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Abstract— Differential evolution (DE) is a simple yet pow-
erful evolutionary algorithm for global numerical opti-
mization. In this paper, we propose a novel hybrid DE
variant to accelerate the convergence rate of the classical
DE algorithm. The proposed algorithm is hybridized with
a convex mutation. The convex mutation is able to utilize
the information of the parents, and hence, provides faster
convergence speed. Our proposal is referred to as Convex-
DE. In order to verify our expectation, we test our approach
on 13 widely used benchmark functions. The results indicate
that our approach is better than the classical DE algorithm
in terms of the convergence speed and the quality of final
solution. Furthermore, the potential of our approach for
real-world applications is evaluated on three real-world
problems.

Index Terms— Differential evolution; convex mutation; nu-
merical optimization; real-world applications.

I. INTRODUCTION

Without loss of generality, a global minimization prob-
lem can be formalized as a pair (S, f) , where S ⊆ �D

is a bounded set on �D and f : S → � is a D-
dimensional real-valued function. The problem is to find
a point x∗ ∈ S such that f(x∗) is a global minimum on
S [1]. More specifically, it is required to find an x

∗ ∈ S
such that

∀x ∈ S : f(x∗) ≤ f(x),x = {x1, · · · , xi, · · · , xD} (1)

where f does not need to be continuous but it must be
bounded. Generally, for each variable xi it satisfies a
constrained boundary:

li ≤ xi ≤ ui, i = 1, 2, · · · , D (2)

Differential Evolution (DE) [2] is a simple yet pow-
erful population-based, direct search algorithm with the
generation-and-test feature for global optimization prob-
lems using real-valued parameters. DE uses the distance
and direction information from the current population to
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guide the further search. It won the third place at the
first International Contest on Evolutionary Computation
on a real-valued function test-suite [3]. Among DE’s
advantages are its simple structure, ease of use, speed and
robustness. Price and Storn [2] gave the working principle
of DE with single scheme. Later on, they suggested ten
different schemes of DE [3], [4]. However, DE has been
shown to have certain weaknesses, especially if the global
optimum should be located using a limited number of
fitness function evaluations (NFFEs). In addition, DE
is good at exploring the search space and locating the
region of global minimum, but it is slow exploiting of
the solution [5].

In this paper, in order to accelerate the convergence
speed of the classical DE algorithm, we propose a convex
mutation to utilize the information of parents efficiently.
The convex mutation is combined with the original
DE/rand/1 mutation. The proposed approach is referred to
as Convex-DE. Thirteen benchmark functions are chosen
from the literature as the test suit. Our approach is com-
pared with the classical DE algorithm with and without
parameter adaptation. Experimental results show that our
approach is better than the classical DE algorithm in terms
of the convergence speed and the quality of final solution.
In addition, three real-world problems are selected to
validate the ability of our approach to solve the real-world
problems.

The rest of the paper is organized as follows. Section II
briefly describes the related work. Our proposed work
is presented in detail in Section III, followed by the
experimental results and analysis in Section IV. In the
last section, Section V, we conclude our work and devote
to the future work.

II. RELATED WORK

As mentioned above, DE is good at exploring the
search space and locating the region of global minimum,
but it is slow exploiting of the solution [5]. Recently,
many researchers are working on the improvement of DE
hybridized with other methods. Fan and Lampinen [6]
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Figure 1. Illustration of DE/rand/1 mutation and convex mutation in 2D search space. (a) DE/rand/1 mutation; (b) Convex mutation.

