
Software Defect Prediction Using Non-Negative
Matrix Factorization

Ruihua Chang

Xi’an Research Inst. of Hi-Tech, Xi’an, China
Email: sxwcrh@163.com

Xiaodong Mu and Li Zhang

Xi’an Research Inst. of Hi-Tech, Xi’an, China
Email: mu_msn@msn.com and zhangli_522@126.com

Abstract—Quality is considered as an important issue in the
fields of software engineering. However, building quality
software is very expensive, in order to raise the effectiveness
and efficiency of quality assurance and testing, software
defect prediction is used to identify defect-prone modules in
an upcoming version of a software system and help to allow
the effort on those modules. Although many models have
been proposed, this problem has not resolved thoroughly.
For overcoming these limits, recent results show that
researcher should pay more attention to improve the quality
of the data. Aimed at this purpose, in this paper, we propose
a novel approach to resolve the problem of software defect
prediction. The method is classification using Non-Negative
Matrix Factorization (NMF). In this paper, NMF algorithm
is not only used for extracting external features but also as a
powerful way for classification of software defect data.
Experiments demonstrating the efficiency of the proposed
approach are performed for software defect data
classification. And the results show that it outperforms the
state of the art techniques tested for this experiment.
Finally, we suggest that it can be a useful and practical way
addition to the framework of software quality prediction.

Index Terms—software defect, prediction, Non-negative
Matrix Factorization, software metrics, F-Measure

I. INTRODUCTION

Quality can be used to assess and estimate final
software product quality. Over the past decades,
researchers have addressed the importance of integrating
quantitative validation in the software development
process, in order to meet different requirement.
Traditional software development focus on software
correctness, introducing performance issues later in the
development process. This style of developing has been
often referred as a “fix-it-later” approach [1]. However,
building high quality software is very expensive; the
effort for applying software quality assurance measures is
very limited. At the same time, many of them face a
tradeoff between quality and cost. To raise the

effectiveness and efficiency of quality assurance and
testing, defect prediction is used to identify defect-prone
modules in an upcoming version of a software system and
help to allow the effort on those modules. In this research
fields, there has been a growing interest in the subject and
several approaches to early software performance
predictive analysis have been proposed. Although many
models have been proposed, this problem has not
resolved thoroughly. In a recent study, Khoshgoftaar and
Seliy[2] have empirically demonstrated that while using a
very large number of diverse classification techniques for
building software quality classification models,
classification accuracy does not show a dramatic
improvement. Instead of searching for a classification
technique that performs well for a given software
measurement dataset, they concluded that the software
process should focus on improving the quality of the data.
As pointed out by Menzies et al. [3] all data miners hit a
performance ceiling effect when they cannot find
additional information that better relates software metrics
with defect occurrence. What we observe from recent
results is that current research paradigm, which relied on
relatively straightforward application of machine learning
tools, has reached its limits. Some researchers start to
resolve this problem. For example, Burak [4] used project
data from multiple companies to resolve it. However,
these features from different sources come at a
considerable collection cost. Another way to avoid these
limits is to mining as more knowledge as possible.
Considering these observations, we pay more attention to
increasing the information content in metric data and
improve the quality of the data.

NMF is a popular technique and has been recently
developed for decomposing a data matrix into non-
negative factors and it has been used for object and
pattern recognition, data analysis, and dimensionality
reduction. However, to the author's knowledge, there are
a few references to research software defect prediction
based on NMF algorithms. NMF has been already applied
for more and more fields with its advantage of
straightforward implementation. After researching, in this
paper, we propose a novel approach to resolve above
problem about software defect prediction. We show that

Manuscript received August 10, 2010; revised and accepted
September 10, 2010.

Corresponding author: Ruihua Chang;sxwcrh@163.com.

2114 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2114-2120

NMF is a powerful technique for successful extraction of
features in software defect prediction. And in our method,
software defect data set is represented as a nonnegative
matrix, as negative data is meaningless. Its output is easy
to interpret for researchers and testers. So in this paper,
NMF algorithm is not only used for extracting external
features but also as a powerful way for classification of
software defect data. Finally, the application for software
defect data classification is investigated by comparing
with the state of the art classifiers.

