

An Efficient Mining Algorithm by Bit Vector
Table for Frequent Closed Itemsets

Keming Tang

College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Department of Computer Science, Yangzhou University, Yangzhou, China

Department of Software Engineering, Yancheng Teachers University, Yancheng, China
tkmchina@126.com

Caiyan Dai

Department of Computer Science, Yangzhou University, Yangzhou, China
daicaiyan@gmail.com

Ling Chen*

Department of Computer Science, Yangzhou University, Yangzhou, China
State Key Lab of Novel Software Technology, Nanjing University, Nanjing, China

lchen@yzcn.net

Abstract—Mining frequent closed itemsets in data streams
is an important task in stream data mining. In this paper, an
efficient mining algorithm (denoted as EMAFCI) for
frequent closed itemsets in data stream is proposed. The
algorithm is based on the sliding window model, and uses a
Bit Vector Table (denoted as BVTable) where the
transactions and itemsets are recorded by the column and
row vectors respectively. The algorithm first builds the
BVTable for the first sliding window. Frequent closed
itemsets can be detected by pair-test operations on the
binary numbers in the table. After building the first
BVTable, the algorithm updates the BVTable for each
sliding window. The frequent closed itemsets in the sliding
window can be identified from the BVTable. Algorithms are
also proposed to modify BVTable when adding and deleting
a transaction. The experimental results on synthetic and
real data sets indicate that the proposed algorithm needs
less CPU time and memory than other similar methods.

Index Terms—data mining, frequent closed itemsets, bit
vector table, data stream, sliding window

I. INTRODUCTION

Mining frequent itemsets from data streams is an
important problem with wide applications in data streams
analysis. Examples include stock tickers, bandwidth
statistics for billing purposes, network traffic
measurements, web-server click streams, transaction
analysis in stocks and telecom call records, and so on.
Unlike traditional data sets, data streams flow in and out
of a computer system continuously with varying update
rates. They are temporarily ordered, fast changing,
massive and potentially infinite. For the stream data

applications, the volume of data is usually too huge to be
stored or to be scanned for more than once. Furthermore,
since the data items can only be sequentially accessed in
data streams, random data access is not practicable.

To improve efficiency of the mining process, Han[1]
proposed an algorithm FP-growth (frequent-pattern
growth) which uses a FP-tree and a head table L to find
frequent itemsets. It is not practicable in data stream
mining which allows only one time scan.

In solving many application problems on data stream,
it is desirable to discount the effect of the old data. One
way to handle such problem is to use sliding window
models[2]. There are two typical models of sliding
window[3]: milestone window model and attenuation
window model. H.F.Li[4] made use of NewMoment to
maintain the set of frequent closed itemsets in data
streams with a transaction-sensitive sliding window.
MOMENT by Chi[5] is also a typical algorithm which
can decrease the size of the data structure. N.Jiang[6]
proposed a novel approach for mining frequent closed
itemsets over data streams. Y.Chi[7] introduced a
compact data structure, i.e. the closed enumeration tree,
to maintain a dynamically selected set of itemsets over a
sliding window. The selected itemsets contain a boundary
between frequent closed itemsets and the rest of the
itemsets. F.J.Ao[8] presented an algorithm named
FPCFI-DS for mining closed frequent itemsets in data
streams. FPCFI-DS uses a single-pass
lexicographical-order FP-Tree-based algorithm with
mixed item ordering policy to mine the closed frequent
itemsets in the first window, and updates the tree for each
sliding window. J.Y.Wang[9] proposed an alternative
mining task for mining top-k frequent closed itemsets of
length no less than min_l. The BitTableFI algorithm by
J.Dong[10] is based on a structure of BitTable. BitTable
is a set of integer where every bit represents an item.

* corresponding author.
 Email addresses: yzulchen@gmail.com (Ling Chen).

