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Abstract—In order to solve the dynamic vehicle routing 
problem (DVRP) containing both dynamic network 
environment and real-time customer requests, an efficient 
intelligent optimized algorithm called IOA is proposed in 
this paper, which takes advantages of both global searching 
ability of evolutionary algorithms and local searching 
capability of ant colony algorithm. The proposed IOA 
incorporates ant colony algorithm for exploration and 
evolutionary algorithm for exploitation, and uses real-time 
information during the optimization process. In order to 
discuss the performance of the proposed algorithm, a mixed 
integral programming model for DVRP is formulated, and 
benchmark functions are constructed. Detailed simulation 
results and comparisons with the existed work show that the 
proposed IOA algorithm can achieve a higher performance 
gain, and is well suited to problems containing dynamic 
network environment and real-time customer requests. 
 
Index Terms—intelligent optimized algorithm; evolutionary 
algorithm; ant colony algorithm; dynamic vehicle routing 
problem 
 

I.  INTRODUCTION 

In recent years, new technologies in the application of 
dynamic road routing information systems have been 
implemented in many agencies to help control the total 
costs [1, 2], which also is improving the timeliness and 
accuracy of vehicle routing information at the regional 
and road network levels, thus facilitating the use of more 
efficient and effective techniques for spreading 
operations [3, 4]. Dynamic vehicle routing problem 
(DVRP) demonstrates to be an active issue for it 
combining theoretical research and practical application 
characteristic together [5, 6, 7]. A vehicle routing 
problem is dynamic when some inputs to the problem are 
revealed during the execution of the algorithm [8]. Thus, 
it is not possible to determine in advance a set of 
optimized routes in a dynamic problem. Problem solution 
evolves as inputs are revealed to the algorithm and to the 
decision maker. This definition is elaborated in [9], in 
which a problem is said to be dynamic when the output is 
not a set of routes, but rather a policy that prescribes how 
routes should evolve in time as a function of the inputs. 

DVRP sometimes referred to as on-line vehicle routing 
problems, have recently arisen thanks to the advances in 
communication and information technologies that allow 
information to be obtained and processed in real time. In 
this case, some of the orders are known in advance before 
the start of the working day, but as the day progresses, 
new orders arrive and the system has to incorporate them 
into an evolving schedule [10, 11, 12]. The objective of 
DVRP is how to find out a perfect route for loaded 
vehicles when customers’ requirements or traffic 
information keep changing, which means to minimize the 
total cost of all routes with minimum number of vehicles 
without violating any constraints.  

A.  Related Work 
The conventional vehicle routing problem (VRP) is 

defined as follows [8, 9]: Given a set of geographically 
dispersed customers, each showing a positive demand for 
a given commodity, the VRP consists of finding a set of 
tours of minimum length for a fleet of vehicles initially 
located at a central depot, such that the customers’ 
demands are satisfied and the vehicles’ capacities are not 
exceeded. Most research focuses on static or 
deterministic vehicle routing in which all information 
about customers and travel times are known at the time of 
planning [13, 14]. Some of the earliest work on the 
DVRP was conducted by Bertsimas and Ryzin [15, 16]. 
Further work regarding stochastic and dynamic network 
and routing can be found in [17], in which the authors 
present a classification for dynamic routing and 
dispatching problems and discuss the problems of dial-a-
ride, repair, courier and express mail delivery services. 
The importance of the diversion strategy is raised in this 
work [18]. Generally speaking, most of the DVRP focus 
on determining an a priori solution by considering the 
uncertainty of service requests.  

In recent years, most distribution systems must operate 
under strict temporal restrictions and the uncertain factors 
as mentioned above [19, 20]. In [21], the authors consider 
a DVRP where one additional customer arrives at an 
unknown location when the vehicles are under way. The 
dynamic traveling sales man problem with time windows 
is researched in [22], such that during the day of 
operation a stochastic number of customers requests 
service. There quests arrive at zones according to a 
Poisson process, with an arrival rate of customers that 
depends on the zone. The demand of customers and travel 
times may vary unexpectedly and a real-time, on-line 
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operational vehicle dispatching and guiding system is 
established, taking the latest information of demand and 
traffic condition into account. In this case, the current 
information and probability of future events are used in 
the solution method. Jung and Haghani [23] originally 
presented this formulation and proposed a genetic 
algorithm to solve the problem. In [24, 25, 26], the 
authors proposed several new dynamic multicast routing 
models with local rearrangement schemes  to handle the 
changes in integrated network, which adopt immune 
algorithm based on clone process, and other evolutionary 
algorithms to improve the effectiveness of DVRP to meet 
the real-time requirement in online routing fields.  