The rest of this paper is organized as follows: Firstly
we introduce related work about software defect
prediction and NMF algorithms. Secondly the data and
measure of evaluation used in the experiments are
described. Thirdly, we present the results of applying the
NMF algorithm for classification of software defect data.
We simultaneously analyze and compared the results.
Finally, we give our conclusion and works in the future.

II. RELATED WORK

In this section, we will briefly present overview of
software defect prediction and review the major results of
non-negative matrix factorization.

A. Software defect prediction
Before explaining defect prediction, we should first

define what we are trying to predict: ‘defect’.
Unfortunately, the perception of what a defect is varies in
different contexts. Based on contextual classification of
software systems, in defect prediction perspective, a
defect is defined by the context of the software system,
considering what practitioners want to predict [4].
Accordingly a defect predictor is a tool or method that
guides testing activities. Defect predictors are used to
make an ordering of modules to be inspected by
verification and validation teams. Software defect
prediction is handled as a regression problem or a
classification problem. For both types, the granularity
level of predictions may vary depending on the
availability of data. In this paper, we employ the second
application type and view it as a supervised binary
classification problem. Software modules are represented
with software metrics, and are labeled as either defective
or non-defective.

Until now, a wide range of statistical and machine
learning models have been developed and applied to
predict defects in software such as linear regression,
discriminate analysis, decision trees, neural networks and
naive bayes and so on. Munson and Khoshgoftaar [5]
investigate linear regression models and discriminate
analysis to conclude the performance of the latter is
better. Bullard et al. [6] employ a rule based classification
model in a telecommunication system and reported that
their model produces lower false positives, which are
considered as high cost classification errors. A cascading
classifiers approach is also performed by Tosun et al.,
where they report decreased testing efforts on embedded
software. Specialized prediction models for embedded
systems are also investigated by Khosghoftaar et al. [7],

where they built a classification and regression tree for
predicting high risk software modules in
telecommunications system software. They also
investigate genetic programming approaches to optimize
multiple objectives for minimizing the false positives
while maximizing the number of detected defects. They
presented the applicability of their model on real life
industrial software. Nagappan et al. [8] also used linear
regression analysis with the STREW metric suite. This
suite of metrics was extracted from the testing process
and is used to estimate the post-release defects. They
validate their approach on industrial, open source and
student projects and find strong correlations between the
proposed metric suite and post-release defects. On open
source software, Denaro and Pezze [9] analyzed Apache
using logistic regression with static code features and
their 80% prediction performance pointed 50% of the
modules to be inspected. Nevertheless, In January 2007,
Menzies et al. published a study [10] that defined a
repeatable experiment in learning defect predictors. The
intent of that work was to offer a benchmark in defect
prediction that other researchers could repeat/ improve/
refute. Surprisingly, very simple bayes classifiers (with a
simple logarithm pre-processor for the numeric)
outperformed the other studied methods. They have later
tried to find better data mining algorithms for defect
prediction. The experiments that have found no additional
statistically significant improvement from the application
of the further data mining methods include: logistic
regression, average one-dependence estimators, under- or
over-sampling, random forests, RIPPER, J48, OneR,
Bagging and Boosting. Lessmann et al. also investigated
this issue and in a very recent paper in IEEE TSE, he
reported no statistical difference between the results of 19
learners, including naive bayes, on the same datasets.

In brief, those works present promising results.
However, until now, the ML-based works show two main
disadvantages: most prediction models are not easily
interpreted by the programmers and testers; and most
approaches require a pre-process step in order to obtain a
balanced dataset.

As the importance of data sets, we introduce the data
sets used usually in the fields. The data sets contain three
folds: original, open source, and public domain. First, as
for original data sets are usually used in empirical studies
in industries. Especially, Ref. [11] used principal
component analysis on the code metrics and built
regression models to predict the likelihood of post-release
defect fro five Microsoft software systems which are
Internet Explorer 6, IIS W3 Server core, Process
Messaging Component, DirectX and NetMeeting. Next,
as for the open source software data, studies such as
Ref.[12] collected and used for the evaluation of their
software defect prediction approaches. Finally, the public
domain data set, two of the most famous public domain
data set is the NASA and Promise’s Metrics Data
Program (MDP) [13-14]. For example, studies such as
[10, 15] used the NASA’s MDP. By using such public
domain data sets, a new approach can be easily
comparable with other approaches.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2115

