
A Two-Dimension XML Encoding Method
based on Variable Length Binary Code

Jie Chen1, Wenxin Liang2?, Haruo Yokota3

1,2 School of Software, Dalian University of Technology
3 Tokyo Institute of Technology

Email: 1 chen@mail.dlut.edu.cn, 2 wxliang@dlut.edu.cn, 3 yokota@cs.titech.ac.jp

Abstract— Recently, the researchers have proposed a num-
ber of labeling schemes. In these labeling schemes, the
approach which can extract structural information between
nodes and process query efficiently is more outstanding.
However, most of these labeling schemes do not well support
update operations. To achieve update-friendly operations,
some of the methods keep intervals between labeling num-
bers, but it requires whole relabeling when the intervals are
used up. Several labeling schemes support dynamic XML
documents, but most of these labeling schemes allow only
leaf node insertions. OrdPathX supports both leaf node in-
sertions and internal node insertions. Inspired by the method
of inserting internal nodes of OrdPathX and extending the
C-DO-VLEI code, in this paper we propose two dimensions
VLEI code. We discuss how this labeling scheme labels nodes
and how we can get the structural information of nodes
from their labels. We design experiments to evaluate the
efficiency of producing labels, the storage consumption and
the querying performance of two dimensions VLEI code we
proposed, and compare those with the OrdPathX.

Index Terms— XML, Labeling Scheme, Performance Evalu-
ation, Internal Node Insertion

I. INTRODUCTION

Recently, XML has become a standard language for
data representation and exchange over the Internet, and
is more and more widely used in various applications.
An XML document can be represented as a nested tree.
Figure 1 shows an example XML document, which is
used throughout this paper. Figure 2 is the corresponding
XML tree. According to the different structures in the
XML tree, nodes can be classified into three kinds of
types: 1) element node, 2) attribute node and 3) text node.

In the past few years, researchers have proposed many
labeling schemes. These labeling schemes can be divided
into four categories, namely, sub-tree labeling, prefix-
based labeling, multiplicative labeling and hybrid la-
beling [3], and researchers analyze how each approach
works, as well as its advantages and disadvantages [3],
such as Tree Traversal Order [2] and Dewey Order [9].
Tree traversal order is one of the interval encoding of
sub-tree labeling. In this scheme, each node is labeled
with a pair of unique integers consisting of preorder
and postorder traversal sequences. This label scheme can
determine the Ancestor-Descendant (A-D) relationship
easily, but the Parent-Child (P-C) relationship can not be

?Corresponding author.

Figure 1. Example XML document.

Figure 2. Example XML tree.

determined directly. Dewey Order uses delimiter ”.” to
separate the label of an ancestor node at each level of
the tree. In this method, each label of an ancestor node
is a prefix of its descendants, the P-C, A-D and sibling
relations can be determined by comparing the labels of
two nodes. However, both of these two methods are
unsuitable and inefficient for a dynamic XML document,
because when a new node is inserted into the tree using
these two methods, a large number of nodes need to be
re-labeled, in order to remain the structural information.

To reduce the cost of insertion, in practice, the
update-friendly labeling scheme is more useful. Vector
Order [11], VLEI (Variable Length Endless Insertion)
code [4], ORDPATH [8] and Extended Preorder Traver-
sal [6] are all update-friendly labeling schemes. [12]
compares Vector Order with some other update-friendly
labeling schemes. In this paper, we only focus on the
methods combined with Dewey Order. ORDPATH is one

2426 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.12.2426-2433

of the famous update-friendly labeling schemes based
on the prefix-based labeling scheme Dewey Order. OR-
DPATH uses the variable-length bit string to represent
labels. ORDPATH is conceptually similar to the Dewey
Order described in [9]. In ORDPATH, only positive and
odd numbers are assigned for the initial labeling, such as
the code of 1.1.1.3 and 1.5. Even and negative numbers
can be preserved for future insertions. In the actual encod-
ing, labels are represented as the compressed ORDPATH
format. Because in practical applications, many large
XML documents need to be handled, therefore, it is
necessary to ensure enough storage for extracting node’s
structural information and update operations. (DO-VLEI)
code [?] and ORDPATH [?] have been proposed. The
DO-VLEI labeling method inherits features of the Dewey
Order method, but reduces the update cost for insertion
operations. It uses the VLEI code [4] for expressing the
sibling order by a unique magnitude relationship, which
enables the unlimited insertion of new nodes with no
relabeling of other nodes being required. Experiments
in [7] indicates that the DO-VLEI code outperforms the
ORDPATH in both structural information extraction and
storage consumption.