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2121

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2121-2128

Since BitTableFI only mines frequent itemsets, it
generates huge amount of candidate itemsets.
Furthermore, BitTableFI is just for mining the frequent
itemsets from the static database, so it is obviously not
suitable for the data stream.

In this paper, an efficient mining algorithm (denoted as
EMAFCI) for frequent closed itemsets in data stream is
proposed. The algorithm is based on the sliding window
model, and uses a Bit Vector Table (denoted as BVTable)
where the transactions and itemsets are represented by the
column and row vectors respectively. The algorithm first
builds the BVTable for the first sliding window. Frequent
closed itemsets can be detected by pair-test operations on
the binary numbers in the table. After building the first
BVTable, the algorithm updates the BVTable for each
sliding window. The frequent closed itemsets in the
sliding window can be identified from the BVTable. The
algorithm is also proposed to modify BVTable when
adding and deleting a transaction. The experimental
results on synthetic and real data sets indicate that the
proposed algorithm needs less time CPU time and
memory than other similar methods.

The rest of this paper is organized as follows. The next
section describes the background of frequent closed
itemset mining. In section 3, we introduce our algorithm
EMAFCI. Section 4 shows the experimental results in
testing EMAFCI. Finally, conclusions are given in
Section 5.

II. BACKGROUND

A. Frequent Closed Itemsets
Let },,,{ 21 miiiI "= be a set of distinct data items,

and a subset IX ⊆ is called an itemset. Each transaction
t is a set of items in I . A data
stream),...},(),...,,{(11 nn ttidttidDS = is an infinite
sequence of transactions in which ktid is the identifier
of a transaction and),,2,1(nkItk "=⊆ is an itemset.
For all transactions in a given window of the data stream,
the support sup)(X of an itemset X is defined as the
number of transactions with X as a subset.

In general, the more transactions a sliding window has,
a larger amount of frequent itemsets could be produced.
In this case, there are many redundancies among those
frequent itemsets. For example, in the frequent
itemsets },,{ aadacd , the only useful information is the
set acd according to Apriori property, because it
includes ad and a . Frequent closed itemset is a solution
to this problem. A frequent itemset X is a closed one if
it has no superset XY ⊃ so that sup)(X =sup)(Y .
Frequent closed itemset is a condensed, i.e. both concise
and lossless, representation of a collection of frequent
itemsets.

B. Sliding Window
The basic idea of mining frequent closed itemset in the

sliding window model is that it makes decisions from the
recent transactions in a fixed time period instead of all the
transactions happened so far. Formally, a new data

element arriving at the time t will expire at time wt + ,
in which w is the length of the window. At every time
step, when a new transaction comes to the window, the
oldest one in the window should be deleted. Since the
transactions in the window are updated over time, the
frequent itemsets should be renewed accordingly.

III. THE EMAFCI ALGORITHM

In this section, we illustrate the framework of the
algorithm EMAFCI for mining frequent closed itemsets
in data streams based on the model of sliding window.
First we introduce the data structure of BVTable used in
the algorithm.

A. The BVTablet
The EMAFCI algorithm is based on the data structure

of BVTable. To compress the itemsets and the database,
BVTable consists of a set of binary integer where each bit
represents an item. It consists of three parts, the left,
middle and right part.

The ith row of the BVTable is a vector),,(iii cts
where binary integers is , it are the left and middle
parts respectively, and the right part ic is the support of
the itemset corresponding to the ith row. In the left part of
BVTable, each column represents an item and each row
is a binary integer corresponding to a candidate itemset.
Denote the jth bit of is , as ijs . If the jth item is included
in the ith itemset, then 1=ijs , otherwise 0=ijs . In the
middle part of BVTable, each column represents a
transaction in the current time window and each row is a
binary integer indicating whether the itemset represented
by this row is included in the transaction or not. Denote
the jth bit of ir , as ijr . If the ith itemset is included in the
jth transaction, then 1=ijr , otherwise 0=ijr . In the
right part of the ith row,)(ii rHc = is the support of the
itemset corresponding to the ith row, here)(irH is the
number of bits "1" in jr . Since ic can be calculated
easily from ir , it doesn’t need to be physically stored in
the memory.

