

Approach to Modeling Components in Software
Architecture

Yong Yu1,2

1 School of Software, Yunnan University, Kunming, China
2 Key Laboratory in Software Engineering of Yunnan Province, Kunming, China

Email: yuy1219@163.com

Tong Li1,2, Qing Liu1,2 and Fei Dai1
1 School of Software, Yunnan University, Kunming, China

2 Key Laboratory in Software Engineering of Yunnan Province, Kunming, China
Email: {tli, liuqing}@ynu.edu.cn, flydai.cn@gmail.com

Abstract—Software components are increasingly central to
efficient, cost-effective software development. Components
are the special status of the software system, so the formal
description of the components is very important. First, the
concept and characteristics of components are given. Second,
the definition of OR-transition Colored Petri Net is given.
Third, in according to the properties of software
components, a formal definition of component is presented.
And based on OR-transition Colored Petri Net, an approach
is put forward to modeling the software components
formally. Finally, an example is given.

Index Terms—component, Petri net, modeling, software
architecture

I. INTRODUCTION

Component-based software engineering (CBSE) is a
branch of software engineering which emphasizes the
separation of concerns in respect of the wide-ranging
functionality available throughout a given software
system.

In the Dictionary of Object Technology [1] a
component is described very generally as a "reusable
entity". Nierstrasz [2] and Sametinger [3] also provide
general definitions of components that include mixins,
macros, functions, templates, modules, etc. as valid
examples of software components.

A software component is a software element that
conforms to a component model and can be
independently deployed and composed without
modification according to a composition standard.

Software components are increasingly central to
efficient, cost-effective software development.

Large complex software systems are composed of
many software components. Building software systems
from reusable software components has long been a goal
of software engineers. While other engineering
disciplines successfully apply the reusable component
approach to build physical systems, it has proven more
difficult to apply in software engineering. A primary

reason for this difficulty is that distinct software
components tend to be more tightly coupled with each
other than most physical components [4].

A component is simply a data capsule. Thus
information hiding becomes the core construction
principle underlying components. A component can be
implemented in (almost) any language, not only in any
module-oriented and object-oriented languages but even
in conventional languages [5,6].

For component, it is unavoidable to interact with the
environment. The component can be obtained
information from the environment, and provides relaxed
services to the environment. Component interface
represents the interaction with the outside world, each
interface show interaction between components and
connector [5,6].

Components are the special status of the software
system, so the formal description of the components is
very important.

The remainder of this article is organized as follows:
Section II resumes the related concepts and
characteristics of our component. Section III presents
concept of Or-transition colored Petri net. Section IV
presents an approach to modeling software components.
Section V gives an example.

II. THE CONCEPT AND CHARACTERISTICS OF COMPONENTS

An individual component is a software package, a web
service, or a module that encapsulates a set of related
functions (or data).All system processes are placed into
separate components so that all of the data and functions
inside each component are semantically related. Because
of this principle, it is often said that components are
modular and cohesive.

With regard to system-wide co-ordination, components
communicate with each other via interfaces. When a
component offers services to the rest of the system, it
adopts a provided interface which specifies the services
that other components can utilize, and how they can do so.
This interface can be seen as a signature of the
component - the client does not need to know about the

2196 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2196-2200

inner workings of the component (implementation) in
order to make use of it. This principle results in
components referred to as encapsulated.

However when a component needs to use another
component in order to function, it adopts a used interface
which specifies the services that it needs.

Another important attribute of components is that they
are substitutable, so that a component can replace another,
if the successor component meets the requirements of the
initial component. Consequently, components can be
replaced with either an updated version or an alternative
without breaking the system in which the component
operates.

So, a software component is simply a data capsule.
Thus information hiding becomes the core construction
principle underlying components. A component can be
implemented in (almost) any language, not only in any
module-oriented and object-oriented languages but even
in conventional languages [8].

III. EXTENDED PETRI-NET

As a graphical tool, Petri nets can be used as a visual-
communication aid similar to flow charts, block diagrams,
and networks. In addition, tokens are used in these nets to
simulate the dynamic and concurrent activities of systems.
As a mathematical tool, it is possible to set up state
equations, algebraic equations, and other mathematical
models governing the behavior of systems.

