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Abstract—Dynamic binary translation (DBT) has attracted 
much attention as a powerful technique for the runtime 
adaptation of software among different ISAs. It offers 
unprecedented flexibility in the control and modification of 
a program during the runtime. However, its inherent high 
overhead has perplexed researchers for many years. In 
order to reduce the overhead of DBT, this paper presents a 
dynamic-static combined approach to reorganize the layout 
of software cache. Under this approach, we first employ an 
emulating execution to collect the profile information and 
the translated target code. Especially, the path of execution 
flow will be tracked. In the static phase, based on the profile 
information collected in the previous stage, we first use the 
method of code replicating to build the traces, and then 
reorganize the layout of the target code by putting the 
hottest traces at the top of the software cache. Because of 
exact prediction and improved locality, the execution stream 
will concentrate on a small area with less control transfer. 
This approach can greatly reduce the overhead of DBT on 
the condition that the program runs repeatedly. 
Experimental results on executing the SPEC 2000 
benchmarks show that our approach can reduce more than 
30% run time on average. 
 
Index Terms—Dynamic binary translation, profile 
information, static optimization, code replication, trace 
building 
 

I. INTORDUCTION 

Dynamic binary translation (DBT) has attracted much 
attention as a powerful technique for dynamically 
adapting software among different ISAs [1]. It offers 
unprecedented flexibility in the control and modification 
of a program during the runtime. The technique of DBT 
can be used in emulating an ISA to a new ISA, 
monitoring and optimizing performance at runtime, 
providing resource protection and management, 
virtualizing resources, and detecting security attacks and 
so on. In the past decades, a lot of dynamic binary 
translators have been designed for different goals: IA-32 
EL [2] and Aries [3] can migrate applications cross 
different ISAs; Pin [4], Dynamo [5], Valgrind [6] and 

HDTrans [7] can detect the behaviors of the programs as 
well as optimize the programs at runtime; Shade [8] and 
QEMU [9] use DBT to speed up architecture simulations; 
DAISY [10] is designed for creating a virtual execution 
environment from a totally different architecture at ISA 
level; ADORE [11] is designed as a dynamic binary 
optimization system. 

However, the inherently high overhead feature of DBT 
has perplexed many researchers for many years. 
Generally speaking, the overhead incurred in DBT can be 
divided into two parts: the overhead of translating 
procedure and the overhead of executing the target code. 
As a matter of fact, most of the present DBT systems can 
reduce the translating cost to an acceptable range. Hence, 
the main attention is laid down on the reducing execution 
time of target code. In order to reduce the time 
consuming of executing the target code, many 
optimizations has been proposed, such as translation 
block chaining, forming larger translation blocks 
(superblocks), reordering translated instructions to 
improve pipeline performance, and borrowing 
optimization techniques from traditional compilers. In 
fact many binary-code-specific optimizations are 
seriously depend on the profile information gathered 
during the runtime. The richness and correctness of 
profile information can directly determine which kind of 
optimization can be implemented and the extent of its 
efficiency. Profiling is a process for dynamically 
collecting program information (instructions and data 
statics) that is used to guide the optimization during the 
translation process. However, this inevitably leads to 
performance losing, especially the complex one.  

By introducing the static analysis stage into dynamic 
binary translation, the overhead of profile and dynamic 
optimizing are reduced remarkably. Under this scenario, 
the complex profile is collected by the first emulating 
phase. Then efficient optimization algorithms based on 
profile information collected by the previous stage are 
available. The overhead of the subsequent executions will 
be small, since they can directly execute the optimized 
target code generated by the static optimization stage. 
Generally speaking, the method of combines the dynamic 
translation with the static analysis at least has the 
following merits: firstly, it can spare the translation time. Corresponding author: Erzhou Zhu (ezzhu@sjtu.edu.cn) 
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The process of translating source code to target consumes 
a substantial part of time. Once the source code is 
translated at first run, then the target code will be saved in 
special files which can be directly loaded at the next runs. 
Secondly, profiling overhead will be eliminated except 
for the first run. If all the optimizations are performed 
statically, the profiling process is not needed anymore. 
Lastly, complex optimizing algorithms are available now. 
Since many optimizations are carried out statically 
instead of at runtime, complex algorithms which are not 
appropriate dynamically are available now without 
warring about overhead.  

