The comparison
of these indexes is in three aspects: storage costs,
insertion time costs and comprehensive performance.

The simulation platform of RFID event filtering
consist of virtual reader, virtual client and RFID
middleware. To reduce the effect of the virtual reader and
virtual client on RFID event filtering, the structure of
system is distributed mode. That is, virtual reader, virtual
client and RFID middleware runs in different computers
in LAN. The communication between virtual
reader(virtual client) and console platform is
implemented by web service.

The first comparison is the storage costs of
KDB-tree、R-tree、CQI and VCR by using 5000, 10000,
50000, 100000 querydata to insert, as is shown in Fig.5.
The result shows that CQI and VCR need the largest
storage for the querydata must be separated into multiple
segments to be inserted into index. R-tree needs the
smallest storage. It transforms a querydata into
four-dimensional data and inserts the data into index only
once. KDB-tree needs more storage than R-tree, and
transforms a querydata into three-dimensional data.

Fig.5 comparison of storage costs

The second comparison is the insertion time costs
of KDB-tree、R-tree、CQI and VCR by using 5000,
10000, 50000, 100000 querydata to insert, as is shown in
Fig.6. The insertion time for CQI is lowest, whereas the
insertion time for VCR is highest for the querydata must
be separated into multiple segments. KDB-tree and
R-tree have the same time costs for insertion.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2525

© 2011 ACADEMY PUBLISHER

Fig.6 comparison of insertion time costs

The last comparison is the comprehensive
performance, as is shown in Fig.7. The comprehensive
performance of CQI and VCR is lowest for they need
more time to insert than other indexes. KDB-tree’s
comprehensive performance is better than R-tree’s for
KDB-tree could traverse every node by single path while
R-tree needs multiple paths to traverse. The result of the
simulation shows that KDB-tree is the best query index
in the index family.

Fig.7 comparison of query performance

V. CONCLUSION
The query index approach is usually suitable for

evaluating continuous queries over streaming data. Query
indexes in previous studies have treated a simple query
as the data, such as a region continuous query or an
interval continuous query. However, the data in the RFID
query index is represented as a great many segments
because it is a continuous query from the ECSpec. With
any of the existing methods as the RFID query index, it
is very time consuming to build an index on these data,
because it is necessary to insert a great many segments
into the index for storing a continuous query. The index
size also makes it inefficient to process queries.

The paper provides an aggregation and conversion
method to querydata and a KDB-tree index for RFID

middleware. There are several indexes for RFID event
filtering, but they also have their shortages in some
aspects. The result of simulation shows that KDB-tree
has a comparatively good performance than other
indexes. The algorithm based on KDB-tree index could
be applied into actual RFID system to make RFID
middleware filter large tagdata more quickly and
accurately. So the performance of RFID system could be
improved.

ACKNOWLEDGMENT
We would like to express our great appreciation to all

the members of our laboratory for their technical insights
and stimulating ideas, which greatly contributed to the
success of our research.

REFERENCES
[1] YU Jian,LAI Sheng-li. Structure of main memory

databases of radio frequency identification middleware.
Journal of Harbin Engineering University.2008,Vol.
29,no. 6, pp.578-582

[2] Rong-Jhang Liao, Pei-Lun Suei, Yung-Feng Lu, Tei-Wei
Kuo, Chun-Sho Lee. A Signature-based Grid Index
Design for RFID Main-Memory Databases. IEEE/IFIP
International Conference on Embedded and Ubiquitous
Computing, 2008. EUC '08. Vol. 1, pp.519-525

[3] Bin Cui, Beng Chin Coi, Jianwen Su, Tan K.-L. Indexing
high-dimensional data for efficient in-memory similarity
search. IEEE Transactions on Knowledge and Data
Engineering. 2005,Vol. 17, Issue. 3, pp. 339-353

[4] Jaekwan Park, Bonghee Hong, Chaehoon Ban. Efficient
Transformation Scheme for Indexing Continuous Queries
on RFID Streaming Data. Second International
Conference on Systems and Networks Communications,
2007. ICSNC 2007, pp.41-47

[5] Jaekwan Park, Bonghee Hong, Chaehoon Ban. A
Continuous Query Index for Processing Queries on RFID
Data Stream. 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, 2007. RTCSA 2007, pp. 138-145

[6] D.V Kalashnikov, S.Prabhakar W.G. Aref and S.E
Hambrusch. Efficient evaluation of continuous range
queries on moving objects. Proc.13th International
Conference on Database and Expert Systems
Applications,2002, pp.731-740

[7] K. L Wu, S. K Chen and P. S Yu. Processing Continual
Range Queries over Moving Objects Using VCR-Based
Query Indexes. International Conference of Mobile and
Ubiquitous Systems . 2004, pp.226-235

[8] Zhenwen He, Chonglong Wu, Cheng Wang. Clustered
Sorting R-Tree: An Index for Multi-Dimensional Spatial
Objects. Fourth International Conference on Natural
Computation, 2008. ICNC '08. Vol. 6, pp. 348-352

[9] Proietti G., Faloutsos C. Analysis of range queries and
self-spatial join queries on real region datasets stored
using an R-tree. IEEE Transactions on Knowledge and
Data Engineering. 2000,Vol. 12 , Issue. 5, pp. 751-762

[10] Weihua Lin, Yonggang Wu, Xiaojun Tan, Yan Yu. An
Improvement of Index Method and Structure Based on
R-Tree. 2008 International Conference on Computer
Science and Software Engineering . Vol 4, pp. 607-610

[11] EPCglobal, EPC Tag Data Standards Version 1.3.
EPCglobal Standard Specification[S], 2005.

[12] Lifang Yang, Rui Lv, Xianglin Huang, Yueping Liu.

2526 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Performance of R-Tree with Slim-Down and Reinsertion
Algorithm. International Conference on Signal
Acquisition and Processing, 2010. ICSAP '10, pp.
291-294

[13] Hung-Yi Lin, Po-Whei Huang. Perfect KDB-Tree: A
Compact KDB-Tree Structure for Indexing
Multidimensional Data. Third International Conference
on Information Technology and Applications, 2005. ICITA
2005. Vol. 2, pp. 411-414

[14] EPCglobal, The Application Level Event (ALE)
Specification Version 1.1[S], EPCglobal Standard
Specification, 2008.

Xiaobo Zhang Lecturer and doctor
candidate at the Faculty of Automation,
Guangdong University of Technology.
His research interests are embedded
system, wireless sensor networks,
dynamic model and intelligent control.

Lianglun Cheng Prof. and doctoral
supervisor of the Faculty of Automation,
Guangdong University of Technology.
His research interests are network
control and integration, information
control, embedded system.

Quanmin Zhu Prof. in control
systems at the Faculty of Computing,
Engineering and Mathematical
Sciences(CEMS), University of the
West of England (UWE), Bristol, UK.
His research interests are nonlinear
system modeling, identification, and
control.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2527

© 2011 ACADEMY PUBLISHER

