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Abstract—Mining frequent closed itemsets in data streams 
is an important task in stream data mining. In this paper, an 
efficient mining algorithm (denoted as EMAFCI) for 
frequent closed itemsets in data stream is proposed. The 
algorithm is based on the sliding window model, and uses a 
Bit Vector Table (denoted as BVTable) where the 
transactions and itemsets are recorded by the column and 
row vectors respectively. The algorithm first builds the 
BVTable for the first sliding window. Frequent closed 
itemsets can be detected by pair-test operations on the 
binary numbers in the table. After building the first 
BVTable, the algorithm updates the BVTable for each 
sliding window. The frequent closed itemsets in the sliding 
window can be identified from the BVTable. Algorithms are 
also proposed to modify BVTable when adding and deleting 
a transaction. The experimental results on synthetic and 
real data sets indicate that the proposed algorithm needs 
less CPU time and memory than other similar methods. 

 
Index Terms—data mining, frequent closed itemsets, bit 
vector table, data stream, sliding window 
 

I.  INTRODUCTION 

Mining frequent itemsets from data streams is an 
important problem with wide applications in data streams 
analysis. Examples include stock tickers, bandwidth 
statistics for billing purposes, network traffic 
measurements, web-server click streams, transaction 
analysis in stocks and telecom call records, and so on. 
Unlike traditional data sets, data streams flow in and out 
of a computer system continuously with varying update 
rates. They are temporarily ordered, fast changing, 
massive and potentially infinite. For the stream data 

applications, the volume of data is usually too huge to be 
stored or to be scanned for more than once. Furthermore, 
since the data items can only be sequentially accessed in 
data streams, random data access is not practicable. 

To improve efficiency of the mining process, Han[1] 
proposed an algorithm FP-growth (frequent-pattern 
growth) which uses a FP-tree and a head table L to find 
frequent itemsets. It is not practicable in data stream 
mining which allows only one time scan. 

In solving many application problems on data stream, 
it is desirable to discount the effect of the old data. One 
way to handle such problem is to use sliding window 
models[2]. There are two typical models of sliding 
window[3]: milestone window model and attenuation 
window model. H.F.Li[4] made use of NewMoment to 
maintain the set of frequent closed itemsets in data 
streams with a transaction-sensitive sliding window. 
MOMENT by Chi[5] is also a typical algorithm which 
can decrease the size of the data structure. N.Jiang[6] 
proposed a novel approach for mining frequent closed 
itemsets over data streams. Y.Chi[7] introduced a 
compact data structure, i.e. the closed enumeration tree, 
to maintain a dynamically selected set of itemsets over a 
sliding window. The selected itemsets contain a boundary 
between frequent closed itemsets and the rest of the 
itemsets. F.J.Ao[8] presented an algorithm named 
FPCFI-DS for mining closed frequent itemsets in data 
streams. FPCFI-DS uses a single-pass 
lexicographical-order FP-Tree-based algorithm with 
mixed item ordering policy to mine the closed frequent 
itemsets in the first window, and updates the tree for each 
sliding window. J.Y.Wang[9] proposed an alternative 
mining task for mining top-k frequent closed itemsets of 
length no less than min_l. The BitTableFI algorithm by 
J.Dong[10] is based on a structure of BitTable. BitTable 
is a set of integer where every bit represents an item. 
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Since BitTableFI only mines frequent itemsets, it 
generates huge amount of candidate itemsets. 
Furthermore, BitTableFI is just for mining the frequent 
itemsets from the static database, so it is obviously not 
suitable for the data stream. 

In this paper, an efficient mining algorithm (denoted as 
EMAFCI) for frequent closed itemsets in data stream is 
proposed. The algorithm is based on the sliding window 
model, and uses a Bit Vector Table (denoted as BVTable) 
where the transactions and itemsets are represented by the 
column and row vectors respectively. The algorithm first 
builds the BVTable for the first sliding window. Frequent 
closed itemsets can be detected by pair-test operations on 
the binary numbers in the table. After building the first 
BVTable, the algorithm updates the BVTable for each 
sliding window. The frequent closed itemsets in the 
sliding window can be identified from the BVTable. The 
algorithm is also proposed to modify BVTable when 
adding and deleting a transaction. The experimental 
results on synthetic and real data sets indicate that the 
proposed algorithm needs less time CPU time and 
memory than other similar methods. 