Actually, the approach of employing static phase to aid 
dynamic binary translation assumes that the execution 
profile of each block in the profile phase (initial 
emulating execution phase) is representative of the block 
throughout its lifetime. In particular, a region is selected 
for optimization with the assumption that it infrequently 
takes its side exits and is thus candidate for advanced 
optimizing. If these assumptions are not hold, however, 
the performance of the program will be suffered [12].  

In DBT systems, the native code that CPU needs to 
execute is stored in software maintained cache. By 
reorganizing the layout of software cache, the overhead 
of dynamic binary translators are reduced remarkably. 
Once the target code in software cache is reframed 
properly, hot code will be gathered together and 
organized properly. Therefore, the execution stream will 
concentrate on a small but hot area with less happening of 
control transfer. As a whole, the method of reorganizing 
the layout of software cache can: (1) decreases the 
execution of jump instructions, (2) makes the pipeline 
going on with fewer interruptions, (3) reduces physical 
cache miss rate, (4) cuts down TLB access miss rate, and 
(5) decreases the page faults.  

This paper presents a new dynamic-static combined 
approach for reorganizing the layout of software cache in 
DBT system. This approach is based on the 
static-integrated optimization framework appeared in [30], 
and the DBT system that our approach is going to 
optimize is Crossbit [29]. As a whole, the approach 
contains three stages to fulfill its optimization target. In 
the initial phase, we employ the emulating execution to 
collect profile information and the translated target code. 
Especially, the path of each execution flow will be 
tracked, which is used to build the trace in the static 
analysis phase. In the static analyzing phase, based on the 
profile information and target code that are collected 
from previous stage, we first use the method of code 
replicating to build traces, and then reorganize the layout 
of the target code by putting the hottest trace at the top of 
the software cache. At the last stage, i.e. the subsequent 
executions, due to the profile information and the 
optimized target code are all available the overhead will 
be remarkably reduced. Different from our original 
approach [27], this approach introduces a replicate-based 
trace building algorithm in the static analysis phase. By 
code replication, more hot traces will be detected and 
generated in the memory space, through which programs 

could execute more continuously and therefore 
performance promotion will be achieved. 

The remainder of this paper is organized as follow. 
Section II introduces a brief overview of the DBT system 
(Crossbit) that out approach is going to optimize. Section 
III presents the detail implementation of the approach, 
which includes the overall workflow of our approach, 
traces building, code replicating and code layout 
reorganizing. Section IV gives the performance 
evaluations. Some related works are presented in section 
V. At last, we conclude our work. 

II. BACKGROUNDS 

Crossbit is the target DBT system that our approach is 
going to optimize. It is designed and implemented as a 
multi-source architectures and multi-target architectures 
dynamic binary translator, which aims at fast migrating 
existing executable source code from one platform to 
another alien target platform with lower cost. Until 
recently, it has fully or partially supported source 
platforms including SimpleScalar, IA32, MIPS, SPARC, 
and supported target platforms such as IA-32, Power PC 
and SPARC. The operating system that Crossbit support 
is Linux. In order to support code translation among 
multi-sources and multi-targets better, a new Intermediate 
Instruction set—VInst [31], which is independent of any 
specific machine instructions, has been introduced. 
Unlike many other existing DBTs which directly translate 
the binary code of one instruction architecture (ISA) to 
another ISA, Crossbit first converts source binary code to 
VInst specifications and then transforms them into target 
platform code, using a granularity of a basic block (BB) 
as the basic unit of translation. The detail introduction of 
Corssbit is described in [29]. 

Software-managed code cache, also called software 
cache or code cache for short in Crossbit, is very critical 
in Dynamic Binary Translator. It usually occupies an area 
of main memory and stores translated native code, 
making the translator reuse the native code to avoid the 
overhead of retranslation during the whole execution. 
Therefore, it can remarkably improve the performance of 
DBT system. In order to remove noise in performance 
comparison and analysis, we suppose the size of Software 
Cache is unbounded. It can store all of the translated code 
without any replacement policy. Then in Crossbit, the 
running time of execution over translated code takes 
more than 97% on the whole according to the benchmark 
of SPEC2000, while the cost of initialization, translation 
and optimization is trivial.  

