
A Dynamic-Static Combined Code Layout
Reorganization Approach for Dynamic Binary

Translation

Haibing Guan, Erzhou Zhu, Kai Chen, Ruhui Ma, Yunchao He, Haipeng Deng and Hongbo Yang
Department of Computer Science and Engineering & Shanghai Key Laboratory of Scalable Computing and Systems

Shanghai Jiaotong University, Shanghai, China
Email: {hbguan, ezzhu, kchen, ruhuima, ventureheart, denghipson, yanghongbo819}@sjtu.edu.cn

Abstract—Dynamic binary translation (DBT) has attracted
much attention as a powerful technique for the runtime
adaptation of software among different ISAs. It offers
unprecedented flexibility in the control and modification of
a program during the runtime. However, its inherent high
overhead has perplexed researchers for many years. In
order to reduce the overhead of DBT, this paper presents a
dynamic-static combined approach to reorganize the layout
of software cache. Under this approach, we first employ an
emulating execution to collect the profile information and
the translated target code. Especially, the path of execution
flow will be tracked. In the static phase, based on the profile
information collected in the previous stage, we first use the
method of code replicating to build the traces, and then
reorganize the layout of the target code by putting the
hottest traces at the top of the software cache. Because of
exact prediction and improved locality, the execution stream
will concentrate on a small area with less control transfer.
This approach can greatly reduce the overhead of DBT on
the condition that the program runs repeatedly.
Experimental results on executing the SPEC 2000
benchmarks show that our approach can reduce more than
30% run time on average.

Index Terms—Dynamic binary translation, profile
information, static optimization, code replication, trace
building

I. INTORDUCTION

Dynamic binary translation (DBT) has attracted much
attention as a powerful technique for dynamically
adapting software among different ISAs [1]. It offers
unprecedented flexibility in the control and modification
of a program during the runtime. The technique of DBT
can be used in emulating an ISA to a new ISA,
monitoring and optimizing performance at runtime,
providing resource protection and management,
virtualizing resources, and detecting security attacks and
so on. In the past decades, a lot of dynamic binary
translators have been designed for different goals: IA-32
EL [2] and Aries [3] can migrate applications cross
different ISAs; Pin [4], Dynamo [5], Valgrind [6] and

HDTrans [7] can detect the behaviors of the programs as
well as optimize the programs at runtime; Shade [8] and
QEMU [9] use DBT to speed up architecture simulations;
DAISY [10] is designed for creating a virtual execution
environment from a totally different architecture at ISA
level; ADORE [11] is designed as a dynamic binary
optimization system.

However, the inherently high overhead feature of DBT
has perplexed many researchers for many years.
Generally speaking, the overhead incurred in DBT can be
divided into two parts: the overhead of translating
procedure and the overhead of executing the target code.
As a matter of fact, most of the present DBT systems can
reduce the translating cost to an acceptable range. Hence,
the main attention is laid down on the reducing execution
time of target code. In order to reduce the time
consuming of executing the target code, many
optimizations has been proposed, such as translation
block chaining, forming larger translation blocks
(superblocks), reordering translated instructions to
improve pipeline performance, and borrowing
optimization techniques from traditional compilers. In
fact many binary-code-specific optimizations are
seriously depend on the profile information gathered
during the runtime. The richness and correctness of
profile information can directly determine which kind of
optimization can be implemented and the extent of its
efficiency. Profiling is a process for dynamically
collecting program information (instructions and data
statics) that is used to guide the optimization during the
translation process. However, this inevitably leads to
performance losing, especially the complex one.

By introducing the static analysis stage into dynamic
binary translation, the overhead of profile and dynamic
optimizing are reduced remarkably. Under this scenario,
the complex profile is collected by the first emulating
phase. Then efficient optimization algorithms based on
profile information collected by the previous stage are
available. The overhead of the subsequent executions will
be small, since they can directly execute the optimized
target code generated by the static optimization stage.
Generally speaking, the method of combines the dynamic
translation with the static analysis at least has the
following merits: firstly, it can spare the translation time. Corresponding author: Erzhou Zhu (ezzhu@sjtu.edu.cn)

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2341

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2341-2349

The process of translating source code to target consumes
a substantial part of time. Once the source code is
translated at first run, then the target code will be saved in
special files which can be directly loaded at the next runs.
Secondly, profiling overhead will be eliminated except
for the first run. If all the optimizations are performed
statically, the profiling process is not needed anymore.
Lastly, complex optimizing algorithms are available now.
Since many optimizations are carried out statically
instead of at runtime, complex algorithms which are not
appropriate dynamically are available now without
warring about overhead.