proposed a new version of DE which uses an additional
mutation operation called trigonometric mutation opera-
tion. They showed that the modified DE algorithm can
outperform the classic DE algorithm for some benchmarks
and real-world problems. Sun et al. [7] proposed a new
hybrid algorithm based on a combination of DE and Esti-
mation of Distribution Algorithm (EDA). This technique
uses a probability model to determine promising regions
in order to focus the search process on those areas. Gong
et al. [8] employed the two level orthogonal crossover to
improve the performance of DE. They showed that the
proposed approach performs better than the classical DE
in terms of the quality, speed, and stability of the final
solutions. Noman and Iba [9] proposed fittest individual
refinement, a crossover-based local search (LS) method
DE to solve the high dimensional problems. They showed
that the improved DE method accelerates the convergence
rate for high dimensional benchmark functions. Based on
their previous work, Noman and Iba incorporated LS into
the classical DE in [5]. They presented an LS technique
to solve this problem by adaptively adjusting the length
of the search, using a hill-climbing heuristic. Through the
experiments, they showed that the proposed new version
of DE performs better, or at least comparably, to classic
DE algorithm. Kaelo and Ali [10] adopted the attraction-
repulsion concept of electromagnetism-like algorithm to
boost the mutation operation of the original DE. Yang et
al. [11] proposed a neighborhood search based DE. Exper-
imental results showed that DE with neighborhood search
has significant advantages over other existing algorithms
on a broad range of different benchmark functions [11].
Wang et al. [12] proposed a dynamic clustering-based DE
for global optimization, where a hierarchical clustering
method is dynamically incorporated in DE. Experiments
on 28 benchmark problems, including 13 high dimen-
sional functions, showed that the new method is able to
find near optimal solutions efficiently [12]. Recently, Cai
and Gong [13] presented a clustering-based DE variant,
where the one-step K-means algorithm is used to improve
the performance of the original DE algorithm.

III. OUR APPROACH: CONVEX-DE

In this section, we first point out the motivations of this
work. Then, the convex mutation operation is presented,
followed by the flowchart of our proposed Convex-DE
method.

A. Motivations

Differential evolution is a simple and robust global
optimization method, which has shown powerful ability
in many different applications. In DE, the main operation
is the differential mutation, which is the core operation
of DE. The classical differential mutation is “DE/rand/1”
as follows:

vi = xr1 + F (xr2 − xr3) (3)

where i, r1, r2, r3 ∈ [1, D], i �= r1 �= r2 �= r3, D is the
dimension of decision variables. F ∈ (0, 1] is the scaling
factor. vi is the mutant vector. Suppose we have 3 points
in 2D search space, they are xr1 = (1, 1),xr2 = (6, 2),
and xr3 = (5, 7) as shown in Fig. 1 (a) in “◦”. The
three points form a triangle. We generate 1, 000 points
with different F values using Eqn. (3), and the figure is
plotted in Fig. 1 (a). The possible mutants are aligned
from (1, 1) to (2,−4).

The “DE/rand/1” mutation can be reformulated as
follows:

vi = a1xr1 + a2xr2 + a3xr3 (4)

where a1 = 1.0, a2 = F, a3 = −F , and a1 + a2 +
a3 = 1.0. As shown in Fig. 1 (a), “DE/rand/1” mutation
performs the non-convex search. The mutants are only
aligned a line. Therefore, “DE/rand/1” mutation is not
able to use the information of parents efficiently.

B. Convex Mutation

In order to utilize the information of parents more
efficiently, we propose a convex mutation. The convex
mutation is shown in Eqn. (4). In the convex mutation, the
coefficients ai ∈ (0, 1), i = 1, 2, 3, and

∑3
i=1 ai = 1.0.

Since all the coefficients ai ∈ (0, 1), Eqn. (4) performs
the convex search. Suppose we also have three points
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TABLE I.
THE 13 BENCHMARK FUNCTIONS USED IN OUR EXPERIMENTAL STUDY, WHERE D IS THE NUMBER OF VARIABLES AND S ⊆ R

D . EACH OF

THEM HAS A GLOBAL MINIMUM VALUE OF 0. A DETAIL DESCRIPTION OF ALL FUNCTIONS CAN BE FOUND IN [1].