B.  Organization 
With the increasing development of logistics 

management field, the disadvantages of those traditional 
algorithms illustrate obviously as below: 

Only unique solution provided, but in some cases, 
more than one solution or a solution set is preferred. Thus, 
a decision maker can choose the best one to satisfy 
his/her own requests from the solution set. Various sub-
objectives such as vehicle number, total distance, 
customers’ waiting time, etc. are so different in meanings 
or order of value that it’s not suitable to combine them 
into single objective with any weight sum techniques. 
Furthermore, each sub-objective usually depends on the 
others. One optimized sub-objective is gained often at the 
cost of another sub-objective. In the literature, most 
DVRPs only treat vehicle routes as decision variables and 
require that a vehicle leaves the customer once the service 
is finished.  

In order to solve DVRP, this paper proposes an 
efficient intelligent optimized algorithm (IOA), which 
takes advantages of both global searching ability of 
evolutionary algorithms and local searching capability of 
ant colony algorithm. To satisfy personal requirements of 
users and coordinate conflicts between each sub-objective, 
the proposed algorithm treats each sub-objective as an 
independent optimal objective and optimizes them 
simultaneously. As a result, we treat the traditional single 
objective optimization DVRP as a multi-objective 
optimization problem in this paper. 

The rest paper is organized as follows. In section II, an 
efficient intelligent optimized algorithm is proposed in 
detail. Detailed experimental results are shown in section 
III. Finally, the conclusion and future work are given in 
section IV. 

II.  PROPOSED ALGORITHM 

A.  DVRP Model 
The DVRP is formulated as a mixed-integer stochastic 

programming model with recourse in many literatures. 
Some decisions must be made without full information on 
random variables. These decisions include the vehicle 
routes and departure time at each node. Later, full 
information is received on the realization of random 
variables, such as stochastic travel times. Then, in the 
second stage, the waiting times and penalties under the 

realized travel times are calculated. In other words, an a 
priori solution expected to minimize total cost is sought. 

In this paper, we consider the DVRP problem with 
dynamic requirements under dynamic network 
environment. The characteristics of the problem can be 
described in terms of the depot, the sort of the 
requirement (delivery or pick-up), the vehicle capacity, 
and the time-dependent route between requirement nodes. 
All vehicles used for service have to return to the depot 
before the end of the day. Every requirement node has its 
own time window. We consider only soft time window 
constraints in this paper. A vehicle is allowed to arrive at 
a requirement node (a delivery node or a pick-up node) 
outside of the time interval defined for service. However, 
there would be a penalty when the arriving time of a 
vehicle violates the time window. 

At the beginning of a workday, we define the initial 
schedule of vehicle route; the task of it contains the 
requirements which were not completed the day before 
the workday, and today’s customers’ requirements. The 
real-time customers’ requirement will be allowed given at 
any time. For those customers who have pick-up 
requirement, the destinations are the depot. The proposed 
model considers the optimal objective that minimize the 
weighted sum of vehicle’s traveling time, customers’ 
waiting time and vehicles’ waiting time for the given 
constrained conditions. The parameters and constants are 
as follows: 

t
ijx : binary decision variable, taking value 1 if there is 

a vehicle from customer i  to j  between time window 

1[ , ]t tT T + , and 0 otherwise. 
T : denotes the number of time segments of a workday, 

the corresponding scheduling time is 0 , , TT T . 
V : all customers including static and dynamic 

requirement of customers. 
( )ijc : the distance matrix of complete connected graph 

of all customers in V . 
t

ijr : the running time of arc ,i j< >  at scheduling time 
t . 

iw : the vehicle’s waiting time of vehicle arrived at 
customer i  early than the lower bound of customer i . 

id : the vehicle’s waiting time of vehicle arrived at 
customer i  later than the upper bound of customer i . 