To mine the frequent closed itemsets from the current
sliding window, the algorithm EMAFCI first builds a
BVTable for all 1-itemsets that are denoted as 1L . Based
on 1L , all the frequent 2-itemsets can be detected and 2L

can be built. Repeat this procedure until all the
r -itemsets are detected, and here r is the maximum
length of the transactions.

Here, 1L consists of all the 1-itemsets that include the
frequent and nonfrequent ones in order to store all the
transactions in the current window.

Example 1: Let },,,{ dcbaI = be the set of all the
items, minsup=2, the size of a window 4=w . The set of
transactions in the first window is },,,{ acdacdabbcD = .
The ItemLists 1L and 2L are shown as in TABLE 1
and TABLE 2 respectively.

2122 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

TABLE 1.
 THE BVTABLE 1L

a b c d 1 2 3 4 count
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
1 1 0 0
1 0 1 1
0 0 1 1

3
2
3
2

TABLE 2.

THE BVTABLE 2L

a b c d 1 2 3 4 count
1 0 1 0
1 0 0 1
0 0 1 1

0 0 1 1
0 0 1 1
0 0 1 1

2
2
2

The left part of the 3rd row of 1L , which represents the

item c , is compressed to 2 and its binary code is 0010.
The middle part of this row is 11 and its binary form is
1011, which means that transactions 1, 3 and 4 include
item c. Similarly in the left part of the 1st row in 2L is
10 and its binary form is 1010 which corresponds to the
itemset ac . The middle part of this row is 3, and its
binary form is 0011, which means that transactions 3 and
4 include itemset ac .

Let n be the maximum length of the transactions,
and w be the length of the sliding window, then each
row of the table consists of nw + bits. Since the right
part can be obtained directly from the middle part, it
doesn’t need to be stored in the memory. Let r be the
maximum number of bits of a binary integer in the
system, an array of size rnw /)(+ is used to store each
compressed data.

B. Framework of algorithm
The algorithm EMAFCI receives a transaction from

the data stream at each time step, and forms a new sliding
window by adding this new transaction into the window
and emitting the oldest one. To identify the frequent
closed itemsets in this new sliding window, EMAFCI
should modify the BVTable accordingly. Since two
adjacent windows are overlapped except the added and
deleted transactions, the frequent closed itemsets of the
two windows do not change abruptly. EMAFCI needs
only to process the part of BVTable involving these two
transactions. Therefore, procedures are proposed to
modify BVTable when adding and deleting a transaction.

The framework of algorithm EMAFCI is as follows:

Algorithm: EMAFCI(LD,)
Input: D : the data stream;
Output: L : the BVTable;
Begin
 BuildFirstBVTable(LnD ,,);
 while not the end of the stream do
 Receive a new transaction x from the stream;
 DeleteTransFCI(L);
 AddTransFCI(L , x);
 end while
End

C. Build the BVTable for the first window
The ItemList for the first window is constructed by a

procedure BuildFirstBVTable(). First the BVTable for the
1-itemsets 1L should be generated. Then the BVTable

2L for the frequent 2-itemsets are generated from the
frequent 1-itemsets by performing bitwise OR operation
(denoted as ∪) in the left part of the BVTable and AND
operation (denoted as ∩) in the middle part of the
BVTable. Similarly, the frequent 3-itemsets and
4-itemsets are generated from the 2-itemsets. Iterate this
procedure until all the frequent itemsets are detected. Let
n be the maximum length of the transactions, so the
maximum number of such iterations is log2n. Among
the frequent itemsets detected, the sub-itemsets with the
same support are labeled "*", because they are non-
closed frequent itemsets. Details of the operation are as
follows.

We denote the BVTable after the kth iteration as kL .