In Crossbit, many techniques are employed to improve 
the quality of translated code in an effort to develop the 
performance:  

(1) Linking between blocks to reduce the incidence 
of returns to Crossbit 

(2) Changing indirect jump into several compare and 
direct jump in translated code to reduce the 
context switch to Crossbit when executing the 
translated code. 
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(3) Building superblock according to profile. 
(4) Redundant code elimination. 

These conventional techniques can greatly develop the 
performance of Crossbit, making it comparable to QEMU. 
To do further optimization, we present the method of 
dynamic-static combined code layout reorganization in 
software cache. 

III. IMPLEMENTATIONS 

A. Overview 
As Fig.1 demonstrates, the overall workflow of our 

approach can be divided into three phases: dynamically 
collects profile information at the first emulating 
execution phase, performs profile-directed optimizations 
(trace building and code layout reorganizing) in static 
analysis phase, and loads the target code that has been 
optimized offline for the subsequent executions. 

A) Emulating Execution 
In this phase, the DBT executes the source program 

dynamically. Instrumentations are deployed to collect the 
profile information. Profile information contains the 
execution times of each block, the incoming blocks and 
outcoming blocks of each block, the time of each jump 
direction, and so on. Especially, the path of each 
execution flow will be tracked, which is used to build 
traces in the static optimization stage. After the execution 
of the source image, the profile information will be saved 
in profile file. Specially, in order to spare the execution 
time of the subsequent execution, the translated target 
code will also be saved (in target code file) for the 
purpose of optimizing in the static analysis phase. 

B) Static Analysis 
Since it is needn’t taking much consideration of 

analyzing overhead in the static analysis phase, 
sophisticated optimizations can be deployed. We can 
perform the optimizations than can take full advantage of 
rich profile information, such as conditional branch 

directions prediction, inline and build superblocks 
according to the execution times of current blocks and its 
hottest outgoing edges. In this paper, we focus on trace 
building based on the method of code replication and 
translated code layout reorganizing. In this approach, hot 
traces are identified by their head blocks, and the 
granularity of the code to be reorganized is basic block. 
At the end of the static analysis stage, the hottest traces 
are placed at the top of the software cache, while the 
coldest ones are placed at the bottom. 

C) Subsequent Execution 
In this stage i.e. the subsequent executions, the 

operations of loading (profile file and target code file) 
and initializing are carried simultaneously. The main 
work flow of DBT is not changed, which means that the 
binary source image should be loaded as normal. The 
difference is that the target code is directly loaded from 
target file instead of been translated from source image. 
When execution starts, DBT tries to find the optimized 
code other than source code. If the target code that should 
be executed now has existed, DBT just executes it 
directly. Otherwise, DBT will translate the source code as 
normal. This approach can greatly reduce the overhead of 
DBT on the condition that the program runs repeatedly. 

In the overall workflow of our approach, stage 2 (i.e. 
the static optimization stage) is the most important one. It 
first takes the profile information and the translated code 
as the input, then builds traces by employing the method 
of code replicating, at last, reorganizes the layout of code 
cache by putting the hottest traces at the top area. 

B. Trace Building and Code Replicating 
Hot trace building plays an important role in enhancing 

the performance of dynamic binary translation. As a 
matter of fact, in most cases only 10% of code takes 90% 
of execution time of the whole program. Hot traces can 
promote the code position to make better the locality of 
the code, and therefore programs can achieve a better 
performance. In conventional, there are many traces in a 
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Figure 1. The Workflow of Our Approach 
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program, control transfers are frequently occurred from 
one to another. In DBT or other dynamic systems, trace 
building is a different issue, which must take a balance 
between the runtime overhead and efficiency. So how to 
enhance the quality of the trace fragment, which is a 
sequence of frequently-executed basic blocks in the 
memory, is quite important. At present, many trace 
building algorithms have been developed which can 
detect hot traces accurately. However, the high overhead 
make them less useful when applied in dynamic systems. 
In additional, there is a common situation in which a 
block is shared by many traces, only one of them is 
maintained intact while the others will be truncated into 
many short trace fragments. These short trace fragments 
will be produced in memory space and the instruction 
locality will get worse. 