The rest of this paper is organized as follows. The next 
section describes the background of frequent closed 
itemset mining. In section 3, we introduce our algorithm 
EMAFCI. Section 4 shows the experimental results in 
testing EMAFCI. Finally, conclusions are given in 
Section 5. 

II.  BACKGROUND 

A. Frequent Closed Itemsets 
Let },,,{ 21 miiiI "=  be a set of distinct data items, 

and a subset IX ⊆ is called an itemset. Each transaction 
t  is a set of items in I . A data 
stream ),...},(),...,,{( 11 nn ttidttidDS =  is an infinite 
sequence of transactions in which ktid  is the identifier 
of a transaction and ),,2,1( nkItk "=⊆  is an itemset. 
For all transactions in a given window of the data stream, 
the support sup )( X  of an itemset X  is defined as the 
number of transactions with X  as a subset. 

In general, the more transactions a sliding window has, 
a larger amount of frequent itemsets could be produced. 
In this case, there are many redundancies among those 
frequent itemsets. For example, in the frequent 
itemsets },,{ aadacd , the only useful information is the 
set acd  according to Apriori property, because it 
includes ad and a . Frequent closed itemset is a solution 
to this problem. A frequent itemset X  is a closed one if 
it has no superset XY ⊃  so that sup )( X =sup )(Y . 
Frequent closed itemset is a condensed, i.e. both concise 
and lossless, representation of a collection of frequent 
itemsets.  

B. Sliding Window 
The basic idea of mining frequent closed itemset in the 

sliding window model is that it makes decisions from the 
recent transactions in a fixed time period instead of all the 
transactions happened so far. Formally, a new data 

element arriving at the time t  will expire at time wt + , 
in which w is the length of the window. At every time 
step, when a new transaction comes to the window, the 
oldest one in the window should be deleted. Since the 
transactions in the window are updated over time, the 
frequent itemsets should be renewed accordingly.  

III.  THE EMAFCI ALGORITHM 

In this section, we illustrate the framework of the 
algorithm EMAFCI for mining frequent closed itemsets 
in data streams based on the model of sliding window. 
First we introduce the data structure of BVTable used in 
the algorithm. 

A. The BVTablet 
The EMAFCI algorithm is based on the data structure 

of BVTable. To compress the itemsets and the database, 
BVTable consists of a set of binary integer where each bit 
represents an item. It consists of three parts, the left, 
middle and right part. 

The ith row of the BVTable is a vector ),,( iii cts  
where binary integers is , it  are the left and middle 
parts respectively, and the right part ic  is the support of 
the itemset corresponding to the ith row. In the left part of 
BVTable, each column represents an item and each row 
is a binary integer corresponding to a candidate itemset. 
Denote the jth bit of is , as ijs . If the jth item is included 
in the ith itemset, then 1=ijs , otherwise 0=ijs . In the 
middle part of BVTable, each column represents a 
transaction in the current time window and each row is a 
binary integer indicating whether the itemset represented 
by this row is included in the transaction or not. Denote 
the jth bit of ir , as ijr . If the ith itemset is included in the 
jth transaction, then 1=ijr , otherwise 0=ijr . In the 
right part of the ith row, )( ii rHc = is the support of the 
itemset corresponding to the ith row, here )( irH  is the 
number of bits "1" in jr . Since ic can be calculated 
easily from ir , it doesn’t need to be physically stored in 
the memory. 

To mine the frequent closed itemsets from the current 
sliding window, the algorithm EMAFCI first builds a 
BVTable for all 1-itemsets that are denoted as 1L . Based 
on 1L , all the frequent 2-itemsets can be detected and 2L  

can be built. Repeat this procedure until all the 
r -itemsets are detected, and here r is the maximum 
length of the transactions. 