0id : time to depart from the depot heading to customer 
i . 

is : service time at node i . 

ie : beginning boundary of the time window at node i . 

il  : ending boundary of the time window at node i . 
α : weight associated with using a vehicle. 

ijc : minimum travel time among all possible discrete 
states between nodes i  and j . 

β : weight associated with gain and fuel cost of a 
vehicle. 

χ : weight associated with vehicle waiting for 
customer. 
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δ : weight associated with customer waiting for 
vehicle. 

iq : demand at node i . 
N  : set of nodes in which every node is a customer to 

be serviced. 
0N  : union of set N  and the depot. 

The proposed dynamic vehicle scheduling model 
considers both global static and local dynamic states. 
Based on the above assumptions, the DVRP is formulated 
as follows: 

1 2 3 4

0
0 { {0}} 0

min ( )
min( ( ) ( ) ( ) ( ))

min(

),

T T
t t t

j ij ij ij
t j V t i V j V

i i
i V i V

f x
f x f x f x f x

x c r x

w d

α β χ δ

α β

χ δ
= ∈ − = ∈ ∈

∈ ∈

= + + +

= +

+ +

∑ ∑ ∑∑∑

∑ ∑

             (1) 

where 1( )f x  denotes the number of vehicles, 2 ( )f x  is 
the running time of vehicles, 3( )f x  is the waiting time of 
vehicles at customers and 4 ( )f x  is the waiting time of 
customers. And 1( )f x , 2 ( )f x , 3( )f x  and 4 ( )f x  are 
delineated by the following constraints: 

1 0
0 { {0}}

( ) ,
T

t
j

t j V

f x x
= ∈ −

= ∑ ∑                                                (2) 

2
0

( ) ,
T

t t
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t i V j V
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= ∈ ∈

= ∑∑∑                                             (3) 
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i V
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∈

= ∑                                                             (4) 
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i V

f x d
∈

= ∑                                                             (5) 

0 ,
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j N j i

x i N
∈ ≠

= ∀ ∈∑                                                  (6) 

0 ,

1, ,t
ij

j N j i

x j N
∈ ≠

= ∀ ∈∑                                                  (7) 

0 1( ),t
j

j N

x f x
∈

≤∑                                                          (8) 

max( , ) , , ,j i ij j js d c e d i j N+ + ≤ ∀ ∈                        (9) 

0 0 ,id e≥                                                                 (10) 

where the waiting times and excess duration caused by 
the violation of time windows or departure time plan are 
defined in the following and can be easily calculated once 
the first-stage decision is determined and the stochastic 
travel times are realized. 

Note that symbol ijc  represents the minimum travel 
time among all states of the stochastic travel time 

between node i  and j , which forms a route among 
customers without the depot in it. Note that the logical 
expression (1) can easily be transformed into linear 
expressions by introducing a sufficiently large constant. 
The stochastic travel time ijc  could be either continuous 
or discrete in nature. Since the continuous stochastic 
programming model is difficult to solve, we suppose ijc  
is a random variable defined by m discrete states of a 
stochastic travel time.  

B.  Intelligent Optimized Algorithm 
The objective of model (1) is to minimize the weighted 

sum of expected travel times, expected waiting times and 
expected penalties. To solve the model (1), we may 
encounter two difficulties, i.e., that the number of 
capacity constraints is large and definitional constraints 
(2)~(10) are inherently nonlinear. As a result, the 
computational effort to treat capacity constraints has to be 
largely reduced and the nonlinearity has to be relaxed. 
The proposed IOA combines ant colony algorithm and 
evolutionary algorithm so as to satisfy the capacity 
constraint. The main reason why we combine those two 
kinds of algorithms lies in that the ant colony algorithms 
have the characteristic of good local searching capability 
while the evolutionary algorithms have fairly good global 
searching performance. 

Herein, the solution algorithm IOA is formally 
proposed as follows. 

Algorithm 1: IOA 
1:   Initialization. 
2:   Set the maximum iteration number maxI , 
3:   Set the maximum iterative number max,antI  of ant 

colony algorithm, and the population size antP  of 
ant colony algorithm; 

4: Set the maximum iteration number max,evoI  of 
evolutionary algorithm, the population size evoP  
of evolutionary algorithm. 