Actually, the approach of employing static phase to aid
dynamic binary translation assumes that the execution
profile of each block in the profile phase (initial
emulating execution phase) is representative of the block
throughout its lifetime. In particular, a region is selected
for optimization with the assumption that it infrequently
takes its side exits and is thus candidate for advanced
optimizing. If these assumptions are not hold, however,
the performance of the program will be suffered [12].

In DBT systems, the native code that CPU needs to
execute is stored in software maintained cache. By
reorganizing the layout of software cache, the overhead
of dynamic binary translators are reduced remarkably.
Once the target code in software cache is reframed
properly, hot code will be gathered together and
organized properly. Therefore, the execution stream will
concentrate on a small but hot area with less happening of
control transfer. As a whole, the method of reorganizing
the layout of software cache can: (1) decreases the
execution of jump instructions, (2) makes the pipeline
going on with fewer interruptions, (3) reduces physical
cache miss rate, (4) cuts down TLB access miss rate, and
(5) decreases the page faults.

This paper presents a new dynamic-static combined
approach for reorganizing the layout of software cache in
DBT system. This approach is based on the
static-integrated optimization framework appeared in [30],
and the DBT system that our approach is going to
optimize is Crossbit [29]. As a whole, the approach
contains three stages to fulfill its optimization target. In
the initial phase, we employ the emulating execution to
collect profile information and the translated target code.
Especially, the path of each execution flow will be
tracked, which is used to build the trace in the static
analysis phase. In the static analyzing phase, based on the
profile information and target code that are collected
from previous stage, we first use the method of code
replicating to build traces, and then reorganize the layout
of the target code by putting the hottest trace at the top of
the software cache. At the last stage, i.e. the subsequent
executions, due to the profile information and the
optimized target code are all available the overhead will
be remarkably reduced. Different from our original
approach [27], this approach introduces a replicate-based
trace building algorithm in the static analysis phase. By
code replication, more hot traces will be detected and
generated in the memory space, through which programs

could execute more continuously and therefore
performance promotion will be achieved.

The remainder of this paper is organized as follow.
Section II introduces a brief overview of the DBT system
(Crossbit) that out approach is going to optimize. Section
III presents the detail implementation of the approach,
which includes the overall workflow of our approach,
traces building, code replicating and code layout
reorganizing. Section IV gives the performance
evaluations. Some related works are presented in section
V. At last, we conclude our work.

II. BACKGROUNDS

Crossbit is the target DBT system that our approach is
going to optimize. It is designed and implemented as a
multi-source architectures and multi-target architectures
dynamic binary translator, which aims at fast migrating
existing executable source code from one platform to
another alien target platform with lower cost. Until
recently, it has fully or partially supported source
platforms including SimpleScalar, IA32, MIPS, SPARC,
and supported target platforms such as IA-32, Power PC
and SPARC. The operating system that Crossbit support
is Linux. In order to support code translation among
multi-sources and multi-targets better, a new Intermediate
Instruction set—VInst [31], which is independent of any
specific machine instructions, has been introduced.
Unlike many other existing DBTs which directly translate
the binary code of one instruction architecture (ISA) to
another ISA, Crossbit first converts source binary code to
VInst specifications and then transforms them into target
platform code, using a granularity of a basic block (BB)
as the basic unit of translation. The detail introduction of
Corssbit is described in [29].

Software-managed code cache, also called software
cache or code cache for short in Crossbit, is very critical
in Dynamic Binary Translator. It usually occupies an area
of main memory and stores translated native code,
making the translator reuse the native code to avoid the
overhead of retranslation during the whole execution.
Therefore, it can remarkably improve the performance of
DBT system. In order to remove noise in performance
comparison and analysis, we suppose the size of Software
Cache is unbounded. It can store all of the translated code
without any replacement policy. Then in Crossbit, the
running time of execution over translated code takes
more than 97% on the whole according to the benchmark
of SPEC2000, while the cost of initialization, translation
and optimization is trivial.