© 2011 ACADEMY PUBLISHER

B. Non-negative matrix factorization
 Nonnegative Matrix Factorization (NMF) [16] is a

recently developed technique for nonlinearly finding
purely additive, parts-based, linear, and low-dimension
representations of nonnegative multivariate data to
consequently reveal the latent structure, feature or pattern
in the data. Given a non-negative data matrix V, NMF
finds an approximate factorization V into non-negative
factors W and H. The non-negativity constraints make the
representation purely additive (allowing no subtractions),
in contrast to many other linear representations such as
principal component analysis [17] (PCA) and
independent component analysis (ICA).

Also many extended NMF algorithms have been
proposed. Local Non-negative Matrix Factorization
(LNMF) has been developed by Li et al. in order to
increase the basis images sparseness [18]. Both NMF and
LNMF consider the database as a whole and treat each
image in the same way. There is no class information
integrated into the cost function. An extension of LNMF
algorithm called Discriminant Non-negative Matrix
Factorization (DNMF) which takes into account class
information has been proposed in Ref. [19].

In this paper, we extend the application of NMF to
software defect prediction by making use of NMF
algorithms advantage. NMF coupled with a classifier is
applied for software defect data recognition.

II. NON-NEGATIVE MATRIX FACTORIZATION ALGORITHMS

The Non-negative Matrix Factorization problem can be
stated as follows [16]:

Given a non-negative matrix V �Rm×n, non-negative
matrices W �Rm×r and H �Rr×n, respectively, we aim at
such factorization that V ≈ WH.

11 1 11 1 11 1

1 1 1

n r n

m mn m mr r rn

V V W W H a

V V W W H a

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟≈⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

… … …
% # # % # # %

" " "
The value of r is selected according to the rule
r<nm/(n+m) in order to obtain dimensionality reduction.
Each column of W is a basis vector while each column of
H is a reduced representation of the corresponding
column of V. In other words, W can be seen as a basis
that is optimized for linear approximation of the data in
V.

During decomposition, the cost function is either
2

1(,) || ||FC V WH V WH= − (where ||·||F is the Frobenius norm)
or the generalized Kullback-Leibler (K-L) divergence

2 ,
(,) (log /() ())ij ij i j ij iji j

C V WH V V WH V WH= − +∑ When cost
function C1 is chosen, the formulae for updating of H and
W are:

()
()

T
ia

ia ia T
ia

VHW W
WHH

← (1)

()

()

T
bj

bj bj T
bj

W V
H H

W WH
← (2)

Where if cost function C2 is used, the updating
formulae for H and W are:

()

i
ia ia bj

j ij

V
W W H

WH
µ← ∑ (3)

 ia
ia

jaj

WW
W

←
∑

 (4)

()
ij

bj bj ia
i ij

V
H H W

WH
← ∑ (5)

The matrices W and H are initialized with positive
random values. NMF provides the above simple learning
rule guaranteeing monotonic convergence to a maximum
without the need for setting any adjustable parameters.

III. CLASSIFICATION EXPERIMENTS BASED ON NMF

A. Description of the Datasets
As in any machine learning problem, software defect

prediction models require a set of features (i.e.
independent variables) to characterize the problem and to
give estimation on the defect proneness of the system (i.e.
dependent variable). In software quality, these attributes
are referred to as software metrics. Metrics are the
attributes that represent software; they are the raw data
for software domain. An effective management of any
software development process requires monitoring and
analysis of software metrics.

Considering the software defect prediction problem,
defect predictors have been successfully learned from
product and process metrics. While product metrics are
derived from the software product itself, process metrics
are derived from the processes that yield the product.
Although we only use product metrics in this dissertation,
we will provide brief information about process metrics
for the sake of completeness.

The software metrics and dataset used in this study are
five mission critical NASA software projects [13], which
are all high assurance and complex real-time system.
NASA makes extensive use of contractors from many
other industries including government and commercial
organizations. It is practical to leverage the useful
information in order to predict the quality of an ongoing
similar project.