However these update-friendly labeling schemes are
allow only leaf node insertions, if the intermediate node
is inserted, the methods cannot guarantee there is no need
to recalculate the labels of large number of nodes. In
practical applications, it is no doubt that the situations
of inserting intermediate nodes are possible, therefore [1]
proposed a two-dimensional encoding method called Or-
dPathX. OrdPathX is a two-dimensional labeling scheme
based on the ”careting-in” technique of ORDPATH. It can
handle both internal and leaf node insertions efficiently.
Because one-dimensional VLEI code outperforms ORD-
PATH, we want to design a two-dimensional VLEI code
which support intermediate node insertion based on one-
dimensional VLEI code. According to the analysis of ad-
vantages and disadvantages of various labeling schemes,
we design experiments to compare the two-dimensional
VLEI code with OrdPathX, in order to prove whether
the two-dimensional VLEI code outperforms OrdPathX.
Experiments show that the two-dimensional VLEI code
we proposed outperforms OrdPathX in both structural
information extraction and storage consumption.

In this paper, we mainly introduce the two-dimensional
VLEI code and discuss how the proposed labeling scheme
labels nodes and how to handle the issue of re-labeling
when inserting intermediate nodes in the vertical dimen-
sion. Then we compare the two-dimensional VLEI code
with OrdPathX in the following three respects:

1) The label construction speed.
2) Whether we can get node’s information from the

generating label efficiently, the information con-
cludes node depth information, the node labels and
node names of the parent node and the ancestor
node.

3) The average length of the labels, which determines
whether the labeling scheme saves storage space.

Experimental results show that the two-dimensional
VLEI code outperforms OrdPathX in these three respects,
it is mainly because the compressed two-dimensional
VLEI code’s length is shorter than the compressed Ord-
PathX, thus reducing storage consumption, and compress
efficiently. Because in OrdPathX when compressing and
decoding each component must refer to the prefix schema
and even-numbered and negative integer component val-
ues are reserved for later insertions, so it is slower than
the two-dimensional VLEI code which does not use the
prefix schema in the label construction and the structural
information queries.

The remainder of the paper is organized as follows:
Section II introduces related researches. Section III de-
scribes our proposed two-dimensional VLEI code. Sec-
tion IV shows the method for extracting useful struc-
tural information from the two-dimensional VLEI code.
Section V describes the experiments and evaluation of
our proposed labeling method. Section VI concludes the
paper.

II. RELATED WORK

Dewey Order is a simple prefix-based labeling scheme,
and many other labeling schemes are based on Dewey
Order, Dewey Order [9] uses ”.” delimiter to separate its
parent label and its own label, It is defined as follows:
1. The label of the root node Croot = 1.
2. The label of a non-root node C= Cparent.Cchild, where
Cparent denotes the label of its parent node, Cchild

denotes the order of the node in the sibling node.
We can get node’s depth information, the label of its

parent node and ancestor nodes and sibling (preceding
or following) relationship from the label. But Dewey
Order is not an update-friendly labeling scheme, therefore,
researchers proposed ORDPATH [8] and DO-VLEI [4],
and both of the two schemes are based on the Prefix-
based labeling scheme Dewey Order. The two methods
do not have re-labeling problem after insertion. We will
introduce the two methods next.

A. ORDPATH

ORDPATH is implemented in Microsoft R©SQL
ServerTM 2005, and is used in the added attribute
HierarchyID in the latest release of Microsoft R©SQL
ServerTM 2008. ORDPATH is an update-friendly
labeling scheme, based on Dewey Order, in Dewey
Order, node’s label is made from the label of the parent
node, a ”.” delimiter and a brother codes. In ORDPATH,
it is similar to Dewey Order during the initial labeling,
but only positive, odd integers are assigned. Figure 3
is an XML tree labeling by ORDPATH, even number
and negative integer component values are reserved for
further node insertions. For example, when inserting a
node between nodes labeled ”1.3.1” and ”1.3.3”, the
new node will be labeled by ”1.3.2.1”, in which ”2” is a
placeholder not increasing the depth of node, is assigned
to the node. The node of ”1.3.2.3” is inserted between

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2427

© 2011 ACADEMY PUBLISHER

Figure 3. Labeling by ORDPATH.

nodes labeled ”1.3.2.1” and ”1.3.3”. ORDPATH can
support update operations without relabeling. If given
the label of a node, its parent nodes, ancestor nodes and
depth information can be got, and the order of nodes
also can be quickly got by comparing the labels.