In Crossbit, many techniques are employed to improve
the quality of translated code in an effort to develop the
performance:

(1) Linking between blocks to reduce the incidence
of returns to Crossbit

(2) Changing indirect jump into several compare and
direct jump in translated code to reduce the
context switch to Crossbit when executing the
translated code.

2342 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

(3) Building superblock according to profile.
(4) Redundant code elimination.

These conventional techniques can greatly develop the
performance of Crossbit, making it comparable to QEMU.
To do further optimization, we present the method of
dynamic-static combined code layout reorganization in
software cache.

III. IMPLEMENTATIONS

A. Overview
As Fig.1 demonstrates, the overall workflow of our

approach can be divided into three phases: dynamically
collects profile information at the first emulating
execution phase, performs profile-directed optimizations
(trace building and code layout reorganizing) in static
analysis phase, and loads the target code that has been
optimized offline for the subsequent executions.

A) Emulating Execution
In this phase, the DBT executes the source program

dynamically. Instrumentations are deployed to collect the
profile information. Profile information contains the
execution times of each block, the incoming blocks and
outcoming blocks of each block, the time of each jump
direction, and so on. Especially, the path of each
execution flow will be tracked, which is used to build
traces in the static optimization stage. After the execution
of the source image, the profile information will be saved
in profile file. Specially, in order to spare the execution
time of the subsequent execution, the translated target
code will also be saved (in target code file) for the
purpose of optimizing in the static analysis phase.

B) Static Analysis
Since it is needn’t taking much consideration of

analyzing overhead in the static analysis phase,
sophisticated optimizations can be deployed. We can
perform the optimizations than can take full advantage of
rich profile information, such as conditional branch

directions prediction, inline and build superblocks
according to the execution times of current blocks and its
hottest outgoing edges. In this paper, we focus on trace
building based on the method of code replication and
translated code layout reorganizing. In this approach, hot
traces are identified by their head blocks, and the
granularity of the code to be reorganized is basic block.
At the end of the static analysis stage, the hottest traces
are placed at the top of the software cache, while the
coldest ones are placed at the bottom.

C) Subsequent Execution
In this stage i.e. the subsequent executions, the

operations of loading (profile file and target code file)
and initializing are carried simultaneously. The main
work flow of DBT is not changed, which means that the
binary source image should be loaded as normal. The
difference is that the target code is directly loaded from
target file instead of been translated from source image.
When execution starts, DBT tries to find the optimized
code other than source code. If the target code that should
be executed now has existed, DBT just executes it
directly. Otherwise, DBT will translate the source code as
normal. This approach can greatly reduce the overhead of
DBT on the condition that the program runs repeatedly.

In the overall workflow of our approach, stage 2 (i.e.
the static optimization stage) is the most important one. It
first takes the profile information and the translated code
as the input, then builds traces by employing the method
of code replicating, at last, reorganizes the layout of code
cache by putting the hottest traces at the top area.

B. Trace Building and Code Replicating
Hot trace building plays an important role in enhancing

the performance of dynamic binary translation. As a
matter of fact, in most cases only 10% of code takes 90%
of execution time of the whole program. Hot traces can
promote the code position to make better the locality of
the code, and therefore programs can achieve a better
performance. In conventional, there are many traces in a

Source Code
Image

Translate and Insert
Profile Instruction

Execute and Collect
Profile Info.

Save Profile
Before Exit

DBT System

Profile Info.
File

Target code
File

Build Traces

Replicate Code

Reframe
 Target Code

Static Optimizer

Source Code
Image

Optimized
Code File

Info about
Target Code

Translate

Execute

DBT System

Phase1: Execution and
Collect Profile Info. in

Crossbit

Phase 2:
Optimize Target Code Statically

Phase 3:
Load and Execute Optimized Target

Code in Crossbit

Figure 1. The Workflow of Our Approach

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2343

© 2011 ACADEMY PUBLISHER

program, control transfers are frequently occurred from
one to another. In DBT or other dynamic systems, trace
building is a different issue, which must take a balance
between the runtime overhead and efficiency. So how to
enhance the quality of the trace fragment, which is a
sequence of frequently-executed basic blocks in the
memory, is quite important. At present, many trace
building algorithms have been developed which can
detect hot traces accurately. However, the high overhead
make them less useful when applied in dynamic systems.
In additional, there is a common situation in which a
block is shared by many traces, only one of them is
maintained intact while the others will be truncated into
many short trace fragments. These short trace fragments
will be produced in memory space and the instruction
locality will get worse.