Here, 1L consists of all the 1-itemsets that include the 
frequent and nonfrequent ones in order to store all the 
transactions in the current window.  

Example 1: Let },,,{ dcbaI = be the set of all the 
items, minsup=2, the size of a window 4=w . The set of 
transactions in the first window is },,,{ acdacdabbcD = . 
The ItemLists 1L  and 2L  are shown as in TABLE 1 
and TABLE 2 respectively. 
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TABLE 1. 
 THE BVTABLE 1L  

a  b  c  d  1  2  3  4 count 
1  0  0  0  
0  1  0  0  
0  0  1  0  
0  0  0  1  

0  1  1  1 
1  1  0  0 
1  0  1  1 
0  0  1  1 

3 
2 
3 
2 

 
TABLE 2. 

THE BVTABLE 2L  

a  b  c  d  1  2  3  4 count 
1  0  1  0  
1  0  0  1  
0  0  1  1  

0  0  1  1 
0  0  1  1 
0  0  1  1 

2 
2 
2 

 
The left part of the 3rd row of 1L , which represents the 

item c , is compressed to 2 and its binary code is 0010. 
The middle part of this row is 11 and its binary form is 
1011, which means that transactions 1, 3 and 4 include 
item c. Similarly in the left part of the 1st row in 2L  is 
10 and its binary form is 1010 which corresponds to the  
itemset ac . The middle part of this row is 3, and its 
binary form is 0011, which means that transactions 3 and 
4 include itemset ac . 

Let n  be the maximum length of the transactions, 
and w  be the length of the sliding window, then each 
row of the table consists of nw +  bits. Since the right 
part can be obtained directly from the middle part, it 
doesn’t need to be stored in the memory. Let r  be the 
maximum number of bits of a binary integer in the 
system, an array of size rnw /)( + is used to store each 
compressed data. 

B. Framework of algorithm 
The algorithm EMAFCI receives a transaction from 

the data stream at each time step, and forms a new sliding 
window by adding this new transaction into the window 
and emitting the oldest one. To identify the frequent 
closed itemsets in this new sliding window, EMAFCI 
should modify the BVTable accordingly. Since two 
adjacent windows are overlapped except the added and 
deleted transactions, the frequent closed itemsets of the 
two windows do not change abruptly. EMAFCI needs 
only to process the part of BVTable involving these two 
transactions. Therefore, procedures are proposed to 
modify BVTable when adding and deleting a transaction. 

The framework of algorithm EMAFCI is as follows: 
 
Algorithm: EMAFCI( LD, ) 
Input: D : the data stream; 
Output: L : the BVTable; 
Begin 
  BuildFirstBVTable( LnD ,, );  
  while not the end of the stream do 
    Receive a new transaction x from the stream; 
    DeleteTransFCI( L ); 
    AddTransFCI( L , x ); 
  end while 
End  

C. Build the BVTable for the first window 
The ItemList for the first window is constructed by a 

procedure BuildFirstBVTable(). First the BVTable for the 
1-itemsets 1L  should be generated. Then the BVTable 

2L  for the frequent 2-itemsets are generated from the 
frequent 1-itemsets by performing bitwise OR operation 
(denoted as ∪ ) in the left part of the BVTable and AND 
operation (denoted as ∩ ) in the middle part of the 
BVTable. Similarly, the frequent 3-itemsets and 
4-itemsets are generated from the 2-itemsets. Iterate this 
procedure until all the frequent itemsets are detected. Let 
n  be the maximum length of the transactions, so the 
maximum number of such iterations is log2n. Among 
the frequent itemsets detected, the sub-itemsets with the 
same support are labeled "*", because they are non- 
closed frequent itemsets. Details of the operation are as 
follows. 

We denote the BVTable after the kth iteration as kL . 