To overcome the problems mentioned above, our 
approach employs a different strategy. In this strategy, we 
statically build traces based on the profile information 
that has been collected from the dynamic emulating 
execution stage, and employ the method of code 
replication to resolve the problem that one block is shared 
by many traces. By employing the dynamic-static 
combined method of trace building, the unbearable high 
overhead of DBT is turned away. It is need to be 
mentioned that, in this situation, the process of trace 
building and code replicating are on the level of logical, 
the works that really happen are in reorganization stage. 

A) Trace Building 
Since the translated code (organized as basic blocks) 

and its corresponding profile information are dynamically 
collected from the emulation stage, the process of trace 
building can be easily performed during the static phase. 
We start our approach by traverse the files that contain 
profile information and target code, and then employ the 
following two steps to build traces: the first step is to 
identify the trace head. The head block of a trace is 
determined by the Begin-Threshold, a threshold value 
that we predefined. When the execution time of a basic 
block exceeds the Begin-Threshold, it will be set as a 
trace head. Secondly, when the trace head is identified, 
the trace building procedure will be called to build trace. 
As we know, when one block becomes hot, the other 
blocks surrounding this hot block also seems to be hot. 
Consequently, the exit block of the current block that has 

the maximum execution time will be selected as a part of 
the current trace and also be labeled as “trace-men”. 
When the maximum execution time of the exit block is 
blow the Finish-Threshold (usually a multiple of the 
Begin-Threshold) or the block to be appended is already 
labeled as “trace-men” the trace building procedure will 
be closed, and thus the trace fragments emerged. 

B) Code Replicating 
The method of trace building in section A) will 

produce many trace fragments. In that situation, when a 
block is shared by different traces, only one of these 
traces is maintained intact, while the others will be 
truncated into many short trace fragments. These short 
fragments will be placed in the memory and the 
instruction locality will get worse. To handle this 
problem, we present a method of replicating of the very 
block that been shared by many different traces, and thus 
improve the instruction locality as well as memory 
continuity. 

Fig.2 gives a simple example of code replication. Fig.2 
(a) supposes the situation that both block a and b are 
jump to e, and then e passes the execution to c and d 
respectively. In this case, four traces might be 
constructed: …a→e→c…,…a→e→d…,…b→e→c…,…
b→e→d… . This way, the execution stream will be 
interrupted more frequently, and exhibits bad locality 
characteristics. According to our approach, we make a 
copy of block e when the second trace is built, like …
b→e2→d … . By doing this, the number of trace 
fragments is reduced, and the length of trace fragments is 
increased. Then two longer traces will be constructed (as 
Fig.2 (a)) which display a good instruction locality and 
allow the execution stream to run more continuously. 
However, this method also introduces a side effect of 
memory expansion, this side effect will be detail 
discussed in section IV.  

C) Trace-Table 
Since the works performed in this section are all on the 

level of logical. We just record the trace information and 
the replicated blocks. The works that really happen are in 
reorganization stage. In order to record this information, 
we maintain a Trace-Table that records the trace 
information, such as the SPC of the head block (identifies 
the trace) and its corresponding execution time (identifies 
the frequency of the trace), the SPC of the remainder 
blocks of the trace and so on. 

C. Code Layout Reorganization 
As mentioned previously, the scale of the software 

cache in Crossbit (the very DBT system our approach is 
applied to) is been set unbounded. By doing this, it is 
only needs a little time to initialize and translate. 
Additionally, reorganizing code layout of software cache 
can improve the performance on the ground that the 
execution stream will be more approximate to its control 
flow graph after reframing. On the target code in software 
cache is reframed properly, hot code will be gathered 
together and be well organized. Because of exact 
prediction and improved locality, the execution stream 
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 Figure 2. An Example of Code Replication. 
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will concentrate on a small area with less control transfer. 
The work of code layout reorganization is followed by 
the work of trace building and code replicating.  

A) Sort Target Traces and Blocks 
Prior to perform the work of code reorganizing, is has 

to sort the target traces and the remainder target blocks 
(scattered block we called) that have been generated 
previously. Since traces are identified by their head 
blocks, we just need to sort the head blocks. The right 
figure in Fig.3 displays the code that has been sorted from 
the left one.  

B) Reorganize Code Layout 
Since a trace is identified by its head block. If the head 

block of a trace is placed on the top of code cache, then 
the remainder blocks of the trace will be placed adjacent 
to their head blocks. Fig.4 demonstrates the change of the 
code layout. Supposes A, E, C are built into a trace, A is 
the head block of this trace, and A is the hottest block, 
then all of them will be placed on the top in spite of block 
B is more hotter than most of blocks in this trace. 