Name Test Functions S

Sphere f01 =
∑D

i=1
x2
i [−100, 100]D

Schwefel 2.22 f02 =
∑D

i=1
|xi|+

∏D
i=1

|xi| [−10, 10]D

Schwefel 1.2 f03 =
∑

D
i=1

(
∑

i
j=1

xj)
2 [−100, 100]D

Schwefel 2.21 f04 = maxi{|xi|, 1 ≤ i ≤ D} [−100, 100]D

Rosenbrock f05 =
∑D−1

i=1
[100(xi+1 − x2

i )
2 + (xi − 1)2] [−30, 30]D

Step f06 =
∑D−1

i=1
(�xi + 0.5�)2 [−100, 100]D

Quartic f07 =
∑

D
i=1

x4
i + random[0, 1) [−1.28, 1.28]D

Schwefel 2.26 f08 =
∑

D
i=1

(−xi sin(
√

|xi|)) + 418.98288727243369 × D [−500, 500]D

Rastrigin f09 =
∑D

i=1
(x2

i − 10 cos(2πxi) + 10) [−5.12, 5.12]D

Ackley f10 = −20 exp(−0.2
√

1
D

∑
D
i=1

x2
i
) − exp( 1

D

∑
D
i=1

cos(2πxi)) + 20 + exp(1) [−32, 32]D

Griewank f11 = 1
4000

∑
D
i=1

x2
i −

∏
D
i=1

cos(
xi√
i
) + 1 [−600, 600]D

Penalized 1
f12 = π

D
{10 sin2(πyi) +

∑D−1

i=1
(yi − 1)2 · [1 + 10 sin2(πyi+1)] + (yD − 1)2}

+
∑D

i=1
u(xi, 10, 100, 4)

[−50, 50]D

Penalized 2
f13 = 1

10
{sin2(3πx1) +

∑D−1

i=1
(xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 + sin2(2πxD)]}

+
∑D

i=1
u(xi, 5, 100, 4)

[−50, 50]D

TABLE II.
COMPARISON ON THE RESULTS BETWEEN THE CLASSICAL DE WITH CONVEX-DE FOR ALL FUNCTIONS AT D = 30. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE.

F
Error SP

AR’DE Convex-DE DE Convex-DEMean Std Sr Mean Std Sr

f01 6.41E-32† 8.33E-32 1.00 1.58E-68 3.59E-68 1.00 1.05E+05 4.99E+04 2.10
f02 6.50E-16† 4.67E-16 1.00 6.84E-39 5.93E-39 1.00 1.76E+05 7.37E+04 2.39
f03 2.49E-05† 2.07E-05 0.00 8.95E-10 1.66E-09 1.00 NA 2.62E+05 NA
f04 8.82E-02‡ 2.19E-01 0.00 4.05E+00 2.20E+00 0.00 NA NA NA
f05 1.43E+00‡ 1.01E+00 0.00 2.01E+01 7.49E+00 0.00 NA NA NA
f06 0.00E+00 0.00E+00 1.00 0.00E+00 0.00E+00 1.00 3.83E+04 1.78E+04 2.15
f07 4.71E-03† 1.21E-03 1.00 1.70E-03 6.89E-04 1.00 1.45E+05 4.50E+04 3.22
f08 6.59E+03† 7.04E+02 0.00 4.09E+02 2.80E+02 0.04 NA 6.85E+06 NA
f09 1.41E+02† 2.06E+01 0.00 9.45E+00 3.77E+00 0.00 NA NA NA
f10 4.14E-15† 0.00E+00 1.00 1.87E-15 1.72E-15 1.00 1.63E+05 7.76E+04 2.09
f11 1.48E-04 1.05E-03 0.98 4.43E-04 2.21E-03 0.96 1.11E+05 5.39E+04 2.06
f12 1.93E-32† 6.70E-33 1.00 1.57E-32 0.00E+00 1.00 9.62E+04 4.20E+04 2.29
f13 1.44E-30† 1.80E-30 1.00 2.51E-02 1.73E-01 0.92 1.14E+05 5.63E+04 2.03

w/t/l 9/2/2 − − − −

† indicates Convex-DE is significantly better than DE by the Wilcoxon signed-rank test at α = 0.05.
‡ means that Convex-DE is significantly worse than DE by the Wilcoxon signed-rank test at α = 0.05.

xr1 = (1, 1),xr2 = (6, 2), and xr3 = (5, 7). We generate
1, 000 points using different ai values with Eqn. (4). The
generated mutants are shown in Fig. 1 (b). From Fig. 1
(b), we can see that all generated points are in the triangle.
In addition, the generated points are scattered uniformly
within the triangle. Thus, the convex mutation is able to
efficiently utilize the information of parents and generate
more efficient mutants.