Let 22 −= km , and denote the set of all frequent
j -itemsets as mC , then kL consists of all the frequent

itemsets 1+mC …
mC2 . To construct 1+kL , pair-test

operation should be performed on each pair of frequent
itemsets to generate possible larger frequent itemset. Let

),,(iii cts and),,(jji cts be two frequent itemsets in

kL , then a pair-test operation can generate an itemset
),,(cttss jiji ∪∪ , here)(ji ttHc ∩= is the number of

bits "1" in ji tt ∩ .
In each iteration we generate the frequent itemsets in

1+kL based on kL which consists of the frequent
itemsets 1+mC …

mC2 , and entirely ignore the itemsets in

121 ..., LLL kk −− .
Theorem 1 Let iC be the set of all the frequent

i -itemsets, all sets)12(+>> ijiC j can be generated by
pair-test operation only on the frequent itemset pairs in

iC regardless of 121 ..., CCC ii −− .
Proof: Since for any frequent itemset I in

)12(+>> ijiC j , all its i -item subsets are also frequent
and must be included in iC . We can partition I into two
subsets 1I and 2I such that iII == |||| 21 and

III =21 ∪ . It obvious that 1I and 2I are all in iC and

jC , which can be generated by pair-test operations on
itemset pair 1I and 2I in iC .

Q.E.D.
Let the ith row in BVTable jL be),,(iiiji crsL = ,

where ii rs , and ic are the left, middle and right parts

of jiL respectively. Denote)(rH as the number of
bits "1" in r . The framework of the algorithm
BuildFirstBVTable(LnD ,,) is described as follows:

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2123

© 2011 ACADEMY PUBLISHER

Algorithm BuildFirstBVTable(LnD ,,)
Input: D : the set of w transactions in the first

sliding window;
n : maximum length of the transactions

Output: the BVTable L ;
Begin
 Generate BVTable 1L for the w transactions in D ;
For 1=j to 1log −n do

For 1=i to 1|| −jL do
For 1+= ik to || jL do

Let ;);,(),,(kikkjkiiji ssstsLtsL ∪===
If the highest bit of is is larger than the
highest bit of ks then

ki ttt ∩= ;
End if
If ≥)(tH minsup then

Insert),(ts into 1+jL ;
If)()(itHtH = then

Label),(ii ts with *
End if
If)()(ktHtH = then

Label),(ii ts with *
End if
If there is),(tsL rr = and ttr = then

rsss ∪= and label rL * ;
End if
If there is),(rrr tsL = and ssr = then

ttt r ∩= and label),(rr ts * ;
End if

End if
 End for

End for
 check(1+jL);
End for

Delete all the entries in Li marked with *;
End

The algorithm first generates BVTable 1L for
1-itemsets. Then BVTable 32,LL , and

)log(...4 nmLL m ≤ are generated. In the jth iteration, all
the pairs of rows in jL are tested by the pair-test
operation to generate larger itemset. If the new itemset is
a frequent one, it is inserted into 1+jL . We should also
detect whether the new generated itemset is a closed one.
For instance, when the frequent 3-itemsets and 4-itemsets
are obtained by pair-test operation on 2-itemsets, there
may exist some frequent closed 4-itemsets which are the
supersets and have the same supports of frequent
3-itemsets. In this case, such frequent 3-itemsets are not
closed and should be deleted from 1+jL . So a procedure
check(1+jL) is used in algorithm

BuildFirstBVTable(LnD ,,).
Framework of the algorithm check(1+jL) is described

as follows:

Algorithm: check(jL)
Input: the BVTable jL ;
Output: modified BVTable jL ;
Begin

)(1Llengthlen = ;
sort(1L , len);
/*Rearrange the entries in iL in ascending
order of the number of items in the itemset*/
For 1=i to 1−len do

For 1+= ik to len do
Let),(iiji tsL = ,),(kkjk tsL = ;
If jkj sss =∪ then label jkL *;

Continue
End if

End for
End for

End

Example 2: Let },,,{ dcbaI = be the set of all the
items, minsup=2, the size of a window 4=w . The set of
transactions in the first window is },,,{ acdacdabbcD = .
We know the frequent items are dcba ,,, . 1L is shown
in TABLE 1. From =21, LL {1010, 1001, 0011} is
obtained as shown in TABLE2. Using 2L , the BVTable

3L for 3-itemsets is generated as shown in TABLE 3.