Note that the dots in the label are just for readers’
easy understanding. In the actual encoding, we use the
variable-length bit string to represent labels, called C-
ORDPATH. In the C-ORDPATH, label is expressed as
successive variable-length Li/Oi bit strings, and each
Li/Oi is used to represent an integer. according to a
prefix schema [8]. Li represents the length of Oi, and
it is a prefix-free encoding. Oi represents the value of
the component. For example, ”1.3.1” is compressed into
0110101 according to the prefix schema in [8]. Because 1
is represented as 01(01 is Li, and it represents the length
of Oi is 0, so 1 does not have Oi), and 3 is represented
as 101(10 is Li, and it represents the length of Oi is 1, so
the Oi of 3 is 1 according to the prefix schema), ”1.3.1”
is represented as 0110101.

B. DO-VLEI Code

DO-VLEI [4] is the labeling scheme combining VLEI
code with Dewey Order. We will introduce VLEI code
first.

VLEI code is a variable-length bit string starting with 1
and is composed by 0, 1, the relationship between codes
satisfies the following definition.

Definition 1: the relationship between VLEI codes: v
is a VLEI code, and the following condition is satisfied:
v · 0 · {0|1}∗ < v < v · 1 · {0|1}∗

The new code will be smaller than the original label
if 0 is added behind a VLEI code. The new code will be
larger than the original label if 1 is added behind a VLEI
code. So that there is no need to change other nodes’
labels when inserting a new node and label-generating is
also easy. The method combining VLEI code with Dewey
Order is DO-VLEI code. It is defined as follows:

1. The DO-VLEI code of the root node Croot = 1.
2. The DO-VLEI code of a non-root node C=

Cparent.Cchild, where Cparent denotes the DO-VLEI
code of its parent and Cchild denotes the order of the
node in the sibling node.

Figure 4 is an example XML tree labeling by DO-
VLEI code. Each component in DO-VLEI code is a VLEI

Figure 4. Labeling by DO-VLEI code.

code, separated by ”.”. When generating each component
in DO-VLEI code, we have to use an algorithm [5] that
mapping a natural number to VLEI code. The algorithm
is given for generating each component of node when
labeling the label of each node during the initial XML
tree load.

We need to use the algorithm in [5] when inserting
nodes. The algorithm is about how to decide the VLEI
code when inserting nodes. When inserting a node v
between two sibling nodes the VLEI code are vl and vr

(vl is the left sibling, vr is the right sibling, vl < vr)
respectively, then it’s VLEI code is decided like this: If
the length of vl is greater than the length of vr, the VLEI
code of v is vl1. Otherwise, if the length of vl is less than
or equal to the length of vr, the label of v is vr0. So the
VLEI code can ensure inserting nodes without changing
other nodes’ labels and the insertion label is unique. In
the DO-VLEI code, insert operation effects only the last
component, the head components only need to inherit the
DO-VLEI code of the parent node.

C. C-DO-VLEI Code

The same as ORDPATH, in order to save storage space,
in the actual storing, we need to compress DO-VLEI code,
and the encoding scheme called C-DO-VLEI code [7].
A DO-VLEI code is composed of three elements: ”.1”,
”0” and ”1”, at most 2 bits can represents three different
types of elements. ”.1”, ”0” and ”1” are represented by
10, 0 and 11 respectively when compressing DO-VLEI
code. This compressed code called C-DO-VLEI Code. For
example, 1.10 .11 is compressed into 111001011. 0, 10,
and 11 are prefix codes, so that C-DO-VLEI codes can be
uniquely decoded into the original DO-VLEI codes. Scan
C-DO-VLEI Code front to back when decoding, look at
the number of consecutive 1s before the 0. If there is
an odd number of consecutive 1s appearing before 0, the
last two bits 10 represent .1.Otherwise, if there is an even
number of consecutive 1s before 0, all of 1s are decoded
into 1, and the final ”0” is decoded into 0. We can see
that in compressing and decompressing DO-VLEI code
is easier than ORDPATH, it doesn’t require any prefix
schema, and it has already been proved in [7] that C-
DO-VLEI code outperforms C-ORDPATH in the storage
consumption and query performance.