C. Convex-DE

By combing the convex mutation with “DE/rand/1” in
the DE framework, we obtain our proposed Convex-DE
approach. Our approach is shown in Algorithm 1. Where
D is the number of decision variables. NP is the size
of the parent population P . F is the mutation scaling
factor. CR is the probability of crossover operator. xi,j

is the j-th variable of the solution xi. ui is the offspring.
rndint(1, D) is a uniformly distributed random integer
number between 1 and n. rndrealj [0, 1) is a uniformly

Algorithm 1 Our proposed Convex-DE algorithm
1: Generate the initial population P

2: Evaluate the fitness for each individual in P

3: while The halting criterion is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 �= r2 �= r3 �= i

6: if rndreal[0, 1) < pcm then
7: vi = a1xr1

+ a2xr2
+ a3xr3

{Convex mutation}
8: else
9: vi = xr1

+ F × (xr2
− xr3

) {“DE/rand/1” mutation}
10: end if
11: jrand = rndint(1, D)
12: for j = 1 to D do
13: if rndrealj [0, 1) < CR or j == jrand then
14: ui,j = vi,j
15: else
16: ui,j = xi,j

17: end if
18: end for
19: end for
20: for i = 1 to NP do
21: Evaluate the offspring ui

22: if ui is better than xi then
23: xi = ui

24: end if
25: end for
26: end while
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TABLE III.
COMPARISON ON THE RESULTS BETWEEN THE DE WITH CONVEX-DE FOR ALL FUNCTIONS AT D = 100. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE.

F
Error SP

AR’jDE Convex-jDE
jDE Convex-jDEMean Std Sr Mean Std Sr

f01 1.45E+00† 3.34E-01 0.00 3.94E-23 3.00E-23 1.00 NA 4.57E+05 NA
f02 2.80E+00† 6.30E-01 0.00 6.09E-14 2.05E-14 1.00 NA 6.59E+05 NA
f03 1.68E+05† 1.85E+04 0.00 8.87E+01 2.03E+01 0.00 NA NA NA
f04 1.97E+01† 2.22E+00 0.00 6.09E+00 9.55E-01 0.00 NA NA NA
f05 2.80E+02† 5.07E+01 0.00 1.13E+02 3.37E+01 0.00 NA NA NA
f06 2.80E-01† 8.82E-01 0.86 0.00E+00 0.00E+00 1.00 1.12E+06 1.79E+05 6.29
f07 7.58E-02† 1.32E-02 0.00 9.79E-03 1.87E-03 0.64 NA 8.35E+05 NA
f08 3.21E+04† 5.21E+02 0.00 2.78E+04 6.18E+02 0.00 NA NA NA
f09 8.75E+02† 2.25E+01 0.00 7.56E+00 2.70E+00 0.00 NA NA NA
f10 3.20E-01† 5.52E-02 0.00 1.19E-12 6.45E-13 1.00 NA 7.03E+05 NA
f11 5.81E-01† 9.55E-02 0.00 9.36E-04 3.10E-03 0.90 NA 5.01E+05 NA
f12 2.48E-01† 1.27E-01 0.00 1.87E-03 7.46E-03 0.94 NA 3.82E+05 NA
f13 1.99E+01† 6.85E+00 0.00 5.33E-03 3.15E-02 0.90 NA 5.25E+05 NA

w/t/l 13/0/0 − − − −

† indicates Convex-DE is significantly better than DE by the Wilcoxon signed-rank test at α = 0.05.
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Figure 2. Convergence curves of DE and Convex-DE on the selected functions at D = 30. (a) f01; (b) f03; (c) f05; (d) f08; (e) f09; (f) f11.

distributed random real number in [0, 1). pcm ∈ [0, 1]
is the control parameter to control the selection between
convex mutation and “DE/rand/1” mutation.