TABLE I. CHARACTERISTIC OF DATASETS

Data Lang. #Mod. Feature Description

KC3 JAVA 458 40 processing and delivery
of satellite metadata

CM1 C 498 22 NASA spacecraft
instrument

MC2 C++ 161 40 Video guidance system

PC3 C 1563 38 Flight software for earth
orbiting satellite

PC4 C 1458 38 Flight software for earth
orbiting satellite

Table I summarizes the characteristic of 5 datasets

used in this study. And Table II presents the part of

2116 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

metrics used in the 5 datasets considering the length of
paper.

TABLE II. METRICS IN THE DATASETS

Metrics Type
V(g) McCabe

EV(g) McCabe
IV(g) McCabe
LOC McCabe

UniqOp Basic Halstead
UniqOpnd Basic Halstead
TotalOp Basic Halstead

TotalOpnd Basic Halstead
UniqOp Basic Halstead

N Derived Halstead
V Derived Halstead
L Derived Halstead
D Derived Halstead
I Derived Halstead
E Derived Halstead
B Derived Halstead
T Derived Halstead

LOCcode Line Count
LOCComment Line Count

LOCBlank Line Count
LOCCodeAndComment Line Count

LOCcode Line Count
LOCComment Line Count

LOCBlank Line Count
…… ……

B. Prediction Performance Measures
Evaluation measures [20] play a crucial role in both

assessing the classification performance and guiding the
classifier modeling.

After a classification process, data samples can be
categorized into four groups as denoted in the confusion
matrix presented in Table III.

TABLE III. CONFUSION MATRIX

 Predicted
Defective No Defective

Actually
Defective True Positive

（TP）
False Negative
（FN）

No Defective False Positive
（FP）

True Negative
（TN）

And several measures can be derived from the
confusion matrix:

True Positive Rate: ()
TPTPR TP FN= +

True Negative Rate: ()
TNTNR TN FP= +

False Positive Rate: ()
FPFPR TN FP= +

False Negative Rate: ()
FNFNR TP FN= +

Positive Predictive Value: ()
TPPPV TP FP= +

Negative Predictive Value: ()
TNNPV TN FN= +

Clearly neither of these measures is adequate by
themselves. So some different evaluation criteria are
devised and they are presented in Table IV.

TABLE IV. SEVERAL MEASURES

100%
TP TN

Accuracy
TP TN FP FN

+
= ×

+ + +

TPRecall 100%
TP FN

= ×
+

TPPrecision 100%
TP FP

= ×
+

2 Recall PrecisionF Measure 100%
Recall Precison
× ×

− = ×
+

TPpd Recall 100%
TP FN

= = ×
+

FPpf 100%
FP TN

= ×
+

Traditionally, accuracy is the most commonly used
measure for these purposes. For classification with the
class imbalance problem, accuracy is no longer a proper
measure since the rare class has very little impact on
accuracy as compared to the prevalent class [18]. F-
Measure represents a harmonic mean between recall and
precision, a high F-Measure value ensures that both recall
and precision are reasonable high. According to the
results of above, we choose the F-Measure with
confusion matrix as our performance measure on the test
data.

C. Unsupervised NMF classification for software defect
data

Unsupervised NMF classification is a technique in
which the algorithm uses only the predictor attribute
values. There are no target attribute values and the
learning task is to gain some understanding of relevant
structure patterns in the data. Each row in a data set
represents a point in n-dimensional space and NMF
classification algorithms investigate the relationship
between these various points in n-dimensional space.

In NMF classification, using data from the training set,
the data matrix V is created (each column vj contains a
feature vector computed from software defect data sets).
The training procedure is performed by applying an NMF
algorithm to the data matrix yielding the basis matrix W
and the encoding matrix H.

In the test phase, for each test data recording,
represented by a feature vector vtest, a new test encoding
vector is obtained by:

test + testH =W V∗ (6)
where W+ is defined as the Moore-Penrose generalized
inverse matrix of W. Having formed during training N
classes of encoding vectors hl, l = 1, 2, . . . , N (by
applying an NMF algorithm on V, yields matrices W and
H as in (1), a nearest neighbor classifier is employed to
classify the new test sample by using the cosine similarity
measure (CSM). The class label l' of the test data is:

l=1,2,...,N

*l' = arg max || || * || ||

T
test l

test l

h h
h h

⎧ ⎫
⎨ ⎬
⎩ ⎭

 (7)

thus maximizing the cosine of the angle between htest and
hl.