2428 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

D. OrdPathX

Both ORDPATH and DO-VLEI Code are update-
friendly labeling schemes. It does not require relabel-
ing for other nodes when inserting leaf node, but they
cannot handle internal node insertion effectively. Ord-
PathX [1] can handle both internal and leaf node inser-
tions efficiently. In OrdPathX, the label consists of an
Augmented OrdPath(AO), possibly followed by a Parent
Height (PH):OrdPathX = AO.PH , where an AO is a
sequence of chunks and each chunk is consisted of zero
or more even components followed by an odd component.
Between each pair of consecutive chunks there may exist
an Incremental Height (IH). OrdPathX is inspired by the
”careting-in” technique of ORDPATH. In OrdPathX, it is
the same as ORDPATH during the initial load, and all of
the labels of nodes don’t have IH and PH . The label of
node v is L.C, and the label of its parent node v′ is L.
Now we are to insert nodes ul and u2 between them. First,
consider the insertion of u1, the label of u1 is L.(1).C
where ”(1)” is an IH . Moreover, v relabeled as L.C.[1]
where ”[1]” is the PH of v′s label. It indicates that v
has a parent-insertion node above it. We can see that if
a node’s label has PH , a node has been inserted as its
parent, and its PH value is equal to the IH value of its
parent node’s label. Then insert u2 as the new parent of
u1. The label of u2 is L.(3).C where (3) is the IH value
of u2, so u1 should be relabeled as L.(1).C.[3].

In OrdPathX, the use of dots and brackets in the labels
are just for readers’ easy reading. In the actual encoding,
label is represented as the form of variable-length bit
string. Each component is encoded using the IiLiOi
format where Ii is the component type indicating whether
the component is an ORDPATH, IH or PH . Ii uses
a fixed size of 2 bits to represent since there are three
different types of label components. The compression
of LiOi is the same as ORDPATH. We can use 01 to
represent IH , 10 to represent PH and 00 to represent
ORDPATH. We can see that in OrdPathX both compress-
ing and decompressing need to refer to the prefix schema,
and the selection of the prefix schema is also important.

III. 2-D VLEI CODE

In this section, we propose 2-D VLEI Code based
on DO-VLEI Code [4]. It not only supports leaf node
insertion but also supports internal node insertion.

A. Labeling Method

Because DO-VLEI Code and ORDPATH are both
based on Dewey Order, they are very similar in leaf node
insertion. The 2-D labeling scheme OrdPathX based on
ORDPATH can handle internal node insertion, and can
extract the structural relationship between nodes from
labels. Therefore, according to the method that OrdPathX
handles internal node insertion, we proposed 2-D VLEI
code based on one-dimensional VLEI code to achieve
internal node insertion efficiently.

The label in OrdPathX consists of an Augmented
OrdPath(AO), possibly followed by a Parent Height (PH):

Figure 5. An example of internal node insertion by 2-D VLEI code.

OrdPathX = AO.PH . The 2-D VLEI code we pro-
posed is based on OrdPathX, so there are IH and PH in
2-D VLEI code, but IH and PH here are components,
not chunks.

B. Internal Node Insertions

In 2-D VLEI code, all the labels is the same as DO-
VLEI Code during the initial load, and all of the labels of
nodes don’t have IH and PH , and use the same method
inserting leaf nodes. Therefore, this section focuses on the
method of internal node insertion.