Definition 1 [11] A triple N=(P, T; F) is called a Petri-
net iff

1) P and T are disjoint sets;
F⊆(P×T)U (T×P) is a binary relation, the flow relation

of N.
Definition 2 [11] Let N=(P, T; F) be a Petri-net.
For x∈N,
1) •x={y | yFx} is called the preset of x;
2) x•={y | xFy} is called the postset of x.
An OR-transition colored Petri net can be defined as

follows [7]:
Definition 3 An OR-transition Petri net system is a 4-

tuple ∑=<P, T, F, M0>, where:
1) PU T≠Φ and P∩T=Φ;
2) F⊆(P×T)U (T×P);
3) M0⊆P is the initial mark of the OR-transition Petri-

net system;
4) A transition t∈T is enabled in a marking M iff
∃p∈˙t, M (p)=1 and ∀p′∈t˙, M(p′)=0.
It is said that the transition t is enabled under the mark

M and the place p.
Let a transition t∈T fires under a mark M and a place p,

the mark M is transformed into the mark M'; we often say
that the mark M' is reachable from the mark M in a step.
M′ is the successor mark of M under t and p. It is written
as M(p)[t>M'. where: ∀p′∈P:

M(p')-1, p'=p;

M'(p')= M(p')+1, p' p and p' t ;
M(p'), else.

⋅

⎧
⎪

≠ ∈⎨
⎪
⎩

Definition 4 In an OR-transition Petri net system
∑=<P，T，F，M0>, the corresponding underlying net
N=<P，T，F> is called as OR-transition Petri net.

Definition 5 In an OR-transition Petri net ORPN=<P,
T, F>, let x, y∈TU P, ∃b1, b2, b3, …, bk∈TU P, such that
<x, b1>, <b1, b2>, <b2, b3>, … , <bk, y>∈F, then we say
that y is structure-reachable from x, which is denoted as
xF＊y.

Definition 6 1) S is a limited and non-empty type set,
also known as the color set;

2) The multi-set m is a function of non-empty color set
S: m∈(S→N).

For the non-empty set S,
s S

m= m(s)s
∈
∑ is the multi-set

of S, m(s)≥0 is called the coefficient of s.
3) Let SMS be the set of all multi-sets of based on S,

and m, m1, m2∈SMS, n∈N then:
(1) 1 2 1 2

s S
m +m = (m (s)+m (s))s;

∈
∑

(2)
s S

n m = (n m (s))s;
∈

× ×∑

(3) m1≠m2 ≡ ∃s∈S: m1(s)≠m2(s);
(4) m1≤m2 ≡ ∀s∈S: m1(s)≤m2(s);
(5) m1≥m2 ≡ ∀s∈S: m1(s)≥m2(s);
(6) If m1≤m2, 2 1 2 1

s S
m -m = (m (s)-m (s))s.

∈
∑

Definition 7 An Or-transition colored Petri net
(ORCPN) is a 7-tuple N=<P, T, F, S, AP, AT, AF>, where:

1) <P, T, F> is an OR-transition Petri-net, which is
called as the underlying net of ORCPN;

2) S is a non-empty color set, which is called as color
set of ORCPN;

3) AP: P→SS, AP is a function of P, where SS is the
power set of S.

4) AT: T→SMS, AT is a guard function of T, where SMS
is the set of all multi-sets of based on S and it meets the
following condition: ∀t∈T, T p MS

p t
A (t) (A (p))

•∈
∈ U .

5) AF:F→SMS, AF is the arc expression function, where
SMS is the set of all multi-sets of based on S and meet the
following condition:

∀f∈F, AF(f)∈(AP(P(f)))MS, where P(f) describes the
corresponding place p of arc f.

Definition 8 An OR-transition colored Petri net
(ORCPN) system is an 8-tuple ORCPN system ∑=<P, T,
F, S, AP, AT, AF, M0>, where:

1) N=<P, T, F, S, AP, AT, AF> is an OR-transition
colored Petri net, which is called as the underlying net of
ORCPN system;

2) M0 is the initial marking of ORCPN system ∑=<P,
T, F, S, AP, AT, AF, M0>, and meets the following
condition:

∀p∈P: M0(p)∈(AP(p))MS.
Definition 9 M: P→SMS is the marking of ORCPN

system ∑=<P, T, F, S, AP, AT, AF, M0>, where ∀p∈P:
M(p)∈(AP(p))MS.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2197

© 2011 ACADEMY PUBLISHER

IV. APPROACH TO MODELING SOFTWARE COMPONENTS

A. The Related Definitions of Components
In software architecture, a component should include

two parts: interface and implementation. Interface defines
the functions and specifications provided by the
component, and implementation includes a series of
related operations [9].Therefore, in this paper, the
definition of components is as follows:

Definition 10 A component is a 3-tuple C = <Interface,
Imp, Spec>, where:

1) Interface is a set of component interfaces. Interface
= IP U OP, IP represents the input interfaces of
component, OP represents the output interfaces;

2) Imp is the implementation of component, and it
includes a series of operations: t1, t2, ..., tn; and each
operation completes specific function;

3) Spec represents the internal specification of
component, and it is mainly used to describe the
relationships between the implementations and the
interfaces.