TABLE3.
 THE BVTABLE 3L

a b c d 1 2 3 4 count
1 0 1 1 0 0 1 1 2

Finally, we get the frequent closed itemsets

)2:(),3:(),3:(bca and)2:(acd .

D. Deleting a transaction
An algorithm DeleteTransFCI(L) is presented to

delete the oldest transaction from the current window.
The framework of the algorithm is as follows:

Algorithm DeleteTransFCI(L)
Input: the BVTable L ;
Output: the updated BVTable L ;
Begin

For 1=j to nlog do

 For 1=i to jL do

2×= ii TT mod w2
If 1>j and <)(iTH minsup then

delete iT ;

2124 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

End if
 End for
End for

End

Example 3: In Example 1, for deleting the transaction
bc , the items in the deleted transaction are b and c .
After deleting the transaction, the supports of the itemset

cba ,, and d are 3, 1, 2 and 2 respectively. The
updated BVTable 1L is as shown in TABLE 4.

TABLE 4.

 THE BVTABLE 1L FOR THE 1-ITEMSETS AFTER DELETING
bc

a b c d 1 2 3 4 count
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
0 1 0 0
0 0 1 1
0 0 1 1

3
1
2
2

Since the minimum support is 2, the item b is

infrequent but is still in the table for further process. Then
the BVTable 2L for frequent 2-itemsets is updated as
shown in TABLE 5.

TABLE 5.

 THE BVTABLE 2L FOR 2-ITEMSETS AFTER DELETING bc
a b c d 1 2 3 4 count
1 0 1 0
1 0 0 1
0 0 1 1

 0 0 1 1
 0 0 1 1
 0 0 1 1

2
2
2

In EMAFCI, the frequent 3-itemsets and 4-itemsets are

generated from the 2-itemsets. The BVTable 3L is
updated as shown in TABLE 6.

TABLE 6.

 THE BVTABLE 3L FOR 3-ITEMSETS AND 4-ITEMSETS AFTER
DELETING

a b c d 1 2 3 4 count
1 0 1 1 0 0 1 1 2

After updating the BVTable 3L for 3-itemsets and

4-itemsets, 4L can be updated according to 3L .

E. Adding a transaction
When a new transaction is entering the window, the

BVTable also should be maintained accordingly. An
algorithm AddTransFCI(L , x) is presented to add a new
transaction into the current window.

Framework of algorithm AddTransFCI(L , x) is
shown as follows.

Algorithm: AddTransFCI(L , x);
Input: the BVTable L , the new transaction x to

be added;
Output: the modified BVTable L ;
Begin
 Add x as a new column in the middle part

of 1L , counts of the items in x are modified
accordingly.
For 1=j to 1log −n do

For 1=i to 1−jL do

For 1+= ik to jL do

Let),,(iiiji ctsL = ,),,(kkkjk ctsL = ;

ki sss ∪=
If 1>j or (ic >minisup and kc >minisup)
then

If the highest bit of is is larger than the
highest bit of ks then

ki ttt ∩= ;
 End if

If ≥)(tH minsup then
Inser),(ts into 1+jL
If)()(itHtH = then

Label),(ii ts with *
End if;
If)()(ktHtH = then

Label),(ii ts with *
End if;
If there is),(tsL rr = and ttr =
then

rsss ∪= and label rL *
End if
If there is),(rrr tsL = and ssr =
then

ttt r ∩= and label),(rr ts *
End if

End if
End for

End for
check(1+jL);

End for
Delete all the entries in iL marked with *;
End

Example 4: Suppose in the Example 3, a new

transaction abd is added, then the 1-itemsets in the
added transaction are ba, and d . After adding the
transaction, the supports of item cba ,, and d is 4, 2, 2,
and 3 respectively. The updated BVTable 1L is as
shown in TABLE 7.