IV. PERFORMANCE EVALUATIONS 

In this section, we first carry out some experiments on 
comparing the overall performance of our approach with 
the original version of Crossbit (the DBT system that our 
framework based from) and QEMU (a fast and portable 
open source DBT system). Then the experiments on 
verifying the priority (compared with original Crossbit) 

of our approach are performed. At last, we emphasize the 
side effect of our approach that incurred by code 
replication. We carry out these experiments on an Intel 
Pentium 4 dual-core machine, where each core has a 
2.8GHz Pentium with an 800 MHz processor bus, 32KB 
of L1 cache and 1.5MB L2 cache. The machine’s 
memory system uses a 533MHz bus with 1.5GB of dual 
interleaved DDR SDRAM memory. We use the SPEC 
CPU2000 benchmarks as the test suite. Some of the 
benchmarks cannot run successfully on our approach, 
which might due to the base Crossbit lacking of complete 
support for all Linux System calls, or there are some 
errors in address relocation and linking of exits stub after 
code layout reframing, our team still deals with these 
issues now. So the comparisons and analysis are based on 
these programs that can be right executed on our 
approach.  

A. Overall Performance Comparison 
Fig.5 shows the overall comparison of performance 

among our approach, original version of Crossbit and 
QEMU [9] (a fast and portable open source DBT system). 
When compared with original version of Crossbit, our 
approach displays consistently better performance than 
that of Crossbit for all of the tested benchmarks. And also 
outperforms of QEMU for nearly all the tested 
benchmarks. The overall executing time of our approach 
is reduced by 34% on average relative to the original 
version of Crossbit, and more than 50% to QEMU. The 
better performance we gained largely due to static phase 
optimization and partly because of directly loading 
optimized target code to the following execution.  

Under our approach, fewer blocks are needed to be 
translated than the original Crossbit. Since the size of 
software cache of our approach is set unbounded, there 
would be no retranslation. Experimental statistic also 
shows that the overall consumption of initialization, 
optimization and translation are no more than 3%. So the 
reduction of the execution time, compared with original 
Crossbit, is about 31% in SPEC 2000. When compared 
with QEMU, our approach is much faster except for the 
mcf benchmark, the reason of this defect is described in 
[29].  
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The following two experiments are performed to verify 
the reasons of high performance we gained from static 
optimizations. 

A)  Code Execution Mainly Concentrates on A Few Hot 
Code 

It is well known that when a program is executed, the 
code execution frequency is often not evenly distributed. 
A small portion of the hot code usually occupies most of 
the execution time, while a large portion of other code is 
to cover all eventualities but executed little. So when the 
execution focuses on a small portion of the hot 
instructions, the overhead will be decreased. Fig.6 gives 
the experiment’s results to show the code execution 
frequency distribution our approach and original version 
of Crossbit. From the results, we can conclude that the 
code execution frequency is evenly distributed under 
original Crossbit. However, under the schema of our 
approach, more than 85% execution time mainly 
concentrates on 10% hot code. 

B) Less Control Transfer Occurrence 
Longer traces can greatly reduce the occurrence of 

control transfer. Less transfer control occurrence in the 
same program can enhance the accuracy of instruction 
pre-fetch, reduce interruption of pipeline, and finally 
introduce better performance. Fig.7 and Fig.8 show the 
direct jump occurrence and indirect jump occurrence 
respectively. In the figures the jump occurrence in 
original version of Crossbit is supposed as 100%. From 
the figures we can conclude that our approach can greatly 
reduce the occurrence of control transfer no matter it is a 

direct jump or an indirect jump. This because our 
approach can find hot spots and hot traces of the program, 
and then build longer traces to fulfill loop without 
transfer control change. 

B Side Effect of Our Approach 
Lastly we talk about the side effect of code replication: 

memory expansion. Fig.9 plots the memory expansion 
ratio (MER) of code replication. It shows the maximum 
MER of nearly 6% when running the crafty test case, and 
an average expansion ratio of 2.25%. Particularly, in the 
case of mcf, we get a performance promotion of 34%, 
with only a memory expansion of less than 2%. We can 
find that this code replication is quite suitable for mcf to 
enhance performance. On the situation of crafty, we can’t 
ignore the memory expansion sacrificed to performance 
promotion. 