Fig. 1 presents the flow of classification method based
on NMF algorithm.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2117

© 2011 ACADEMY PUBLISHER

Training Testing

W2

V2V1

W1H1

CSM

Evaluation

Argmax

H2

V

Figure 1. Classification method based on NMF

Step1: Split software defect data set V into V1 and V2,
respectively, as training sets and testing sets.

Step2: Initialization of Matrices W1 and H1 during
training sets. Set parameter r=min (nm / (n+m)) and
choose C1 cost function.

Step3: Perform NMF for training sets decomposition:
V1=W1*H1.

Step4: Take W2=W1;
Step5: Calculate W1

+ as the Moore-Penrose
generalized inverse matrix of W1, H2=W1

+ * V2.
Step6: Classifier Design: a nearest neighbor classifier

is employed to classify the new test sample by using the
cosine similarity measure (CSM).

Step7: Evaluation of Classifier.

IV. COMPARISONS AND ANALYSIS OF EXPERIMENTAL
RESULTS

In this section, we investigate the results of employing
the Non-Negative Matrix Factorization algorithm (NMF)
for feature extraction and classification. Our experimental
environment was Pentium (R) 3.2G CPU, 1G DDR
memory, Windows XP operating system and so on.
Classifier based NMF algorithm was development and
implemented using MatLab 7.0a.

In this experiment, we split the data set into training
data sets and testing data sets, respectively, 80% and
20%, firstly. In order to avoid bias, we run the experiment
100 times and calculated its average.

CM1 MC2 KC3 PC3 PC4
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

Software data sets

F-
M

ea
su

re

rank=5
rank=8
rank=10

Figure 2. Different rank of NMF for classification

CM1 MC2 KC3 PC3 PC4
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Software data sets

F-
M

ea
su

re

rank=5
rank=8
rank=10

Figure 3. Different rank of NMF for classification

Fig. 2 and Fig. 3 present the results of iterative 200
times and 500 times. Meantime, we recorded the time that
was taken by them. From Fig. 2, it is observed that when
the r sets smaller, its performance of classification is
better during four software defect data sets. The result of
Fig. 3 is in the same with the results of Fig. 2.

In order to investigate the efficiencies of NMF
classification, we recorded the cost time of it. From Table
V and Table VI, we can find that the algorithms of NMF
classification are effective as it takes time less than 0.3
second almost for all software defect data sets.

TABLE V. COST TIME ITERATIVE 200 TIMES(S)

Rank CM1 MC2 KC3 PC3 PC4
5 0.2599 0.2498 0.2517 0.2506 0.2539
8 0.2545 0.2478 0.2547 0.2494 0.2559
10 0.2528 0.2548 0.2623 0.2542 0.2608

TABLE VI. COST TIME ITERATIVE 500 TIMES(S)

Rank CM1 MC2 KC3 PC3 PC4
5 0.2534 0.2498 0.2522 0.2526 0.2571
8 0.2533 0.2478 0.2553 0.2494 0.2570
10 0.2530 0.2548 0.2509 0.2539 0.2616

And in order to compare its applicability in software
defect prediction, we also chose three classifiers trained
on five software datasets and compared with NMF
classification. Ten-fold cross validation method is used to
validate their performance. The classifiers are Naïve
Bayes, RIPPER and C4.5.

Naïve Bayes (NB) classifiers use statistical
combinations of features to predict for class value. Such
classifiers are called ‘naive’ since they assume all the
features are statistically independent. Nevertheless, a
repeated empirical result is that, on average, seemingly
Naïve Bayes classifiers perform as well as other
seemingly more sophisticated schemes.

Rule learners like RIPPER (RR) generate lists of rules.
When classifying a new code module, we take feature
extracted from that module and iterate over the rule list.
The output classification is the first rule in the list whose
condition is satisfied. To noisy dataset, RIPPER is more
search-efficient.