TABLE 7.

THE BVTABLE 1L FOR THE 1-ITEMSETS AFTER ADDING
abd

a b c d 2 3 4 5 count
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 1 1 1
1 0 0 1
0 1 1 0
0 1 1 1

4
2
2
3

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2125

© 2011 ACADEMY PUBLISHER

In the example, the BVTable for frequent 2-itemsets is

updated from the 1-itemsets. TABLE 8 is the updated
BVTable 2L .

TABLE 8.
THE BVTABLE 2L FOR 2-ITEMSETS AFTER ADDING abd

a b c d 2 3 4 5 count
1 1 0 0
0 0 1 0
0 0 0 1
0 0 1 1

1 0 0 1
0 1 1 0
0 1 1 1
0 1 1 0

2
2
3
2

From 1L and 2L , 3L for frequent 3 and 4-itemsets
is updated as shown in TABLE 9.

TABLE 9.

 THE BVTABLE FOR 3-ITEMSETS AND 4-ITEMSETS AFTER
ADDING abd

a b c d 1 2 3 4 count
1 0 1 1 0 0 1 1 2

Finally, we find that the frequent closed itemsets in the

second window are)4:(a ,)2:(ab and)2:(acd .
In the algorithm AddTransFCI(L , x), only the vectors

with the lowest bit 1 are mined to find the frequent closed
itemsets in the added transactions. Therefore, the
complexity of the algorithm is decreased, as we don’t
need to mine the entire BVTable.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of our algorithm
EMAFCI, we test it and compare the memory
requirement, the processing time for the first window and
each sliding window with the algorithm Moment.

The experiments are performed on a Pentium 2.4GHz
S4800A (AMD Opteron 880) CPU with 4GB RAM
memory, 300GB hard drive. The algorithm is coded using
the VC + + 6.0 on Linux operating system.

A. Data Set
In our experiments, we use the real database

Mushroom and the synthetic databases proposed by
Agrawal and Srikant for evaluating the algorithms.

Mushroom which can be downloaded from [13] is a
dense dataset with 8124 transactions,. Database
T40I5D10K which produces data simulating the
transactions of retail stores is generated by using the
synthetic data generator described by Agrawal et al.

B. Experimental results and analysis

(1) Mushroom
We have adopted the commonly used parameters: the

number of transactions is set as 8124 while the size of
window as 8000. We report the average performance over
124 consecutive sliding windows.

In Fig.1, the times for processing the first window by
the algorithms of Moment and EMAFCI are compared.

From Fig.1 we can see that when the
support=minsup/8000 is set between 1 and 0.8, the
processing time of EMAFCI is equal to that of Moment.
But when the support is lower than 0.8, the time of
Moment is much more than that of EMAFCI. For
instance, when support is set as 0.2, time cost of Moment
is more than 200s, while the time of EMAFCI is less than
50s.

Figure 1. The time of processing the first window of Mushroom by

EMAFCI compared with Moment

In Fig.2, the average time for processing a sliding
window by the two algorithms are compared. From Fig.2,
we can see that the average time for processing a sliding
window by EMAFCI is much less than that of Moment
especially when support is small. The time required for
one window by EMAFCI is less than 0.04s, while the
time of Moment increases very quickly and can go
beyond 0.16s.

Figure 2. The average time of processing one window of Mushroom by

EMAFCI compared with Moment

In Fig.3, the memory requirements by the algorithms
of Moment and EMAFCI are compared. As we can see
from Fig.3, the total memory required by EMAFCI is
much less than that by Moment.