Let 22 −= km , and denote the set of all frequent 
j -itemsets as mC , then kL  consists of all the frequent 

itemsets 1+mC …
mC2 . To construct 1+kL , pair-test 

operation should be performed on each pair of frequent 
itemsets to generate possible larger frequent itemset. Let 

),,( iii cts  and ),,( jji cts  be two frequent itemsets in 

kL , then a pair-test operation can generate an itemset  
),,( cttss jiji ∪∪ , here )( ji ttHc ∩=  is the number of 

bits "1" in ji tt ∩ . 
In each iteration we generate the frequent itemsets in 

1+kL  based on kL  which consists of the frequent 
itemsets 1+mC …

mC2 , and entirely ignore the itemsets in 

121 ..., LLL kk −− .   
Theorem 1 Let iC  be the set of all the frequent 

i -itemsets, all sets )12( +>> ijiC j can be generated by 
pair-test operation only on the frequent itemset pairs in 

iC  regardless of 121 ..., CCC ii −− . 
Proof: Since for any frequent itemset I  in 

)12( +>> ijiC j , all its i -item subsets are also frequent 
and must be included in iC . We can partition I into two 
subsets 1I  and 2I  such that iII == |||| 21  and 

III =21 ∪ . It obvious that 1I  and 2I  are all in iC  and 

jC , which can be generated by pair-test operations on 
itemset pair 1I  and 2I  in iC . 

Q.E.D. 
Let the ith row in BVTable jL  be ),,( iiiji crsL = , 

where ii rs , and ic  are the left, middle and right parts 

of jiL  respectively. Denote )(rH  as the number of 
bits "1" in r . The framework of the algorithm 
BuildFirstBVTable( LnD ,, ) is described as follows: 
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Algorithm BuildFirstBVTable( LnD ,, ) 
Input: D : the set of w transactions in the first  

sliding window;  
n : maximum length of the transactions  

Output: the BVTable L ; 
Begin 
 Generate BVTable 1L  for the w transactions in D ; 
For 1=j  to 1log −n  do 

For 1=i  to 1|| −jL  do 
For 1+= ik  to || jL  do 

Let ;);,(),,( kikkjkiiji ssstsLtsL ∪===   
If the highest bit of is is larger than the 
highest bit of ks  then 

ki ttt ∩= ; 
End if 
If ≥)(tH minsup then 

Insert ),( ts into 1+jL  ; 
If )()( itHtH =  then  

Label ),( ii ts with *  
End if 
If )()( ktHtH =  then  

Label ),( ii ts with *  
End if 
If there is ),( tsL rr =  and ttr =  then 

rsss ∪=  and label rL * ; 
End if 
If there is ),( rrr tsL =  and ssr =  then 

ttt r ∩=  and label ),( rr ts * ; 
End if 

End if 
       End for 

End for 
   check( 1+jL ); 
End for 

Delete all the entries in Li marked with *; 
End 
 

The algorithm first generates BVTable 1L for 
1-itemsets. Then BVTable 32,LL , and 

)log(...4 nmLL m ≤  are generated. In the jth iteration, all 
the pairs of rows in jL  are tested by the pair-test 
operation to generate larger itemset. If the new itemset is 
a frequent one, it is inserted into 1+jL . We should also 
detect whether the new generated itemset is a closed one. 
For instance, when the frequent 3-itemsets and 4-itemsets 
are obtained by pair-test operation on 2-itemsets, there 
may exist some frequent closed 4-itemsets which are the 
supersets  and have the same supports of frequent 
3-itemsets. In this case, such frequent 3-itemsets are not 
closed and should be deleted from 1+jL . So a procedure 
check( 1+jL ) is used in algorithm 

BuildFirstBVTable( LnD ,, ).  
Framework of the algorithm check( 1+jL ) is described 

as follows:  
 

Algorithm: check( jL ) 
Input: the BVTable jL ; 
Output: modified  BVTable jL ; 
Begin 

  )( 1Llengthlen = ; 
sort( 1L , len); 
/*Rearrange the entries in iL  in ascending 
order of the number of items in the itemset*/ 
For 1=i  to 1−len  do 