5:  Create the pheromone matrix. 
6: Initialize the pheromone matrix by evolutionary 

algorithm; update Pareto candidate solution set. 
7:  repeat 
8:         Update the pheromone matrix by ant colony 

algorithm; 
9:        Optimize pheromone matrix by evolutionary 

algorithm OEA; 
10: until satisfying the stopping criterion. 
11: Output the by solution by the optimized 

pheromone matrix. 

From the algorithm 1, we know that the best path is 
determined by the current pheromone matrix. So the 
update way of the pheromone matrix will affect the 
efficiency of IOA. There are two ways used by IOA 
algorithm to update pheromone. The first way is to 
optimize the pheromone matrix using evolutionary 
algorithm and record current best solution to construct 
status variable. The second way occurs during the 
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iteration process of Ant Colony algorithm. In this paper 
we mainly consider the second case. Update of 
pheromone will be conducted by a process of global 
update given as follow: 

min
1 1

min

( ) , ( )
( 1)

,

m m
k k

ij ij ij ij
k kij

t if t
t

otherwise

ρ τ τ ρ τ τ τ
τ

τ
= =

⎧
⋅ + Δ ⋅ + Δ ≥⎪+ = ⎨

⎪⎩

∑ ∑    (11) 

where [0,1]ρ ∈  is the trail persistence, m  is the number 
of ants, k

ijτΔ  is the amount of pheromone laid by the k-th 
ant on edge ( )ij , ant it can be calculated as: 

,k
ij

k

Q
L

τΔ =                                                                (12) 

where Q  is a constant that denotes the capacity for all 
vehicles,  and kL  is the objective value of the k-th ant. 

In order to reduce the total number of capacity 
constraints, we adopt a sort of take-and-conquer strategy, 
ignoring all capacity constraints in the very beginning of 
the algorithmic process, and checking for the capacity 
constraint when a vehicle is loaded with new goods (i.e., 
when serving a new consumer). If the capacity constraint 
is violated, a new cut, called the feasibility cut, is added 
to the original feasible region so as to satisfy the capacity 
constraint, as follows: 

, ' ,i
j S

q Q S N N
∈

≤ ∀ ∈ ∈∑                                          (13) 

{0}

| | 1,t
ij

j S

x S
∈ ∪

= +∑                                                    (14) 

where 'N  is the set of overloaded routes generated 
during the solving process, called the active capacity 
constraint set. On the other hand, we simplify the 
nonlinear constraints by finding the linear estimates.  

The pheromone matrix is optimized by evolutionary 
algorithm as follows: 

Algorithm 2: OEA 
1:   Randomly generate 1ME −  individuals and set 

the current generation 0CG = . 
2:    Evaluate the 1ME −  individuals. 
3:   while maxCG I≤  do 
4:       Select  ME  individuals; 
5:       Encoding the ME  individuals; 
6:      Crossover the ME  individuals, and Evaluate 

the 1ME −  individuals; 
7:    Mutate the ME  individuals, and Evaluate the 

1ME −  individuals; 
8:    Select the best ME  individuals from the two 

generations as the new population. 
9:     1C CG G= + . 
10: Output the by optimized pheromone matrix 

corresponding to the best individuals. 

Encoding of evolutionary algorithm is based on 
pheromone matrix. When evaluating individual in the 
algorithm, we generate ants, and calculate the pareto-
dominate relationship between ants and the set of Pareto 
candidate solution. When an ant is generated, no matter 
generated by evolutionary algorithm or generated during 
the iterating process of ant colony algorithms, the 
updating strategy of Pareto candidate solution set remains 
the same. That is, if this ant is not dominated by any 
individual in the set, and the Pareto candidate solution set 
is not full, add it in to the set; otherwise, if this ant is not 
dominated but the set is full, it will be replaced with the 
closest candidate solution from this ant by Hamming 
distance. 