Since there are 10K transactions in the synthetic
dataset T40I5D10K, we set the sliding window size as
5000 and perform the experiment on 100 consecutive
sliding windows. Figs.4 to 6 show the processing time for
the first window, average processing time for each sliding
window, and the memory requirement on database
T40I5D10K. We also compare the performance with that
of algorithm Moment.

2126 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

Figure 3. The memory required by EMAFCI compared with Moment on

Mushroom

(2) T40I5D10K

Figure 4. The time of processing the first window of T40I5D10K by

EMAFCI compared with Moment

In Fig.4, the times of processing the first window by

the algorithms of Moment and EMAFCI are compared.
From Fig.4 we can see that the time of Moment is much
more than that of EMAFCI. For instance, when
support=minsup/5000 is set as 0.1, time cost of Moment
is more than 150s, while the time of EMAFCI is less than
50s.

In Fig.5, the average time for processing a sliding
window by the two algorithms is compared. From Fig.5
we can see that the average times for processing a sliding
window by EMAFCI is much less than that of Moment
especially when support is small. The time required for
one window by EMAFCI is less than 0.06s, while the
time of Moment increases very quickly and can go
beyond 0.12s.

Figure 5. The average time of processing one window of T40I5D10K by

EMAFCI compared with Moment

Fig.6 shows the comparison of memory requirements
between algorithms Moment and EMAFCI. As we can
see from Fig.6, the total memory required by EMAFCI is
much less than that by Moment.

Figure 6. The memory required by EMAFCI compared with Moment on

T40I5D10K

From the above experiments, we can see that algorithm

EMAFCI requires much less computational time and
memory space than Moment. The reason for EMAFCI
getting such high performance is that it greatly reduces
the search space and the storage of the itemsets in the
EMAFCI.

V. CONCLUSION

An algorithm of EMAFCI is proposed for mining the
closed frequent itemsets from data stream. The algorithm
is based on the sliding window model, and uses a
BVTable where the transactions and itemsets are
recorded by the column and row vectors respectively. The
algorithm first builds the BVTable for the first sliding
window. Frequent closed itemsets can be detected by
pair-test operations on the binary numbers in the table.
After building the first BVTable, the algorithm updates
the BVTable for each sliding window. The frequent
closed itemsets in the sliding window can be identified
from the BVTable. Algorithms are also proposed to
modify BVTable when adding and deleting a transaction.
The EMAFCI algorithm is implemented and compared its
performance with Moment in terms of processing time
and memory requirement. Our experimental results on
both synthetic and real data show that EMAFCI is more
effective with the guaranty of accuracy[12,13].

ACKNOWLEDGEMENTS

This research was supported in part by the Chinese
National Natural Science Foundation under grant No.
61070047, Natural Science Foundation of Jiangsu
Province under contract BK2008206, and The Graduated
Student’s Research Innovation Project Jiangsu Province
under contract CX08B_098Z.

REFERENCES
[1] J.W.Han, J.Pei, Y.W.Yin, R.Y.Mao. Mining frequent

patterns without candidate generation: frequent-pattern tree

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2127

© 2011 ACADEMY PUBLISHER

approach, Data Mining and Knowledge Discovery, No.8,
pp.53-87, 2004.

[2] K.T.Chuang, H.L.Chen, M.S.Chen. Feature-preserved
sampling over streaming data. ACM Transactions on
Knowledge discovery from data, Vol.2, No.4, Article 15,
2009.

[3] Y.Y.Zhu, D.Shasha. StatStream: Statistical monitoring of
thousands of data streams in real time. Proceedings of the
28th International Conference on VLDB, Hong Kong,
China, pp.358-369, 2002.

[4] H.F.Li, C.C.Ho, S.Y.Lee. Incremental updates of closed
frequent itemsets over continuous data streams. Expert
Systems with Applications, Vol.36, pp.2451-2458, 2009.

[5] Y.Chi, H.Wang, P.S.Yu, R.R.Muntz. Moment:
Maintaining closed frequent itemsets over a stream sliding
window. Proceedings of the 2004 IEEE International
Conference on Data Mining. Brighton, UK, pp.59-66,2004.