From Algorithm 1 we can see that our approach is also
very simple like the classical DE algorithm. In Convex-
DE, only one additional operation, convex mutation, is in-
tegrated into DE. Thus, the overall complexity of Convex-
DE is the same to DE. Our approach is also very easy to
implement.

IV. EXPERIMENTAL RESULTS

In this work, we have carried out different experiments
using a test suite, consisting of 13 unconstrained single-
objective benchmark functions with different characteris-

tics chosen from the literature. All of the functions are
minimization and scalable problems. The 13 functions,
f01 − f13, are chosen from [1]. The brief description of
these functions are shown in Table I, more details about
them can be found in [1].

Functions f01 − f04 are unimodal. The generalized
Rosenbrock’s function f05 is a multi-modal function when
D > 3 [14]. Function f06 is the step function, which
has one minimum and is discontinuous. Function f07
is a noisy quartic function. Functions f08 − f13 are
multi-modal functions where the number of local minima
increases exponentially with the problem dimension. They
appear to be the most difficult class of problems for many
optimization algorithms.
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TABLE IV.
COMPARISON ON THE RESULTS BETWEEN THE jDE WITH CONVEX-jDE FOR ALL FUNCTIONS AT D = 30. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE.

F
Error SP

AR’jDE Convex-jDE
jDE Convex-jDEMean Std Sr Mean Std Sr

f01 1.64E-61† 2.28E-61 1.00 2.66E-78 2.90E-78 1.00 5.89E+04 4.65E+04 1.27
f02 1.96E-36† 1.60E-36 1.00 1.04E-43 1.41E-43 1.00 8.09E+04 6.75E+04 1.20
f03 2.14E-06† 2.09E-06 0.00 3.41E-07 6.78E-07 0.04 NA 7.44E+06 NA
f04 5.38E-09† 4.38E-09 0.94 1.47E-06 1.04E-05 0.86 3.07E+05 2.98E+05 1.03
f05 8.79E+00† 1.84E+00 0.00 8.05E+00 1.88E+00 0.00 NA NA NA
f06 0.00E+00 0.00E+00 1.00 0.00E+00 0.00E+00 1.00 2.21E+04 1.72E+04 1.28
f07 3.50E-03† 7.54E-04 1.00 1.56E-03 5.20E-04 1.00 1.09E+05 5.12E+04 2.14
f08 0.00E+00 0.00E+00 1.00 0.00E+00 0.00E+00 1.00 9.03E+04 7.95E+04 1.14
f09 0.00E+00 0.00E+00 1.00 0.00E+00 0.00E+00 1.00 1.17E+05 1.00E+05 1.17
f10 4.14E-15 0.00E+00 1.00 3.86E-15 9.74E-16 1.00 8.93E+04 7.11E+04 1.26
f11 0.00E+00 0.00E+00 1.00 0.00E+00 0.00E+00 1.00 6.19E+04 4.84E+04 1.28
f12 1.57E-32 0.00E+00 1.00 1.57E-32 0.00E+00 1.00 5.33E+04 4.07E+04 1.31
f13 1.35E-32 0.00E+00 1.00 1.35E-32 0.00E+00 1.00 6.41E+04 4.87E+04 1.32

w/t/l 6/7/0 − − − −

† indicates Convex-jDE is significantly better than jDE by the Wilcoxon signed-rank test at α = 0.05.

TABLE V.
COMPARISON ON THE RESULTS BETWEEN THE DE WITH CONVEX-DE FOR REAL-WORLD PROBLEMS. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLDFACE. WHERE SEVERAL ALGORITHMS CAN OBTAIN THE GLOBAL OPTIMUM FOR A PROBLEM, THE Intermediate

RESULTS ARE ALSO REPORTED HEREIN.