First, we defined a relation sequence ijR , representing 
the relationships mentioned above, which has m  
elements if there exist m  travel time states between a 
pair of consecutive nodes i  and j  in the route. For 
example, if the relationships between the departure times 
in the pair of consecutive nodes i  and j  are 
characterized by 3 different travel time states 1t , 2t  and 

3t , then the relation sequence can be written as 

1 2 3{ , , }ijR t t t= . What we intend here is to prove the 
convergence of the proposed IOA algorithm by showing 
the following facts: 

For link i j↔ , the parameters in (1)~(14) can be 
determined according to ijR  of the current solution. If the 

ijR  associated with the current solution, appears for the 
first time during the solution process, an optimal cut 
corresponding to ijR  is added to the constraint set. For 
link i j↔ , if the relation sequence ijR  associated with 
the current solution is the same as any previous solution, 
the optimal cut corresponding to this relation sequence 
must have been added already and the second/third item 
in the original objective will be equal to its lower bound 
subject to node j  or i . As a result, there is no need to 
add the same cut again.  

 
Figure 1.  Planned route of threes ants (using 3 vehicles) chosen 

randomly from the Pareto optimality set. 

To evaluate the authenticity of the proposed model and 
the IOA algorithm, an example is shown in Fig. 1, which 
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depicts the system state at time tT . In this system, we 
suppose that three vehicles are assigned and planed routes 
of each vehicle are shown in Fig. 1. Pickup nodes are 
colored by gray, and delivery nodes colored by white, the 
unconnected nodes denote the new requirement of 
customers, dot line denotes the visited path, real line 
denotes the planned path. 

In this sample, each ant is made up of many sub-ants, 
and every sub-ant denotes the visited path of a vehicle. 
Then nodes in Fig. 1 include two types: constraint nodes 

1Ω  set and candidate nodes set 2Ω .  The set 1Ω  and 
nodes randomly selected from 2Ω  form a new set Ω , the 
multiobject optimizing problem transform to a TSP 
problem that includes nodes of Ω , start node and depot. 
So each ant will random select a node of Ω  with 
transition probability ijp , from the start node:  

,ij ij
ij

ij ij
j

p
α β

α β

τ η

τ η
∈Ω

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

                                              (15) 

then a new ant will plan a route with the rest constraint 
nodes. 

 
Figure 2.  Response time of two dynamic customers 

 
Figure 3.  Mesurement of dynamism of different examples. 

In order to evaluate the dynamism of DVRP 
effectively, we assume that the request arriving time of  
customer i  is it , the time window is [ , ]i ie l . The urgency 
degree ir  of the request of customer i  can be determined 
by: 

 i i ir l t= − ,                                                                (16) 

as shown in Fig. 2.  
Then the effective degree _edod TW  of dynamism of 

DVRP with time windows will be: 

1

( )1_ ( )

1 ,

totn
i i

itot

tot

T l tedod TW
n T

n

=

− −
=

=

∑
                           (17) 

where T  is the total scheduling time, t o tn  denotes the 
total number of dynamic requests customers. It’s clear 
that 0 _ 1edod TW≤ ≤ , and the example of measurement 
of dynamism is shown as in Fig. 3. 

III.  EXPERIMENTAL  RESULTS 

In order to test the performance of our algorithm, 
twelve data sets generated by Solomon [27] are used, in 
which vehicle capacity and customer information 
(including locations, demands, time windows and service 
time) are given. Currently, there is not a general 
benchmark used for DVRP, so we use the Dynamic 
Vehicle Routing Problem simulator (DVRPSIM) [25] 
designed by us to test the capability of the algorithm. And 
the proposed algorithm was coded with Visual C++ 6.0. 
The travel time between two nodes is characterized by a 
discrete random variable with three possible discrete 
states. 20 problems with four different problem sizes, i.e. 
number of customers is in the range [5, 30], were tested 
on a personal computer with an Intel P4 2.8GHz CPU and 
1GB RAM. 

 
Figure 4.  The number of requirements of customers 

In the experimental system, we assume the dynamic 
requirement of customers follows the Poission process. A 
workday is divided into many time intervals, and the 
dynamic requirement of customers is shown as in Fig. 4. 
The dynamic requirement R  of customers includes three 
types: 1 2 3{ , , }R R R R= , where 1R , 2R  and 3R  denote the 

_ [0,0.4)edod TW ∈ , _ [0.4,0.6)edod TW ∈  and 
_ [0.6,0.8)edod TW ∈  respectively. The velocity W  of a 

vehicle also includes three kinds: 1 2 3{ , , }W W W W= , 
where 1W , 2W  and 3W  denote low, middle and high 
speed respectively. The degree D  of dynamism of path 
is described with 1 2 3{ , , }D D D D= , where 1D , 2D  and 