[6] N.Jiang, L.Gruenwald. Research issues in data stream
association rule mining. SIGMOD Record 35 (1),
pp.14-19, 2006.

[7] Y.Chi, H.Wang, P.S.Yu, R.R.Muntz. Catch the moment:
Maintaining closed frequent itemsets over a data stream
sliding window. Knowledge and Information Systems, 10
(3), pp.265-294, 2006.

[8] F.J.Ao, J.Du, Y.J.Yan, B.H.Liu, K.D.Huang. An efficient
algorithm for mining closed frequent itemsets in data
Streams. Proceedings of the IEEE 8th International
Conference on Computer and Information Technology,
pp.37-42, 2008.

[9] J.Y.Wang, J.W.Han, Y.Lu, P.Tzvetkov. TFP: An efficient
algorithm for mining Top-K frequent closed itemsets.
IEEE Transaction on knowledge and Engineering, Vol.17,
No.5, pp.652-664, 2005.

[10] J.Dong, M.Han. BitTableFI: An efficient mining frequent
itemsets algorithm. Knowledge-Based Systems, Vol.20,
pp.329-335, 2007.

[11] Dataset available at http://fimi.cs.helsinki.fi/.
[12] H.F.Li, H.Chen. Improve frequent closed itemsets mining

over data stream with BitMap. Ninth ACIS international
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing, pp.399-404, 2008.

[13] L.Chen, L.J.Zou, L.Tu. Stream data classification using
improved fisher discriminate analysis. Journal of
Computers. Vol.4, No.3, pp.208-214, 2009.

Keming Tang was born in Jianhu,
Jiangsu, P.R. China, in October 13, 1965.
He received master degree in
engineering from Yangzhou University,
P.R. China in 2002. Now, he is Ph.
doctoral student of Nanjing University of
Aeronautics and Astronautics.

He is currently associate professor of
computer science, and the vice-dean of

Information Science and Technology College, YanCheng
Teachers University, Jiangsu Province, P.R. China. He has
published more than 20 papers in journals including IEEE
Transactions on CiSE and WISM, Journal of Computer
Mathematics. His research interest includes data mining, peer to
peer computing and software engineering.

He is a member of the Chinese Computer Society. His recent
research has been supported by the Chinese National Natural
Science Foundation.

Caiyan Dai, was born in Yancheng,
Jiangsu, Sep 26, 1985. She received
bachelor of engineering degree in
computer education from Yangzhou
University in 2004.

She is a master of Information
Engineering College of Yangzhou
University. Her research director is Data
mining.

She is a student member of the Chinese Computer Society.

Ling Chen, was born in Baoying,
Jiangsu, P.R. China, in September 10,
1951. He received B.Sc. degree in
mathematics from Yangzhou Teachers’
College, P.R. China in 1976.

He is currently professor of computer
science, and the dean of Information
Technology College, Yangzhou
University, Jiangsu Province, P.R. China.

He has published more than 120 papers in journals including
IEEE Transactions on Parallel and Distributed System, Journal
of Supercomputing, The Computer Journal. In addition, he has
published over 100 papers in refereed conferences. He has also
co-authored/co-edited 5 books (including proceedings) and
contributed several book chapters. His research interest includes
data mining, bioinformatics and parallel processing.

Prof. Chen is a member of IEEE and senior member of the
Chinese Computer Society. His recent research has been
supported by the Chinese National Natural Science Foundation,
Chinese National Foundation for Science and Technology
Development and Natural Science Foundation of Jiangsu
Province, China. Prof. Chen has organized several national
conferences and workshops and has also served as a program
committee member for several major international conferences.
He was awarded the Government Special Allowance by the
State Council, the title of “National Excellent Teacher” by the
Ministry of Education, and the Award of Progress in Science
and Technology by the Government of Jiangsu Province.

2128 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