The label of node v is L.C, and the label of its parent
node v′ is L (Figure 5(a)). Now we are to insert nodes
u1, u2, and u3 between them. First, consider the insertion
of u1, We label u1 as L.(1).C where ”(1)” is an IH ,
as shown in Figure 5(b). The value of IH is the first
VLEI code 1 according to the insertion method of VLEI
code, and then v is relabeled as L.C.[1] where [1] is a
PH . Next, insert u2 between u1 and v′, we label u2 as
L.(11).C and also re-label u1 as L.(1).C.[11], as shown
in Figure 5(c). Finally we insert node u3 between u1 and
u2. Because the IH of u1 and u2 are (1) and (11) respec-
tively, the IH of u3 is the value (110) which is bigger
than (1) and smaller than (11) according to the insertion
method of VLEI code. We label u3 as L.(110).C.[11]
and re-label u1 as L.(1).C.[110], as shown in Figure 5(d).
And this IH is the Significant Incremental Height (SIH)
because the component’s presence implies that the node
is a parent-insertion, similar as the conception of SIH in
[1].

There is a special situation of leaf node insertion. If v
is a parent-insertion node, we cannot handle the insertion
as the normal method, because v has a child, say w,
which was present before v was inserted. The label of v
is L.(IH).C.[PH](PH can be empty). If u is inserted
on the left of w, we label u as L.(IH).C.LS (Left
Sibling, the new node is the left brother of the present
node w). An example is shown in Figure 6. If we insert
a leaf node as the child of node L.(1).1 on the left of
the node whose label is L.1.[1], the new node’s label is
L.(1).1.1. If u is inserted on the right of w, u is labeled
as L.(IH).C.D. In Figure 6, the new node is labeled
as L.(1).1.1. Assuming that the new child node is v′, if

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2429

© 2011 ACADEMY PUBLISHER

Figure 6. A special example of leaf node insertion.

we are to insert node u between v and v′, the new node
is labeled as L.(IH).C.(IH).LS or L.(IH).C.(IH).D,
the PH value of v is equal to the last IH value of u. If
we insert a node between the node L.(1).1.1and the node
L.(1).1, the new node is labeled as L.(1).1.(1).1, the leaf
node is relabeled as L.(1).1.1.[1],as shown in Figure 6.

C. Structural Information

We can get the inter-node relationships between two
nodes from their 2-D VLEI code (namely, P-C, A-D and
siblings (preceding sibling and following sibling)):

P-C relation: Given two nodes u and v, if we want
to verify whether u is v′s parent node, we just see if the
L.(IH).C part of v’s parent matches the L.(IH).C part
of u’s label. We can deduce the L.(IH).C part of v’s
parent as follows. If ph is non-empty, then the L.(IH).C
part of v′s parent is L.(ph).C. Otherwise, if ph is empty,
then the L.(IH).C part is L. Note that it is impossible
to deduce the PH component of the parent.

A-D relation: Given two nodes u and v, if we want to
verify whether v is u′s ancestor node, we consider two
cases: (1) If v′s label is a prefix of u′s label, then v is an
ancestor of u. (2) If u and v have the same sequence of
components except for the SIH and PH and the SIH
of v is lexicographically larger than the SIH of u, then
v is an ancestor of u.

Sibling Relation: To determine if two nodes u and
v are siblings, we check if they have the same parent.
If we want to detect preceding/following sibling relation,
we consider two cases: (1) If both u and v do not have a
PH in their labels, we just compare their last component
in lexicographic order. (2) If either u or v has a PH
component, then the node (say v) with a PH component
has one or more nodes inserted above it. If there is
LS component in u′s label, u precedes v. Otherwise, u
follows v. The node u precedes v if the LS component
of u is less than the LS component in v when both of
the nodes have LS.

D. Compressed 2-D VLEI code

In DO-VLEI Code, ”.1”, ”0” and ”1” are compressed
into (10), (0) and (11) respectively. In the 2-D VLEI
Code, there are PH , IH , LS and normal VLEI code
components, so we need 2 bits to separate 4 types of

components. We use (01) to represent PH , use (10)
to represent IH , use (11) to represent LS and use
(00) to represent normal VLEI code. The question is
where we should put the two bits that will not cause
conflict in the future decoding. We put these two bits
after the (10) which represents ”.1” of DO-VLEI code.
If we want to decide the type of component when
decoding, we should scan two bits after we determine
the position of ”.” and decide the type of component.
Algorithm 1 shows the details of compressing 2-D VLEI
Code. For example, 1.100.101.110.1 is compressed into
11100000100001110001101000. Because all of the DO-
VLEI codes begin with 1 and are normal VLEI Code,
the first component does not use additional two bits
to represent the type of component. 1.(11).100.11.[1] is
compressed into 111010111000001011111001. The first
two bits of each component are 10(except the first com-
ponent), and the two bits following represent the type of
component. Therefore, the compressed 2-D VLEI code
can be uniquely decoded into the original 2-D VLEI
codes.