For 1+= ik  to len  do 
Let ),( iiji tsL = , ),( kkjk tsL = ; 
If jkj sss =∪  then label jkL *; 

Continue 
End if 

End for 
End for 

End  
 

Example 2: Let },,,{ dcbaI =  be the set of all the 
items, minsup=2, the size of a window 4=w . The set of 
transactions in the first window is },,,{ acdacdabbcD = . 
We know the frequent items are dcba ,,, . 1L  is shown 
in TABLE 1. From =21, LL {1010, 1001, 0011} is 
obtained as shown in TABLE2. Using 2L , the BVTable 

3L  for 3-itemsets is generated as shown in TABLE 3. 
 

TABLE3. 
 THE BVTABLE 3L   

a  b  c  d  1  2  3  4 count 
1  0  1  1   0  0  1  1 2 

 
Finally, we get the frequent closed itemsets 

)2:(),3:(),3:( bca  and )2:(acd .  
 

D. Deleting a transaction 
An algorithm DeleteTransFCI( L ) is presented to 

delete the oldest transaction from the current window. 
The framework of the algorithm is as follows: 

 
Algorithm DeleteTransFCI( L ) 
Input: the BVTable L ; 
Output: the updated BVTable L ; 
Begin 

For 1=j  to nlog  do 

 For 1=i  to jL  do 

2×= ii TT  mod w2  
If 1>j  and <)( iTH minsup then  

delete iT ; 
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End if 
 End for 
End for 

End 
 

Example 3: In Example 1, for deleting the transaction 
bc , the items in the deleted transaction are b  and c . 
After deleting the transaction, the supports of the itemset 

cba ,,  and d  are 3, 1, 2 and 2 respectively. The 
updated BVTable 1L  is as shown in TABLE 4. 

 
TABLE 4. 

 THE BVTABLE 1L  FOR THE 1-ITEMSETS AFTER DELETING 
bc  

a  b  c  d  1  2  3  4 count 
1  0  0  0  
0  1  0  0 
0  0  1  0  
0  0  0  1  

0  1  1  1 
0  1  0  0 
0  0  1  1 
0  0  1  1 

3 
1 
2 
2 

 
Since the minimum support is 2, the item b  is 

infrequent but is still in the table for further process. Then 
the BVTable 2L  for frequent 2-itemsets is updated as 
shown in TABLE 5. 

 
TABLE 5. 

 THE BVTABLE 2L  FOR 2-ITEMSETS AFTER DELETING bc  
a  b  c  d   1  2  3  4 count 
1  0  1  0  
1  0  0  1 
0  0  1  1 

  0  0  1  1 
  0  0  1  1 
  0  0  1  1 

2 
2 
2 

 
In EMAFCI, the frequent 3-itemsets and 4-itemsets are 

generated from the 2-itemsets. The BVTable 3L  is 
updated as shown in TABLE 6.  

 
TABLE 6. 

 THE BVTABLE 3L  FOR 3-ITEMSETS AND 4-ITEMSETS AFTER 
DELETING 

a  b  c  d   1  2  3  4 count 
1  0  1  1   0  0  1  1 2 

 
After updating the BVTable 3L for 3-itemsets and 

4-itemsets, 4L can be updated according to 3L . 

E. Adding a transaction 
When a new transaction is entering the window, the 

BVTable also should be maintained accordingly. An 
algorithm AddTransFCI( L , x ) is presented to add a new 
transaction into the current window.  

Framework of algorithm AddTransFCI( L , x ) is 
shown as follows.  