Decision tree learners like C4.5 build one single-parent
tree whose internal nodes test for feature values and
whose leaves refer to class ranges. The algorithm is

2118 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

known to be one of the most robust induction learning
algorithms available [21].

In Fig. 4, 5nmf, 8nmf and 10nmf means NMF with its
rank equals 5, 8 and 10, separately. From this Figure, we
can find that NMF outperforms the three classifiers,
especially for MC2 dataset. To PC4 dataset, all above
classifiers receive similar F-Measure, but we find that
C4.5, NB and RIPPER take much more time than
classification based NMF algorithm during experiments.
From Fig. 4, it is obvious that to different software defect
data, the performance of NMF classification is better
almost, and difference among software data sets is trivial.

CM1 MC2 KC3 PC3 PC4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Software data sets

F-
M

ea
su

re

5nmf
8nmf
10nmf
C4.5
NB
RR

Figure 4. Comparison between NMF and 3 different classifiers

V. CONCLUSIONS

Non-negative matrix factorization (NMF) is a recent
method for matrix decomposition. Although NMF has
been successfully applied to several research fields, it is
at the beginning of software defect classification using
NMF algorithm. In this paper, we introduce an algorithm
named NMF to extract external features and propose a
new method of classifying software defect data.
Classification using NMF algorithms provides simple
learning rule guaranteeing monotonic convergence to a
local maximum without the need for setting any
adjustable parameters. Also it is easily interpreted by the
programmers and testers. The results indicate that the
standard NMF algorithms can perform classification with
high F-Measure even compared with the state of art
classifiers. In the future, extended NMF can be applied to
the problem of software defect prediction. And a
supervised NMF classification scheme could be
developed, considering information of software defects.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers and the editor for their constructive evaluation
of this paper. They would also like to thank the various
members of author’s Laboratory, Xi’an Research Inst. of
Hi-Tech, for their helpful comments.

REFERENCES

[1] S.Balsamo, A.D.Marco, P.Inverardi and M.Simeoni,
“Model-Based Performance Prediction in Software
DevelopmentL: A Survey,”IEEE Tranctions on Software
Engineering, vol 30, 2004.

[2] T.M.Khoshgoftaar, P.Rebous, N. Seliya, “Software Quality
analysis by combining multiple projects and learners,”
Software Quality Journal vol. 17, pp. 25-49, 2009.

[3] T.Menzies, B.Turhan, A.Bener, G.Gay, B.Cukic, and
Y.Jiang, “Implications of ceiling effects in defect
predictors,” in: Proc. of PROMISE 2008
Workshop(ICSE),2008.

[4] Burak, “Improving the Performance of Software of Defect
Predictors with Internal and External Information
Sources,” Bogazici University, 2008.

[5] J.C. Munson, and T.M. Khoshgoftaar, “The Detection of
Fault-Prone Programs,” IEEE Transactions on Software
Engineering, vol. 18, pp. 423-433, 1992.

[6] L. Bullard, T.M. Khoshgoftaar and K. Gao, “An
application of a rule-based model in software quality
classification,” Machine Learning and Applications, 2007.
ICMLA 2007, Sixth International Conference on, pp. 204 -
210, 2007.

[7] T.M. Khoshgoftaar and E. Allen, “Predicting Fault-Prone
Software Modules in Embedded Systems with
Classification Trees”", HASE, 1999,

[8] N.Nagappan, “Toward a software testing and reliability
early warning metric suite,” Software Engineering, 2004.
ICSE 2004. Proceedings. 26th International Conference on,
pp. 60 - 62, 2004.

[9] G. Denaro and M., Pezze, “An Empirical Evaluation of
Fault-Proneness Models,” Proceedings of International
Conference on Software Engineering, pp. 241-251,2002.

[10] T. Menzies, J. Greenwald, and A. Frank, “Data Mining
Static Code Attributes to Learn Defect Predictors,” IEEE
Transactions on Software Engineering, vol.33, pp.2-13,
2007.

[11] N. Nagappan, T.Ball, Andreas Zeller, “Mining Metrics to
Predict Component Failures,” in: ICSE’06 20-28, 2006

[12] G. Denaro and M. Pezze, “An empirical evaluation of
fault-proneness models,” The 24th International
Conference on Software Engineering (ICSE'02), 2002.