V. RELATED WORKS 

For the purpose of gaining better performance, the 
static process has been adapted in many binary translation 
systems. FX!32 [13] is a profile-directed binary translator, 
which combines emulation (first run) and binary 
translation (subsequent runs) techniques. It possesses a 
database to accommodate the target code, which is 
generated by the background emulator according to the 
online profile information. Then the target code is 
available at the subsequent runs of the source image. 
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IA-32 Execution Layer (IA-32 EL) [2] is a two-phase 
dynamic binary translating software designed for 
supporting IA-32 applications on Intel Itanium family 
systems. In IA-32 EL, the first phase (also called cold 
code translation) is designed to be fast, with minimal 
optimizations and overhead and uses instrumentation to 
identify hot spots. The second phase (also called hot code 
translation), retranslates and further optimizes the 
hotspots identified by the cold translation. Metadata 
driven DBT [14] proposes a novel method of passing 
performance critical information to dynamic binary 
translator through metadata. By metadata, the dynamic 
binary translator is able to perform aggressive 
optimizations to generate high quality code. This 
approach behaves well if the source programs (written in 
high level language) are available. 

Static process has also been used in conventional 
compilation systems. GCC [15] requires the programs to 
be built and executed twice. In the first time, the 
applications are compiled to generate profile information. 
And the second time, the applications are compiled and 
use the profile information that was generated by the first 
execution. 

Efficient software cache Management is an important 
mean to improve the performance of DBT. In [16] and 
[17], the authors discussed the replacement policy of code 
cache. They compared several strategies of code cache 
replacement policy and presented the appropriate 
granularity of code cache eviction size, trying to protect 
more hot code from swapping out when the software 
cache is limited. Moreover, in an effort to cut down the 
memory consumption of code cache, they elaborated 
several methods [18] to reduce exit stub that is used to 
handle the egress of control transfer. [19], [20] and [21] 
presented the schemes to keep the software cache 
consistent between the code cache and the original code, 
to keep it transparent to user and operating system, to 
dynamically bound code cache size to match the current 
working set of the application when it is running, and to 
make software cache becoming process-shared when this 
merit is necessary. 

For most DBTs, the trace is the unit of choice of 
function and method. Traces are found to perform well 
and be easy to translation [22]. Many trace detecting 
methods have been employed to improve the performance. 
Next-Executing-Tail (NET) is a popular trace selection 
algorithm [23]. And it attempts to select traces that begin 
at loop headers by considering only instructions that are 
the targets of backward branches or exits from existing 
traces [24]. But it cannot span inter-procedural cycles and 
the nested loops. Mueller and Whalley [25] have applied 
code replication to avoid jumps in the program and 
improve instruction locality. Measurements taken from a 
variety of programs showed that not only the number of 
executed instructions decreased, but also that the total 
cache work was reduced (except for small caches) despite 
increases in code size. Adreas Krall [26] presents a kind 
of code replication techniques to improve the accuracy of 
semi-static branch prediction scheme. It uses profiling to 
collect information about the correlation between 

different branches and about the correlation between the 
subsequent outcomes of a single branch. 

VI. CONCLUSIONS AND FUTURE WORK 

As a power technique for the runtime adaption of 
software among different ISAs, dynamic binary 
translation has gained much attention. It offers 
unprecedented flexibility in the control and modification 
of a program during the runtime. But these attractive 
features are confined by substantial overhead, especially 
in the situations that translate among totally different 
architectures. In this paper, we tried to offset this 
drawback by introducing a dynamic-static combined 
approach to optimize the dynamic binary translators. 
Under this approach, we first employ the emulating 
execution stage to dynamically collect the profile 
information and the translated target code. Especially, the 
path of each execution flow will also be tracked. In the 
static analysis phase, due to the platitudinous profile 
information and target code, we employed the method of 
code replication to build traces, and then reorganized the 
layout of the target code by putting the hottest trace at the 
top of software cache. By implementing our approach, 
the execution flow was concentrated on a small area. 
Experimental results had shown that our approach 
reduced more than 34% runtime on average at the 
expense of 2% memory expansion ratio on average. 

 In the future, we will employ more algorithms to 
improve the runtime overhead as well as reduce the 
memory size expansion ratio. 
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