To overcome the problems mentioned above, our
approach employs a different strategy. In this strategy, we
statically build traces based on the profile information
that has been collected from the dynamic emulating
execution stage, and employ the method of code
replication to resolve the problem that one block is shared
by many traces. By employing the dynamic-static
combined method of trace building, the unbearable high
overhead of DBT is turned away. It is need to be
mentioned that, in this situation, the process of trace
building and code replicating are on the level of logical,
the works that really happen are in reorganization stage.

A) Trace Building
Since the translated code (organized as basic blocks)

and its corresponding profile information are dynamically
collected from the emulation stage, the process of trace
building can be easily performed during the static phase.
We start our approach by traverse the files that contain
profile information and target code, and then employ the
following two steps to build traces: the first step is to
identify the trace head. The head block of a trace is
determined by the Begin-Threshold, a threshold value
that we predefined. When the execution time of a basic
block exceeds the Begin-Threshold, it will be set as a
trace head. Secondly, when the trace head is identified,
the trace building procedure will be called to build trace.
As we know, when one block becomes hot, the other
blocks surrounding this hot block also seems to be hot.
Consequently, the exit block of the current block that has

the maximum execution time will be selected as a part of
the current trace and also be labeled as “trace-men”.
When the maximum execution time of the exit block is
blow the Finish-Threshold (usually a multiple of the
Begin-Threshold) or the block to be appended is already
labeled as “trace-men” the trace building procedure will
be closed, and thus the trace fragments emerged.

B) Code Replicating
The method of trace building in section A) will

produce many trace fragments. In that situation, when a
block is shared by different traces, only one of these
traces is maintained intact, while the others will be
truncated into many short trace fragments. These short
fragments will be placed in the memory and the
instruction locality will get worse. To handle this
problem, we present a method of replicating of the very
block that been shared by many different traces, and thus
improve the instruction locality as well as memory
continuity.

Fig.2 gives a simple example of code replication. Fig.2
(a) supposes the situation that both block a and b are
jump to e, and then e passes the execution to c and d
respectively. In this case, four traces might be
constructed: …a→e→c…,…a→e→d…,…b→e→c…,…
b→e→d… . This way, the execution stream will be
interrupted more frequently, and exhibits bad locality
characteristics. According to our approach, we make a
copy of block e when the second trace is built, like …
b→e2→d … . By doing this, the number of trace
fragments is reduced, and the length of trace fragments is
increased. Then two longer traces will be constructed (as
Fig.2 (a)) which display a good instruction locality and
allow the execution stream to run more continuously.
However, this method also introduces a side effect of
memory expansion, this side effect will be detail
discussed in section IV.

C) Trace-Table
Since the works performed in this section are all on the

level of logical. We just record the trace information and
the replicated blocks. The works that really happen are in
reorganization stage. In order to record this information,
we maintain a Trace-Table that records the trace
information, such as the SPC of the head block (identifies
the trace) and its corresponding execution time (identifies
the frequency of the trace), the SPC of the remainder
blocks of the trace and so on.

C. Code Layout Reorganization
As mentioned previously, the scale of the software

cache in Crossbit (the very DBT system our approach is
applied to) is been set unbounded. By doing this, it is
only needs a little time to initialize and translate.
Additionally, reorganizing code layout of software cache
can improve the performance on the ground that the
execution stream will be more approximate to its control
flow graph after reframing. On the target code in software
cache is reframed properly, hot code will be gathered
together and be well organized. Because of exact
prediction and improved locality, the execution stream

a

d

c

e

b

c

d

e2

b

e1

a

(a)

(b)

 Figure 2. An Example of Code Replication.

2344 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

will concentrate on a small area with less control transfer.
The work of code layout reorganization is followed by
the work of trace building and code replicating.

A) Sort Target Traces and Blocks
Prior to perform the work of code reorganizing, is has

to sort the target traces and the remainder target blocks
(scattered block we called) that have been generated
previously. Since traces are identified by their head
blocks, we just need to sort the head blocks. The right
figure in Fig.3 displays the code that has been sorted from
the left one.

B) Reorganize Code Layout
Since a trace is identified by its head block. If the head

block of a trace is placed on the top of code cache, then
the remainder blocks of the trace will be placed adjacent
to their head blocks. Fig.4 demonstrates the change of the
code layout. Supposes A, E, C are built into a trace, A is
the head block of this trace, and A is the hottest block,
then all of them will be placed on the top in spite of block
B is more hotter than most of blocks in this trace.