F NFFEs
Error SP

DE Convex-DE
DE Convex-DE

AR
Mean Std Sr Mean Std Sr

CP 50000 1.03E-03† 8.84E-04 1.00 4.69E-05 1.26E-04 1.00 6.29E+04 5.17E+04 1.22
200000 0.00E+00 0.00E+00 0.00E+00 0.00E+00

FM
50000 3.73E+00† 5.68E+00

0.98
6.67E-01 3.25E+00

1.00
6.03E+04 4.75E+04 1.27

200000 2.46E-01 1.74E+00 0.00E+00 0.00E+00
LES 200000 1.19E-13† 8.76E-14 1.00 0.00E+00 0.00E+00 1.00 1.37E+05 9.57E+04 1.43
† indicates Convex-DE is significantly better than DE by the Wilcoxon signed-rank test at α = 0.05.

A. Experimental Settings

In this work, for DE and Convex-DE, we have chosen
a reasonable set of value and have not made any effort in
finding the best parameter settings. For all experiments,
we use the following parameters unless a change is
mentioned.

• Dimension of each function: D = 30;
• Population size: NP = 100;
• Crossover rate: CR = 0.9;
• Scaling factor: F = 0.5;
• Convex mutation parameter: pcm = 0.05;
• Value to reach: VTR = 10−8, except for f07 of VTR =

10−2;
• Maximum number of fitness function evaluations:

Max NFFEs = D × 10000 = 300, 000.

In our experiments, each function is optimized over
50 independent runs. We also use the same set of initial
random populations to evaluate different algorithms in a
similar way done in [5]. All the algorithms are imple-
mented in standard C++.

B. Performance Criteria

Five performance criteria are selected from the litera-
ture [15], [16], [17] to evaluate the performance of the
algorithms. These criteria are described as follows.

• Error [15]: The error of a solution x is defined as f(x)−
f(x∗), where x

∗ is the global minimum of the function.

The minimum error is recorded when the Max NFFEs is
reached in 50 runs. The average and standard deviation of
the error values are calculated as well.

• Successful rate (Sr) [15]: The number of successful
runs is recorded when the VTR is reached before the
Max NFFEs condition terminates the trial. Thus, the suc-
cessful rate Sr is calculated as the number of successful
runs divided by the total number of runs.

• Successful performance (SP) [17]: The number of fitness
function evaluations (NFFEs) is recorded when the VTR
is reached. Therefore, the successful performance is cal-
culated as: SP = NFFEs

Sr
.

• Convergence graphs [15]: The convergence graphs show
the median error performance of the best solution over the
total runs, in the respective experiments.

• Acceleration rate (AR’): In [16], the AR is presented. In
this work, this measure is modified as: AR′ = APother

APours
,

where AR′ > 1 indicates our approach is faster than its
competitor.

C. General Performance

In this section, we compare the performance of Convex-
DE with that of DE on all test functions. Each function
is conducted over 50 independent runs. The results are
shown in Table II. The convergence graphs of some
selected functions are plotted in Fig. 2. In Table II, the
paired Wilcoxon signed-rank test at α = 0.05 is adopted
to compare the significance between two algorithms. In
the last row of this table, according to the Wilcoxon’s test,
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Figure 3. Convergence curves of DE and Convex-DE on the selected functions at D = 100. (a) f02; (b) f04; (c) f06; (d) f08; (e) f10; (f) f12.

the results are summarized as “w/t/l”, which means that
Convex-DE wins in w functions, ties in t functions, and
loses in l functions, compared with its competitors.

With respect to the error values shown in Table II, it
can be seen that Convex-DE is significantly better than
DE on 9 out of 13 functions. On two functions f04 and
f05, our approach is significantly outperformed by DE. On
the rest two functions (f06, f11), both algorithms obtain
similar error values. Considering the SP measure, we can
see that for all successful functions, Convex-DE obtains
higher SP performance than DE. The average AR’ value
is greater than 2.0, which means that Convex-DE is over
twice faster than DE in terms of convergence speed.

From Fig. 2, we can also find that on the majority
of the test functions Convex-DE converges faster than
DE. On functions f04 and f05, Convex-DE provides faster
convergence rate than DE at the beginning of evolution
process. However, Convex-DE converges early on these
two functions after some generations. The reason might
be the fast lost of diversity of population.