3D  denote the percent of the changing path in the total 
traffic is 10%, 30% and 50% respectively. The problem 
set includes three kinds 1 2 3{ , , }S S S S= , where 1S , 2S  
and 3S  denote the case [5,10]N ∈ , [1,2]λ ∈ , 

[10,20]N ∈ , 2λ = , and [20,30]N ∈ , 3λ = , 
respectively. The scheduling time is 10. DVRPSIM will 
randomly generate the traffic graph with 100 nodes in the 
square field [0,500] [0,500]× . The average value of 
service time is 0.3 and the square error is 0.2.  
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A. Parameters Performance 

TABLE I.   
PERFORMANCE OF TRANSITION PROBABILITY 

Problem 
set Cost 

Transition 
probability 

3, 3α β= =  

Transition 
probability 

3, 8α β= =  

Transition 
probability 

3, 12α β= =

Number of vehicle 4 4 4 

Path cost 2708 2794 2846 
Waiting cost of 

vehicle 45 43 57 
Waiting cost of 

customer 37 33 40 

Total cost 5742 5896 6063 

1λ =  
1 1 1 5( , , ( ) )R D S  

Computation time 60.002 48.894 43.319 

Number of vehicle 6 6 7 

Path cost 3200 3315 3343 
Waiting cost of 

vehicle 27 62 79 
Waiting cost of 

customer 22 15 88 

Total cost 6667 6981 7327 

3λ =  
1 3 2 13( , ,( ) )R D S  

Computation time 80.132 71.739 68.844 

Number of vehicle 7 8 8 

Path cost 4376 4431 4562 
Waiting cost of 

vehicle 103 210 118 
Waiting cost of 

customer 15 59 93 

Total cost 9246 9829 9917 

4λ =  
3 3 3 20( , ,( ) )R D S  

Computation time 103.286 102.448 98.758 

Number of vehicle 8 9 10 

Path cost 5897 6069 6104 
Waiting cost of 

vehicle 73 108 99 
Waiting cost of 

customer 84 76 127 

Total cost 12425 12870 13086 

4λ =  
3 3 3 30( , ,( ) )R D S  

Computation time 155.986 149.132 148.347 

 
In order to evaluate the performance of key parameter, 

we set max 100I = , 5ME = , 3α = , 0.8ρ = , min 0.001τ = , 
10Q = , 0.5cp = , 0.1mp = . The performance of IOA is 

shown in Table I with varying transition probability β . 
From Table I, we can see that, with transition 

probability β  increasing, the cost will increase. As the 
transition probability β  increasing to 12, the total of 
IOA obviously is larger than that of 3β = , and the total 
cost is 5742 and 6063 respectively when the number of 
vehicle is 4. We can see the similar results when the 
number of vehicle increases to 10. This implies that the 
performance of proposed IOA will degrade when 
transition probability β  increasing. The reason is that 
with the larger of transition probability β , IOA will be 
closer to the greedy algorithm. 