IV. PERFORMANCE EVALUATIONS

In this section, we first carry out some experiments on
comparing the overall performance of our approach with
the original version of Crossbit (the DBT system that our
framework based from) and QEMU (a fast and portable
open source DBT system). Then the experiments on
verifying the priority (compared with original Crossbit)

of our approach are performed. At last, we emphasize the
side effect of our approach that incurred by code
replication. We carry out these experiments on an Intel
Pentium 4 dual-core machine, where each core has a
2.8GHz Pentium with an 800 MHz processor bus, 32KB
of L1 cache and 1.5MB L2 cache. The machine’s
memory system uses a 533MHz bus with 1.5GB of dual
interleaved DDR SDRAM memory. We use the SPEC
CPU2000 benchmarks as the test suite. Some of the
benchmarks cannot run successfully on our approach,
which might due to the base Crossbit lacking of complete
support for all Linux System calls, or there are some
errors in address relocation and linking of exits stub after
code layout reframing, our team still deals with these
issues now. So the comparisons and analysis are based on
these programs that can be right executed on our
approach.

A. Overall Performance Comparison
Fig.5 shows the overall comparison of performance

among our approach, original version of Crossbit and
QEMU [9] (a fast and portable open source DBT system).
When compared with original version of Crossbit, our
approach displays consistently better performance than
that of Crossbit for all of the tested benchmarks. And also
outperforms of QEMU for nearly all the tested
benchmarks. The overall executing time of our approach
is reduced by 34% on average relative to the original
version of Crossbit, and more than 50% to QEMU. The
better performance we gained largely due to static phase
optimization and partly because of directly loading
optimized target code to the following execution.

Under our approach, fewer blocks are needed to be
translated than the original Crossbit. Since the size of
software cache of our approach is set unbounded, there
would be no retranslation. Experimental statistic also
shows that the overall consumption of initialization,
optimization and translation are no more than 3%. So the
reduction of the execution time, compared with original
Crossbit, is about 31% in SPEC 2000. When compared
with QEMU, our approach is much faster except for the
mcf benchmark, the reason of this defect is described in
[29].

A 9500

D 2000

C 4000

B 6500

E 5000

A 9500
B 6500

C 4000

D 2000

E 5000

Sorted
Area

Remainder
Area

Figure 3. Sorting the head blocks according to their
execution frequency.

A 9500

D 2000

C 4000

B 6500

E 5000

Figure 4. Reorganizing the Layout of Software Cache

A 9500

B 6500

C 4000

D 2000

E 5000

E 5000

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2345

© 2011 ACADEMY PUBLISHER

The following two experiments are performed to verify
the reasons of high performance we gained from static
optimizations.

A) Code Execution Mainly Concentrates on A Few Hot
Code

It is well known that when a program is executed, the
code execution frequency is often not evenly distributed.
A small portion of the hot code usually occupies most of
the execution time, while a large portion of other code is
to cover all eventualities but executed little. So when the
execution focuses on a small portion of the hot
instructions, the overhead will be decreased. Fig.6 gives
the experiment’s results to show the code execution
frequency distribution our approach and original version
of Crossbit. From the results, we can conclude that the
code execution frequency is evenly distributed under
original Crossbit. However, under the schema of our
approach, more than 85% execution time mainly
concentrates on 10% hot code.

B) Less Control Transfer Occurrence
Longer traces can greatly reduce the occurrence of

control transfer. Less transfer control occurrence in the
same program can enhance the accuracy of instruction
pre-fetch, reduce interruption of pipeline, and finally
introduce better performance. Fig.7 and Fig.8 show the
direct jump occurrence and indirect jump occurrence
respectively. In the figures the jump occurrence in
original version of Crossbit is supposed as 100%. From
the figures we can conclude that our approach can greatly
reduce the occurrence of control transfer no matter it is a

direct jump or an indirect jump. This because our
approach can find hot spots and hot traces of the program,
and then build longer traces to fulfill loop without
transfer control change.