D. Performance Analysis for Moderate-Dimensional
Problems

In the previous section, the dimensionality of all func-
tion are set at D = 30, in this section, the performance
of our approach is analyzed for moderate-dimensional
problems at D = 100. As stated in [4], for higher di-
mensional problems, the larger population size is required
in DE. Therefore, the population size NP = 400 for
DE and Convex-DE is used. The Max NFFEs are set as
D× 1000 = 1000000. All other parameters are the same
as shown in Section IV-A. The results are tabulated in

Table III. The convergence graph of the selected functions
are shown in Fig. 3.

According to the results shown in Table III, it can
be seen that when the dimensionality of the functions
increases, the overall successful rates for both DE and
Convex-DE decrease. However, our approach is still
able to obtain higher overall successful rates compared
with DE. With respect to the error values, Convex-DE
significantly outperforms DE for all test 13 functions.
In addition, Convex-DE obtains better successful perfor-
mance than DE. From Fig. 3, we can see that Convex-DE
converges faster than DE on all functions.

E. Influence of Parameter Adaptation

Since the parameter settings of DE (i.e., CR and
F ) are sensitive to its performance [18], it is valuable
to verify the influence of parameter adaptation to the
proposed variant. In this section, the parameter adaptation
proposed in jDE [18] is adopted in DE and Convex-DE.
The two variants are referred to as jDE and Convex-jDE,
respectively. The parameters in parameter adaptation are
set as the same to jDE [18]. All other parameters are kept
unchanged as described in Section IV-A. The results are
presented in Table IV, and the convergence graphs are
shown in Fig. 4.

From Table IV we can see that on 6 out of 13 functions,
Convex-DE is significantly better than DE. For the rest
7 functions (f06, f08 − f13), both Convex-DE and DE
obtains the near global optimal values on these functions.
However, when considering the SP and AR’ performance,
Convex-DE is better than DE on all successful functions,
including functions f06, f08−f13. Moreover, from Fig. 4,
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Figure 4. Convergence curves of jDE and Convex-jDE on the selected functions at D = 100. (a) f01; (b) f03; (c) f05; (d) f08; (e) f10; (e) f13.
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Figure 5. Convergence curves of DE and Convex-DE on the real-world problems. (a) CP problem; (b) FM problem; (c) LES problem.

we can see that Convex-DE converges faster than DE on
all functions.

In general, from the results and analysis we can con-
clude that the parameter adaptation in [18] does not
influence the improvement of our proposed Convex-DE
method. Some other parameter adaptation techniques in
the DE literature maybe also be benefit from the convex
mutation proposed in this work.

F. Comparison on Real-World Problems

In this section, three real-world problems widely used
in evolutionary algorithms are selected to test the ability
of our approach for solving the real-world problems. The
three problems are (i) the Chebychev polynomial fitting
problem (CP) [4], (ii) the Frequency-Modulated sound
waves (FM) [19], and (iii) the systems of linear equation
problem (LES) [20]. The CP is defined at D = 9, FM
problem is defined at D = 6, and LES at D = 10. For
each problem, the Max NFFEs for the three problems are
set as 200000. All other parameters are kept unchanged

as described in Section IV-A. The results are shown in
Table V and Fig. 5. In Table V, when several algorithms
can obtain the global optimum in many runs for a prob-
lem, the intermediate results are also reported for this
problem. From the results, we can see that for the three
real-world problems Convex-DE consistently obtains the
significantly better results than DE in terms of the error
values and the convergence speed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a convex mutation is presented to utilize
the information of parents efficiently. The convex muta-
tion is combined with “DE/rand/1” mutation to form the
hybrid DE variant, Convex-DE. Our proposed approach is
also very simple and easy to implement. The experimen-
tal results on benchmark problems and three real-world
problems demonstrate the superiority of our approach.

In Convex-DE, an additional parameter pcm is used. In
this work, the parameter set fixed. In the future work, the
parameter adaptation on this parameter will be studied
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to further improve the performance of DE. In addition,
Convex-DE may lead to premature convergence due to the
fast lost of diversity of population. Thus, another direction
is using the population restart to improve the performance
of Convex-DE.
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