 
Algorithm: AddTransFCI( L , x ); 
Input: the BVTable L , the new transaction x  to 

be added; 
Output: the modified BVTable L ; 
Begin 
  Add x  as a new column in the middle part 

of 1L , counts of the items in x are modified 
accordingly.  
For 1=j  to 1log −n  do 

For 1=i  to 1−jL  do 

For 1+= ik  to jL  do 

Let ),,( iiiji ctsL = , ),,( kkkjk ctsL = ; 

ki sss ∪=  
If 1>j  or ( ic >minisup and kc >minisup) 
then 

If the highest bit of is is larger than the 
highest bit of ks then  

ki ttt ∩= ; 
    End if 

If ≥)(tH minsup then 
Inser ),( ts into 1+jL  
If )()( itHtH = then  

Label ),( ii ts  with *  
End if; 
If )()( ktHtH =  then  

Label ),( ii ts  with *  
End if; 
If there is ),( tsL rr =  and ttr =  
then 

rsss ∪=  and label rL * 
End if 
If there is ),( rrr tsL =  and ssr =  
then 

ttt r ∩=  and label ),( rr ts * 
End if 

End if 
End for 

End for 
check( 1+jL ); 

End for 
Delete all the entries in iL  marked with *; 
End 

 
Example 4: Suppose in the Example 3, a new 

transaction abd  is added, then the 1-itemsets in the 
added transaction are ba,  and d . After adding the 
transaction, the supports of item cba ,,  and d  is 4, 2, 2, 
and 3 respectively. The updated BVTable 1L  is as 
shown in TABLE 7. 

 
TABLE 7. 

THE BVTABLE 1L  FOR THE 1-ITEMSETS AFTER ADDING 
abd  

a  b  c  d  2  3  4  5 count 
1  0  0  0  
0  1  0  0  
0  0  1  0  
0  0  0  1  

1  1  1  1 
1  0  0  1 
0  1  1  0 
0  1  1  1 

4 
2 
2 
3 
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In the example, the BVTable for frequent 2-itemsets is 

updated from the 1-itemsets. TABLE 8 is the updated 
BVTable 2L . 
 

TABLE 8. 
THE BVTABLE 2L  FOR 2-ITEMSETS AFTER ADDING abd  

a  b  c  d   2  3  4  5 count 
1  1  0  0   
0  0  1  0   
0  0  0  1   
0  0  1  1   

1  0  0  1 
0  1  1  0 
0  1  1  1 
0  1  1  0 

2 
2 
3 
2 

 
 

From 1L  and 2L , 3L  for frequent 3 and 4-itemsets 
is updated as shown in TABLE 9. 

 
TABLE 9. 

 THE BVTABLE FOR 3-ITEMSETS AND 4-ITEMSETS AFTER 
ADDING abd  

a  b  c  d   1  2  3  4 count 
1  0  1  1   0  0  1  1 2 

 
Finally, we find that the frequent closed itemsets in the 

second window are )4:(a , )2:(ab  and )2:(acd . 
In the algorithm AddTransFCI( L , x ), only the vectors 

with the lowest bit 1 are mined to find the frequent closed 
itemsets in the added transactions. Therefore, the 
complexity of the algorithm is decreased, as we don’t 
need to mine the entire BVTable. 

IV.  EXPERIMENTAL RESULTS 

In order to evaluate the performance of our algorithm 
EMAFCI, we test it and compare the memory 
requirement, the processing time for the first window and 
each sliding window with the algorithm Moment.  

The experiments are performed on a Pentium 2.4GHz 
S4800A (AMD Opteron 880) CPU with 4GB RAM 
memory, 300GB hard drive. The algorithm is coded using 
the VC + + 6.0 on Linux operating system.  

A. Data Set 
In our experiments, we use the real database 

Mushroom and the synthetic databases proposed by 
Agrawal and Srikant for evaluating the algorithms. 

Mushroom which can be downloaded from [13] is a 
dense dataset with 8124 transactions,. Database 
T40I5D10K which produces data simulating the 
transactions of retail stores is generated by using the 
synthetic data generator described by Agrawal et al. 

B. Experimental results and analysis 

(1) Mushroom 
We have adopted the commonly used parameters: the 

number of transactions is set as 8124 while the size of 
window as 8000. We report the average performance over 
124 consecutive sliding windows.  