TABLE II.   
PERFORMANCE OF CROSSOVER PROBABILITY cp  

Problem 
set Cost 0.3cp =  0.5cp =  0.7cp =  

Number of vehicle 4 4 4 

Path cost 2712 2708 2838 

Waiting cost of 
vehicle 39 45 66 

Waiting cost of 
customer 59 37 53 

Total cost 5798 5742 6113 

1λ =
1 1 1 5( , , ( ) )R D S

Computation time 63.768 60.002 57.901 

Number of vehicle 6 6 6 

Path cost 3196 3200 3289 

Waiting cost of 
vehicle 37 27 29 

Waiting cost of 
customer 101 22 151 

Total cost 6926 6667 7238 

3λ =
1 3 2 13( , ,( ) )R D S

Computation time 84.220 80.132 80.007 

Number of vehicle 7 7 7 

Path cost 4386 4376 4544 

Waiting cost of 
vehicle 98 103 67 

Waiting cost of 
customer 121 15 136 

Total cost 9569 9246 9837 

4λ =
3 3 3 20( , ,( ) )R D S

Computation time 110.067 103.286 99.899 

Number of vehicle 8 8 10 

Path cost 5906 5897 6153 

Waiting cost of 
vehicle 70 73 27 

Waiting cost of 
customer 146 84 166 

Total cost 12620 12425 13085 

4λ =
3 3 3 30( , ,( ) )R D S

Computation time 157.902 155.986 149.453 

 
The performance of IOA is shown in Table II with 

different crossover propability cp . From Table II, we can 
see that, with crossover probability cp  increasing, the 
computation time will decrease. As the crossover 
probability cp  increasing to 0.7, the computation time of 
IOA obviously is less than that of 0.3cp = , and the 
computation time is 63.768 and 57.901 respectively when 
the number of vehicle is 4. We can see the similar results 
when the number of vehicle increases to 8. While the 
computation time increases to 157.902 and 155.986 
respectively when the number of vehicle is 8. The results 
demonstrate that the computation performance of IOA 
will be better when crossover probability cp  increasing. 
On the other hand, we can see that, the optimized total 
cost will slightly decrease with the crossover probability 

cp  increasing. The results indicate that the appropriate 
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crossover probability 0.5cp =  is a tradeoff point for the 
proposed IOA. 

B.  Comparisions Performance 

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25 30

Number of nodes

T
o
t
a
l
 
c
o
s
t

IOA

C-W
BB

 
Figure 5.  Total cost of different algorithm 
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Figure 6.  Computation time of different algorithm. 

In this scenario, the values of parameters in objective 
function (1) are 20α = , 2β = , 3χ =  and 3δ = , 

0.5cp = , 0.1mp = .  In order to evaluate the 
effectiveness of the proposed IOA, the Branch-Bound 
(BB) algorithm and Clarke-Wright (C-W) algorithm also 
are implemented in the system. Figs 5 and 6 show the 
total cost and computation time of three algorithms with 
varying number of nodes. 

From the Fig. 5, we can find out that, the proposed 
IOA algorithm is fairly competitive when used to solve 
DVRP. With the number of nodes increasing, the total 
cost of IOA is close to that of BB, and is clearly lower 
than that of C-W. When the number of nodes is 30, the 
error of total cost between IOA and C-W increases to 989. 
The main reason, according to the related work, could be 
due to the specified feature existed in the testing data, for 
there exists both harmony and conflict between objective 
data of vehicle number and that of total costs. Thus, when 
we use multi-objective optimal algorithm to conduct on 
these two data sets, the computational difficulty of our 
algorithm will increase. Another reason would be the 
stopping criterion, the algorithm will stop after 100 
generations, the potential capability of our algorithm has 
not been illustrated thoroughly yet. 

We can see that the computation cost of the proposed 
IOA is obviously lower than that of BB in Fig. 6. 

Especially when the number of nodes increases to 15, the 
computation cost of BB is 2417.652, while that of IOA is 
71.786. On the other hand, the computation cost of IOA 
is less than that of C-W for DVRP. The results show that 
the proposed IOA has better performance in terms of both 
optimized solution and computation cost. 

IV.  CONCLUSION AND FUTURE WORK 

In this paper, an efficient multi-objective optimization 
mathematical model and intelligent optimized algorithm 
(IOA) have successfully established. The accuracy and 
effectiveness are shown by numerical tests and real time 
traffic example. We utilize the theory of multi-objective 
optimization to research the multi-objective optimization 
algorithm to deal with DVRP. In theory, we successfully 
modeled the DVPR and proposed the efficient algorithm 
IOA. This can be the fundamental of further studies and 
applications in real world. In practice, as long as the 
authorities concerned can offer the real time and 
predictive traffic information, our model can be applied 
immediately and the operators will get more benefits then 
traditional operations. For solving the DVPR, a class of 
optimal scheme is proposed with combined evolutionary 
algorithm and ant colony algorithm. This type of optimal 
scheme is indeed new and effectively constructs the 
lower bounds of the expected value of weighed service 
waiting times, weighted departure waiting times, and 
penalties due to the violation of time windows and 
departure time plans during the solution process. The 
computational efficiencies of the proposed solution 
algorithm can be greatly enhanced with IOA. Compared 
with the existed BB and C-W algorithms, IOA 
outperforms in terms of both total cost and computation 
cost. 

The future work will focus on taking the fuzzy nature 
of deterioration into consideration.  
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