[13] http://mdp.ivv.nasa.gov/
[14] G.Boetticher, T.Menzies, and T.Ostrand, “PROMISE

Repository of Empirical Software Engineering Data,” West
Virginia University, Department of Computer Science,
http://promisedata.org/repository, 2007.

[15] I. Gondra, “Applying machine learning to software fault-
proneness prediction,” Journal of Systems and Software,
vol.81, pp.186-195, 2008.

[16] D.D.Lee, H.S.Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol.1401,
pp.788-791, 1999.

[17] Q.S.Chen, X.W.Chen and Y.Wu, “Optimization Algorithm
with Kernel PCA to Support Vector Machines for Time
Series Prediction,” Journal of Computers,vol.5,pp.380-
387,2010

[18] S. Z. Li, X. W. Hou and H. J. Zhang, “Learning spatially
localized, parts-based representation,”in: Conf. Computer
Vision and Pattern Recognition, pp.207–212,2001

[19] I. Buciu and I. Pitas, “A new sparse image representation
algorithm applied to facial expression recognition” in:
Proc. IEEE Workshop on Machine Learning for Signal
Processing, pp.539–548, 2004.

[20] I. H. Witten and E. Frank, Data Mining Practical Machine
Learning Tools and Techniques Second Edition. Bei Jing:
China Machine Press, p.315-322, 2007.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2119

© 2011 ACADEMY PUBLISHER

[21] T.M.Khoshgoftaar, X.Yuan and E.B.Allen, “Balancing
Misclassification Rates in Classification-Tree Models of
Software Quality,” Empirical Software Engineering, vol. 5,
pp.313-330, 2000

[22] K.O. Elish and M.O. Elish, “Predicting defect-prone
software modules using support vector machines,” Journal
of Systems and Software, vol.81, pp.649-660, 2008.

[23] B. C. Andréde, P. Aurora and R.V. Silvia, “A symbolic
fault-prediction model based on multiobjective particle
swarm optimization,” The Journal of Systems and
Software, vol. 83, pp. 868-882, 2010.

 Ruihua Chang is female and is born in
Taiyuan, Shanxi, China, in 1982.

She received her B.S. degree from
Shanxi normal university in 2005, Linfen,
China. In the same year, she jointed Xi’an,
Research Inst. of Hi-Tech and received
M.S. degree in 2008. Currently, she is
pursuing her Ph.D. degree in Xi’an
Research Inst. of Hi-Tech. Her main

research interests currently focus on software testing, data
mining, software metrics and measurement and software defect
prediction. She has published several papers in journal and
international conference.

Xiaodong Mu is male and born in the city

of QiXia in Shandong Province, China, in
1965.

 He received Ph.D. degree in computer
application from Xi’an Research Inst. of Hi-
Tech Since 2001.

He jointed the Department of Computer
Science and Engineering at Xi’an Research
Inst. of Hi-Tech.

Currently he is as a full professor and a director of the
Department of Computer Science and Engineering, Xi’an
Research Inst. of Hi-Tech, where he is also the director of the
Laboratory. His research interests include performance and
reliability modeling and analysis of computer and
communication systems, pattern reorganization, machine
learning and virtual simulation.

In these fields, Prof. Mu has authored or coauthored over 50
scientific journal papers or conference proceedings. And he has
published several book chapters and edition of special issues of
journal and international conference.

Li Zhang is female and born xi’an,
Shanxi, China, in 1966.

She received B.S. degree from
Information Engineering University of the
People’s Liberation Army in 1992. She
received her M.S. degree in computer
science at Xi’an Research Inst. of Hi-Tech,
Xi’an, China in 1996. And she received
her Ph.D. degree in computer theory at
University of West north in 2005.

Since 1992, she has been working in the Computer Science
Department at Xi’an Research Inst. of Hi-Tech, Xi’an, China
where she is currently an assistant professor. Her main research
interests include reliability modeling and analysis of computer
and communication systems, pattern reorganization, fault
diagnose and distributed simulation. She has published
numerous peer-reviewed research papers in various conferences
and journal. Also she has published several book chapters and
edition of special issues of journal and international conference.

2120 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