In Fig.1, the times for processing the first window by 
the algorithms of Moment and EMAFCI are compared. 

From Fig.1 we can see that when the 
support=minsup/8000 is set between 1 and 0.8, the 
processing time of EMAFCI is equal to that of Moment. 
But when the support is lower than 0.8, the time of 
Moment is much more than that of EMAFCI. For 
instance, when support is set as 0.2, time cost of Moment 
is more than 200s, while the time of EMAFCI is less than 
50s. 

 
Figure 1. The time of processing the first window of Mushroom by 

EMAFCI compared with Moment  
 

In Fig.2, the average time for processing a sliding 
window by the two algorithms are compared. From Fig.2, 
we can see that the average time for processing a sliding 
window by EMAFCI is much less than that of Moment 
especially when support is small. The time required for 
one window by EMAFCI is less than 0.04s, while the 
time of Moment increases very quickly and can go 
beyond 0.16s. 
 

 
Figure 2. The average time of processing one window of Mushroom by 

EMAFCI compared with Moment 
 

In Fig.3, the memory requirements by the algorithms 
of Moment and EMAFCI are compared. As we can see 
from Fig.3, the total memory required by EMAFCI is 
much less than that by Moment. 

Since there are 10K transactions in the synthetic 
dataset T40I5D10K, we set the sliding window size as 
5000 and perform the experiment on 100 consecutive 
sliding windows. Figs.4 to 6 show the processing time for 
the first window, average processing time for each sliding 
window, and the memory requirement on database 
T40I5D10K. We also compare the performance with that 
of algorithm Moment.  
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Figure 3. The memory required by EMAFCI compared with Moment on 

Mushroom 
 
(2) T40I5D10K 

 
Figure 4. The time of processing the first window of T40I5D10K by 

EMAFCI compared with Moment  
 
In Fig.4, the times of processing the first window by 

the algorithms of Moment and EMAFCI are compared. 
From Fig.4 we can see that the time of Moment is much 
more than that of EMAFCI. For instance, when 
support=minsup/5000 is set as 0.1, time cost of Moment 
is more than 150s, while the time of EMAFCI is less than 
50s. 

In Fig.5, the average time for processing a sliding 
window by the two algorithms is compared. From Fig.5 
we can see that the average times for processing a sliding 
window by EMAFCI is much less than that of Moment 
especially when support is small. The time required for 
one window by EMAFCI is less than 0.06s, while the 
time of Moment increases very quickly and can go 
beyond 0.12s. 

 

 
Figure 5. The average time of processing one window of T40I5D10K by 

EMAFCI compared with Moment  

Fig.6 shows the comparison of memory requirements 
between algorithms Moment and EMAFCI. As we can 
see from Fig.6, the total memory required by EMAFCI is 
much less than that by Moment. 
 

 
Figure 6. The memory required by EMAFCI compared with Moment on 

T40I5D10K 
 
From the above experiments, we can see that algorithm 

EMAFCI requires much less computational time and 
memory space than Moment. The reason for EMAFCI 
getting such high performance is that it greatly reduces 
the search space and the storage of the itemsets in the 
EMAFCI. 

V.  CONCLUSION 

An algorithm of EMAFCI is proposed for mining the 
closed frequent itemsets from data stream. The algorithm 
is based on the sliding window model, and uses a 
BVTable where the transactions and itemsets are 
recorded by the column and row vectors respectively. The 
algorithm first builds the BVTable for the first sliding 
window. Frequent closed itemsets can be detected by 
pair-test operations on the binary numbers in the table. 
After building the first BVTable, the algorithm updates 
the BVTable for each sliding window. The frequent 
closed itemsets in the sliding window can be identified 
from the BVTable. Algorithms are also proposed to 
modify BVTable when adding and deleting a transaction. 
The EMAFCI algorithm is implemented and compared its 
performance with Moment in terms of processing time 
and memory requirement. Our experimental results on 
both synthetic and real data show that EMAFCI is more 
effective with the guaranty of accuracy[12,13]. 
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