Algorithm 1 The Algorithm of compressing 2-D VLEI
Code.
Input:

The label of 2-D VLEI Code before Compressing,
vlei;

Output:
The Compression of 2-D VLEI Code, cvlei;

1: for i = 0 to i < vlei.length() do
2:
3: if vlei.charAt(i) ==′ 1′ then
4: cvlei = cvlei + ”11”
5: else {vlei.charAt(i) ==′ 0′ }
6: cvlei = cvlei + ”0”
7: else {label.charAt(i) ==′ .′&&label.charAt(i +

1) ==′ (′ }
8: cvlei = cvlei + ”10” + ”10”
9: i = i + 2

10: else {label.charAt(i) ==′ .′&&label.charAt(i +
1) ==′ [′ }

11: cvlei = cvlei + ”10” + ”01”
12: i = i + 2
13: else {label.charAt(p) ==′ .′&&label.charAt(i+

1) ==′ {′}
14: cvlei = cvlei + ”10” + ”11”
15: i = i + 2
16: else {label.charAt(p) ==′ .′}
17: cvlei = cvlei + ”10” + ”00”
18: i = i + 1
19: end if
20: end for
21: return cvlei;

2430 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

TABLE I.
EXPERIMENTAL ENVIRONMENT

CPU Pentium(R)DualCoreE5300(2.60GHz)
Memory DDR2 2048MB
OS Windows XP Professional
Memory DDR2 2048MB
Java 1.6.0 02
DB Office Access 2003

IV. STRUCTURAL INFORMATION EXTRACTION USING
2-D VLEI CODE

In this section, we will discuss the method of extracting
node’s information from 2-D VLEI Code. Structural infor-
mation includes depth information, the label and name of
parent node, the label and name of any ancestor nodes. We
can also decide the inter-node relationships (P-C relation,
A-D relation and sibling relation) between two nodes
according to their labels.

Because the 2-D VLEI Code is also prefix-based la-
beling scheme, it is important to find the locations and
count the number of the delimiters in 2-D VLEI Code.
If we get the number of the delimiters, we will know the
depth of node, and we only need to extract the prefix
code before the rightmost delimiter to get the label of
parent node. We will get node’s name after querying
the table that storing the labels and names of all the
nodes for each XML document. To get any level ancestor
nodes information, we repeat the method of parent node
information extraction. In Compression of 2-D VLEI code
part of Section III, we have described the method of
finding the location of the delimiters and decoding labels.
If given two nodes’ labels, we should decode labels fist
and then decide their inter-node relationships according
to the method described in Structural Information of
Section III.

V. EXPERIMENTAL EVALUATION

Experimental environment is shown in Table 1. Because
the 2-D VLEI Code and OrdPathX are both support
internal node insertions, we perform experiment to com-
pare their performance, such as the speed of producing
the node’s label, the storage consumption and the ef-
ficiency of extracting information from the label. The
XML documents used for the experiments were sourced
from the XML Data Repository [10], we select 13 XML
documents, and Table 2 shows the details of these XML
documents, including the document name, document size,
and the number of elements, and the maximum depth. The
XML document sizes range from 1KB to 1.7MB.

A. Efficiency of Producing Labels

First, to compare the 2-D VLEI code with OrdPathX
in the efficiency of producing labels, we designed ex-
periment to calculate the label of 2-D VLEI code and
OrdPathX of all the nodes in XML document, at the
same time record the time of computing labels of all
nodes of a XML document. Figure 7 shows the label
generation time ratio for computing labels of all nodes

TABLE II.
XML DOCUMENTS

document(.XML) size(byte) elements maxdepth
region 787 21 3
nation 4,568 126 3
ubid 20,320 342 5
321gone 24,516 311 5
yahoo 25,421 342 5
supplier 29,250 801 3
ebay 35,562 156 5
reed 283,655 10546 4
SigmodRecord 478,416 11526 6
customer 515,660 13501 3
part 618,181 20001 3
wsu 1,647,864 74557 4
mondial-3.0 1,784,825 22423 5

Figure 7. Label generation time ratio of 2-D VLEI code to OrdPathX.

of a XML document, using the 2-D VLEI code and
OrdPathX. From this figure, we can see that the execution
times for computing labels of all nodes using the 2-D
VLEI code are about 15% less than the execution times
using OrdPathX. The main reason is that compressing
each component in OrdPathX needs to find a suitable
record in the prefix schema.