B Side Effect of Our Approach
Lastly we talk about the side effect of code replication:

memory expansion. Fig.9 plots the memory expansion
ratio (MER) of code replication. It shows the maximum
MER of nearly 6% when running the crafty test case, and
an average expansion ratio of 2.25%. Particularly, in the
case of mcf, we get a performance promotion of 34%,
with only a memory expansion of less than 2%. We can
find that this code replication is quite suitable for mcf to
enhance performance. On the situation of crafty, we can’t
ignore the memory expansion sacrificed to performance
promotion.

V. RELATED WORKS

For the purpose of gaining better performance, the
static process has been adapted in many binary translation
systems. FX!32 [13] is a profile-directed binary translator,
which combines emulation (first run) and binary
translation (subsequent runs) techniques. It possesses a
database to accommodate the target code, which is
generated by the background emulator according to the
online profile information. Then the target code is
available at the subsequent runs of the source image.

2346 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

IA-32 Execution Layer (IA-32 EL) [2] is a two-phase
dynamic binary translating software designed for
supporting IA-32 applications on Intel Itanium family
systems. In IA-32 EL, the first phase (also called cold
code translation) is designed to be fast, with minimal
optimizations and overhead and uses instrumentation to
identify hot spots. The second phase (also called hot code
translation), retranslates and further optimizes the
hotspots identified by the cold translation. Metadata
driven DBT [14] proposes a novel method of passing
performance critical information to dynamic binary
translator through metadata. By metadata, the dynamic
binary translator is able to perform aggressive
optimizations to generate high quality code. This
approach behaves well if the source programs (written in
high level language) are available.

Static process has also been used in conventional
compilation systems. GCC [15] requires the programs to
be built and executed twice. In the first time, the
applications are compiled to generate profile information.
And the second time, the applications are compiled and
use the profile information that was generated by the first
execution.

Efficient software cache Management is an important
mean to improve the performance of DBT. In [16] and
[17], the authors discussed the replacement policy of code
cache. They compared several strategies of code cache
replacement policy and presented the appropriate
granularity of code cache eviction size, trying to protect
more hot code from swapping out when the software
cache is limited. Moreover, in an effort to cut down the
memory consumption of code cache, they elaborated
several methods [18] to reduce exit stub that is used to
handle the egress of control transfer. [19], [20] and [21]
presented the schemes to keep the software cache
consistent between the code cache and the original code,
to keep it transparent to user and operating system, to
dynamically bound code cache size to match the current
working set of the application when it is running, and to
make software cache becoming process-shared when this
merit is necessary.

For most DBTs, the trace is the unit of choice of
function and method. Traces are found to perform well
and be easy to translation [22]. Many trace detecting
methods have been employed to improve the performance.
Next-Executing-Tail (NET) is a popular trace selection
algorithm [23]. And it attempts to select traces that begin
at loop headers by considering only instructions that are
the targets of backward branches or exits from existing
traces [24]. But it cannot span inter-procedural cycles and
the nested loops. Mueller and Whalley [25] have applied
code replication to avoid jumps in the program and
improve instruction locality. Measurements taken from a
variety of programs showed that not only the number of
executed instructions decreased, but also that the total
cache work was reduced (except for small caches) despite
increases in code size. Adreas Krall [26] presents a kind
of code replication techniques to improve the accuracy of
semi-static branch prediction scheme. It uses profiling to
collect information about the correlation between

different branches and about the correlation between the
subsequent outcomes of a single branch.

VI. CONCLUSIONS AND FUTURE WORK

As a power technique for the runtime adaption of
software among different ISAs, dynamic binary
translation has gained much attention. It offers
unprecedented flexibility in the control and modification
of a program during the runtime. But these attractive
features are confined by substantial overhead, especially
in the situations that translate among totally different
architectures. In this paper, we tried to offset this
drawback by introducing a dynamic-static combined
approach to optimize the dynamic binary translators.
Under this approach, we first employ the emulating
execution stage to dynamically collect the profile
information and the translated target code. Especially, the
path of each execution flow will also be tracked. In the
static analysis phase, due to the platitudinous profile
information and target code, we employed the method of
code replication to build traces, and then reorganized the
layout of the target code by putting the hottest trace at the
top of software cache. By implementing our approach,
the execution flow was concentrated on a small area.
Experimental results had shown that our approach
reduced more than 34% runtime on average at the
expense of 2% memory expansion ratio on average.

 In the future, we will employ more algorithms to
improve the runtime overhead as well as reduce the
memory size expansion ratio.

ACKNOWLEDGMENT

This work was supported by The National Natural
Science Foundation of China (Grant No. 60970108,
60970107), The Science and Technology Commission of
Shanghai Municipality (Grant No. 09510701600,
10ZR1416400, 10DZ1500200, 10511500102), IBM SUR
Funding and IBM Research-China JP Funding.

REFERENCES

[1] Jinpyo Kim, Wei-Chung Hsu, Pen-Chung Yew,
“COBRA: An Adaptive Runtime Binary
Optimization Framework for Multithreaded
Applications”, International Conference on Parallel
Processing (ICPP), 2007, pp: 25-33.

[2] L. Baraz, T. Devor, O. Etzion, et.al, “IA-32
Execution Layer: a two-phase dynamic translator
designed to support IA-32 applications on
Itanium-based systems.” In 36th International
Symposium on Microarchitecture, 2003, pp:
191-201.

[3] HP ARIES Dynamic Binary Translator,
http://h21007.www2.hp.com.

[4] LUK, C.-K., COHN, R., MUTH, R., et.al, “Pin:
building customized program analysis tools with
dynamic instrumentation”. In PLDI ’05 (New York,
NY, USA, 2005), pp. 190–200.

[5] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo:

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2347

© 2011 ACADEMY PUBLISHER

A transparent runtime optimization system”. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI ’00), June 2000.

[6] Nethercote, N., Seward, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07 (New York, NY, USA, 2007), pp. 89–100.

[7] Swaroop Sridhar, Jonathan S. Shapiro, Prashanth P.
Bungale, et.al, “HDTrans: An Open Source,
Low-Level Dynamic Instrumentation System”, In
VEE '06: Proceedings of the 2nd international
conference on Virtual execution environments
(2006), pp. 175-185.

[8] B. Cmelik and D. Keppel, “Shade: A fast
instruction-set simulator for execution profiling”, In
Proceedings of the 1994 ACM SIGMETRICS
Conference on the Measurement and Modeling of
Computer Systems (1994), pp. 128–137.

[9] Fabrice Bellard. “QEMU: a Fast and Portable
Dynamic Translator”, Proceedings of the USENIX
Annual Technical Conference, 2005, pp.41-46.

[10] K Ebcioglu, E R Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility”,
24th Annual International Symposium on Computer
Architecture (ISCA'97), pp: 26-37.

[11] J. Lu, H. Chen, P.-C. Yew, et.al, “Design and
implementation of a lightweight dynamic
optimization system,” The Journal of
Instruction-Level Parallelism, vol. 6, 2004.

[12] Youfeng Wu, Mauricio Breternitz, Justin Quek,
Orna Etzion, Jesse Fang. “The Accuracy of Initial
Prediction in Two-Phase Dynamic Binary
Translators”. Proceedings of the international
symposium on Code generation and optimization:
feedback-directed and runtime optimization.
pp:227-238.

[13] A. Chernoff and R. Hookway, “DIGITAL FX!32 -
Running 32-Bit x86 Applications on Alpha NT,”
USENIX Association. Berkeley CA: Proceedings of
the USENIX Windows NT Workshop, August 1997.

[14] Chaohao Xu, Jianhui Li, Tao Bao, Yun Wang,
“Metadata driven memory optimizations in dynamic
binary translator”, Proceedings of the 3rd
international conference on Virtual execution
environments. San Diego, California, USA. Pages:
148 – 157, 2007.

[15] GNU Compiler Collection Internals.
[16] K. Hazelwood and M. D. Smith. “Managing

bounded code cache in dynamic binary optimization
systems”, Transaction on Code Generation and
Optimization, 3:263-294, 2006.

[17] K. Hazelwood and J. E. Smith, “Exploring Code
Cache Eviction Granularities in Dynamic
Optimization Systems”, Proceeding of the
International Symposium on Code Generation and
Optimization, pages 89-99, 2004.

[18] A. Guha, K. Hazelwood and Mary Lou Soffa,
“Reducing Exit Stub Memory Consumption in Code
Caches”, High Performance Embedded Architecture
and Compilers, Second International Conference,

pages 87-101, 2007.
[19] D. L. Bruening and S. Amarasinghe, “Maintaining

Consistency and Bounding Capacity of Software
Code Caches”, Proceedings of the International
Symposium on Code Generation and Optimization,
pages74-85, 2005.