B. Average Label Size

We then calculated and compared the average label
size of each XML document labeled by the 2-D VLEI
code and OrdPathX. Figure 8 shows the average label
size ratio of the 2-D VLEI code to OrdPathX for each
XML document and from which we can learn that the
average label size using the 2-D VLEI code is about 15%
on the average smaller than that using the OrdPathX.
This is because that the compression of .1, 0 and 1 is
as short as possible in 2-D VLEI code and then the total
size of 2-D VLEI code will be the shortest. Moreover,
in OrdPathX, skipping even numbers makes ORDPATH
labels less compact, and the reserved space is not possible
to be reduced, so this makes the compressed OrdPathX
label longer. It means that the proposed labeling scheme
also outperforms the OrdPathX in storage consumption.

C. Label Information Extraction

We also performed experiments to calculate the time
of extracting information from the stored labels of each
document. The information includes: 1) node’s informa-
tion (the depth, label after decoding, the node’s name);
2) information of the parent node (the depth, label after

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2431

© 2011 ACADEMY PUBLISHER

Figure 8. Label size ratio of 2-D VLEI code to OrdPathX.

Figure 9. Execution time ratio of 2-D VLEI code to OrdPathX.

decoding, the node’s name); 3) information of the ancestor
nodes (the depth, label after decoding, the node’s name).
Figure 9 shows the execution time ratio for extracting
self information, information of the parent node, and
information of the ancestor nodes using the 2-D VLEI
code and OrdPathX. From the experimental results we
can see 2-D VLEI code can achieve high performance
in structural information extraction. This is because the
delimiter detection in OrdPathX requires traversal from
the head through the whole code and refers to the prefix
schema for determining each delimiter. While using the 2-
D VLEI Code does not need to refer to any prefix schema,
just counting the number of consecutive ”1”.

D. Efficiency of Inserting Labels

In the experiment, we performed parent insertions. We
selected 30% of the total nodes in each XML documents
and insert one parent for each selected node. Figure 10
shows the total insertion time ratio of 2-D VLEI code to
OrdPathX, from which we can learn that the insertion time
using 2-D VLEI code is about 47% on the average smaller
than that using the OrdPathX, which means that the
proposed method also outperforms the OrdPathX method
in internal node insertion.

VI. CONCLUSION

Inspired by the method of inserting internal nodes of
OrdPathX, in this paper we proposed 2-D VLEI code
based on the DO-VLEI code. The 2-D VLEI code sup-
ports internal node insertions and does not need any prefix
schema when compressing and decoding. We performed

Figure 10. Insertion time ratio of 2-D VLEI code to OrdPathX.

experiments to evaluate the efficiency of producing labels,
the storage consumption and the querying performance
of 2-D VLEI code we proposed, and compared those
with the OrdPathX. And we also compared the 2-D
VLEI code with OrdPathX in internal node insertion.
Our experimental results indicate that the 2-D VLEI code
outperforms the OrdPathX in the above-mentioned four
aspects.

ACKNOWLEDGMENT

This work was partially supported by SRF for ROCS,
SEM, Doctoral Fund of Ministry of Education of China,
the Fundamental Research Funds (DUT10JR02) for the
Central Universities, China.

REFERENCES

[1] Jing Cai and Chung Keung Poon. OrdPathX: Supporting
Two Dimensions of Node Insertion in XML Data. In
Proceedings of DEXA, pages 332–339, 2009.

[2] Paul Frederick Dietz. Maintaining Order in a Linked
List. In Proceedings of the ACM Symposium on Theory of
Computing, pages 122–127, 1982.

[3] Su Cheng Haw and Chien Sing Lee. Node Labeling
Schemes in XML Query Optimization: A Survey and
Trends. IETE TECHNICAL REVIEW, 26(2):88–100, 2009.

[4] Kazuhito Kobayashi, Wenxin Liang, and Dai Kobayashi.
VLEI code: An Efficient Labeling Method for Handling
XML Documents in an RDB. In Proceedings of ICDE,
pages 386–387, 2005.

[5] Kazuhito Kobayashi and Haruo Yokota. Evaluation of
XML Laveling Methodss using Endless Insertable Code
VLEI. In DEWS2004, 2004.

[6] Quanzhong Li and Bongki Moon. Indexing and Querying
XML Data for Regular Path Expressions. In Proceedings
of the VLDB, pages 361–370, 2001.

[7] Wenxin Liang, Akihiro Takahashi, and Haruo Yokota.
A Low-Storage-Consumption XML Labeling Method for
Efficient Structural Information Extraction. In Proceedings
of DEXA, pages 7–22, 2009.

[8] Patrick O’Neil, Elizabeth O’Neil, and Shankar Pal.
ORDPATHs:Insert-Friendly XML Node Labels. In Pro-
ceedings of ACM SIGMOD Conference, pages 903–908,
2004.

[9] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel
Shanmugasundaram, Eugene Shekita, and Chun Zhang.
Storing and Querying Ordered XML Using a Relational
Database System. In Proceedings of ACM SIGMOD
Conference, pages 204–215, June 2002.

2432 JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011

© 2011 ACADEMY PUBLISHER

[10] Xml data repository. http://www.cs.washington.edu/
research/xmldatasets/.

[11] Liang Xu, Zhifeng Bao, and Tok Wang Ling. A Dynamic
Labeling Scheme Using Vectors. In Proceedings of DEXA,
pages 130–140, 2007.

[12] Liang Xu, Tok Wang Ling, and Huayu Wu. Labeling
dynamic xml documents:an order-centric approach. IEEE
Transactions on Knowledge and DataEngineering, 2010.

Jie Chen received her B. Sc. in Software Engineering from
School of Software, Dalian University of Technology in 2010.
She is currently a master student with Dalian University of
Technology. Her main research interests include XML databases
and XML labeling.

Wenxin Liang received his B.E. and M.E. degrees from Xi’an
Jiaotong University, China in 1998 and 2001, respectively. He
received the Ph.D. degree in Computer Science from Tokyo
Institute of Technology in 2006. He was a Postdoc Research
Fellow, CREST of Japan Science and Technology Agency (JST)
and a Guest Research Associate, GSIC of Tokyo Institute of
Technology from Oct. 2006 to Mar. 2009. His main research
interests include XML Data Processing and Management, XML
Storage, Indexing, Labeling and Querying Techniques, XML
Keyword Search, Web-based IR, Knowledge Discovery and
Management, etc. He is currently an associate professor at
School of Software, Dalian University of Technology, China.
He is a senior member of China Computer Federation (CCF),
and a member of IEEE, ACM, ACM SIGMOD Japan Chapter
and Database Society of Japan (DBSJ).

Haruo Yokota received the B.E., M.E., and Dr. Eng. degrees
from Tokyo Institute of Technology in 1980, 1982, and
1991, respectively. He joined Fujitsu Ltd. in 1982, and was a
researcher at ICOT for the Japanese 5th Generation Computer
Project from 1982 to 1986, and at Fujitsu Laboratories
Ltd. from 1986 to 1992. From 1992 to 1998, he was an
Associate Professor in Japan Advanced Institute of Science and
Technology (JAIST). He is currently a Professor at Department
of Computer Science in Tokyo Institute of Technology.
His research interests include general research area of data
engineering, information storage systems, and dependable
computing. He is an associate editor of the VLDB Journal,
a chair of ACM SIGMOD Japan Chapter, a trustee member
of IPSJ and the Database Society of Japan (DBSJ), a fellow
of IEICE and IPSJ, and a member of JSAI, IEEE, IEEE-CS,
ACM and ACM-SIGMOD.

JOURNAL OF SOFTWARE, VOL. 6, NO. 12, DECEMBER 2011 2433

© 2011 ACADEMY PUBLISHER