[20] D. L. Bruening and V. Kiriansky, “Process-Shared
and Persistent Code Caches”, Proceedings of the 4th
International Conference on Virtual Execution
Environment, pages 61-70, 2008.

[21] D. L. Bruening, “Efficient, Transparent, and
Comprehensive Runtime Code Manipulation”, Ph.D
thesis, Massachusetts Institute of Technology
(2004).

[22] Apala Guba, Kim Hazewood and Mary Lou Soffa,
“DBT Path Selection for Holistic Memory
Efficiency and Perfomance”, VEE’10 March 17-19,
2010, Pittsburgh, Pennsylvania, USA.

[23] David Hiniker, Kim Hazelwood, Michael D. Smith,
“Harvard UniversityImproving Region Selection in
Dynamic Optimization Systems”, Proceedings of
the 38th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’05).

[24] Duane Merrill, Kim Hazelwood, “Trace Fragment
Selection within Method-based JVMs”, VEE’08,
March 5-7, 2008, Seattle, Washington, USA.

[25] D. Bruening, T. Garnett, S. Amarasinghe. “An
infrastructure for adaptive dynamic optimization”,
In International Symposium on Code Generation
and Optimization, pages 265-275, San Francisco,
California, 2003.

[26] Andreas Krall, “Improving Semi-static Branch
Prediction by Code Replication”, SIGPLAN 94-6/94
Orlando, Florida USA.

[27] Yunchao He, Chen Kai, Jinghui Gu, et.al, “A New
Approach to Reorganize Code Layout of Software
Cache in Dynamic Binary Translator”, (PAAP2010).
Accepted.

[28] Haipeng Deng, Kai Chen, Bo Liu, et.al, “Efficient
Online Trace Building Using Code Replication”,
GCC 2010, Accepted.

[29] Yindong Yang, Haibing Guan, Erzhou Zhu, Hongbo
Yang, Bo Liu, CrossBit: A Multi-Sources and
Multi-Targets DBT, CLOUD COMPUTING 2010,
November 21-26, 2010 - Lisbon, Portugal, accepted.

[30] Jinghui Gu,Chao Xu,Ling Lin,Juyu Zheng,Kai
Chen,Haibing Guan, The Implementation of
Static-integrated Optimization Framework for
Dynamic Binary Translation, ITCS2009, Kiev,
Ukraine, 25-26 July, 2009.

[31] Huihui Shi, Yi Wang, Haibing Guan, Alei Liang,"An
Intermediate Level Optimization Framework for
DBT", ACM SIGPLAN notice, vol
42(5),2007.5:3~9.

2348 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

Haibing Guan received his Ph.D. degree in computer
science from the TongJi University (China), in 1999. He
is currently a professor with the Faculty of Computer
Science, Shanghai Jiao Tong University (Shanghai,
China). His current research interests include, but are not
limited to, computer architecture, compiling,
virtualization and hardware/software co-design.

Erzhou Zhu is currently a Ph.D student at Shanghai Jiao
Tong University, China. He received the M.S. degree and
B.S. degree in Computer Science and Technology in
Anhui University, Anhui, China, in 2004 and 2008
respectively. His research interests include virtual
machine, binary translation and computer architecture.

Kai Chen received his Ph.D. degree in computer science
from Shanghai Jiaotnog University (China). He is
currently a lecturer with the Faculty of information
security engineering, Shanghai Jiaotong University
(Shanghai, China). His current research interests include,
but are not limited to, computer architecture, network
virtualization, virtual machines.

Ruhui Ma is currently a Ph.D student at Shanghai Jiao
Tong University, China. His research interests include
virtual machine, binary translation and computer
architecture.

Yunchao He, master candidate. Got bachelor degree
from School of Computer Science, Wuhan University of
Science and Technology in 2008. Now I am study in
Embedded System Lab, School of Software, Shanghai
Jiao Tong University in China. My research area is
dynamic binary translation and I/O virtualization on
KVM.

Haipeng Deng is currently a Master Degree Candidate
student at Shanghai Jiao Tong University, China. His
main research interest is binary translation.

Hongbo Yang is currently a Ph.D. student at Shanghai
Jiao Tong University, China. He received the M.S. degree
in 1995 and received his B.S. degree in 1998 at Institute
of Airforce Meteorologyity, China. His main research
interests are in virtual machines, computer architecture
and compiling.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2349

© 2011 ACADEMY PUBLISHER