Definition 11 Each interface in component is a 2-tuple:
p = <ID, DataType>, where ID is the unique identifier of
the interface p, DataType is the type of the information
which can be accepted by the interface p.

In component, each input interface represents the
certain set of some operations, a component can have
some input interfaces, the outside environment can
request services from one or more input interfaces of the
component. The output interfaces of component describe
the requests of the outside environment, when the
component completes a function, it may need other
components to provide some help.

In component, the operation is complete certain
function, and it can be defined as:

Definition 12 An operation t is a 5-tuple t = <S, D, R,
PR(X), PO(X,Y)>, where:

S is the syntax of the operation t, and Y = t(X). X is the
input vectors of the operation t, and Y is the output
vectors of the operation t; X = (x1, x2, ..., xm), Y = (y1,
y2, ..., yn). D = D1×D2×...×Dm is the domain of the input
vectors, xi∈Di (1≤i≤m). R = R1×R2×...×Rn is the range of
the output vector, yj ∈Rj (1≤j≤n). Di, Rj is a legal data
type. PR (X) is called pre-assertion; PO (X, Y) is called
post-assertion. Satisfy the PR(X) of the input vector X is
called the legitimate input. For legal input X, to meet the
PO (X, Y) as the legitimate output of the output vector Y
[10].

From the definition, the implementation of the
operation t needs certain conditions, when the conditions
are met, the related operations are implemented.

B. Modeling the Components
The transitions in an OR-transition colored Petri net

can be used to model the operations of the components
defined above, therefore, it is straight-forward to map a
software component into an OR-Transition colored Petri
net. In components, the operations are modeled by
transitions of the OR-Transition colored Petri net and the
states of the software components are modeled by places

of the OR-Transition colored Petri net. The arrows
between places and transitions are used to specify causal
relations in the software components. And based-on
ORCPN, we can present component-net (CN for short) to
model software component.

Definition 13 A component-net C-net (CN) is a 9-
tuple, CN = <P, T, F, S, AP, AT, AF, IP, OP>, it is
extended from a colored Petri net, where:

1) ORCPN = <P, T, F, S, AP, AT, AF> is a or-transition
colored Petri net;

2) P is a finite set of places, and it presents the states of
component;

3) T is a finite set of transitions, and it presents the
operations of component;

4) F⊆P×T U T×P is an arc set, it describes the
constraint relations between states and operations in the
component;

5) S is a non-empty finite set; it describes the data
types of component C;

6) AT(t) presents input vectors, which can be accepted
by operation t;

7) IP, OP(⊆P) are called the input interfaces and
output interfaces of the component, and ∀ip∈ IP, ˙ip=∅;
∀op∈OP, op˙=∅.

In a component net CN = <P, T, F, S, AP, AT, AF, IP,
OP>:

The places P\(IPUOP) present the internal states of a
component;

Transitions T present the various operations of
component;

Color-set S presents the data types of a component.
The dynamic characteristics of a software component

can be described by the component system defined as
follows:

Definition 14 A component system (CS for short) is a
10-tuple, CS=<P, T, F, S, AP, AT, AF, IP, OP, M>, where:

1) CN = <P, T, F, S, AP, AT, AF, IP, OP> is a
component net, called the base net of the component
system;

2) M: P→SMS is a marks set of a component system
and it meet the following relationship:

a) ∀p∈P: M(p)∈(AP(p))MS;
b) M0 is the initial mark of a component system.

V. AN EXAMPLE

A component CN = <P, T, F, S, AP, AT, AF, IP, OP>,
where:

P = {p1, p2, p3, ip1, ip2, ip3, op1, op2, op3};
T = {t1, t2, t3, t4, t5};
F ={<ip1, t5>, <ip2, t1>, <ip3, t2>, <p1, t1>, <p1, t2>, <p2,

t3>, <p3, t4>, <t5, op1>, <t1, p2>, <t2, p3>, <t3, p1>, <t3,
op2>, <t4, p1>, <t4, op3>};

S ={a1, a2, a3, a4, b1, b2, b6, b7, d2, f2, u2};
AP: {AP(ip1) = {a1, b1}, AP(ip2) = a3, AP(ip3) = b6,

AP(p1) = f2, AP(p2) = d2, AP(p3) = u2, AP(op1) = {a2, b2},
AP(op2) = a4, AP(op3) = b1};

AT: {AT(t1) = a3+f2, AT(t2) = b6+f2, AT(t3) = d2, AT(t4) =
u2, AT(t5) = a1+b1};

2198 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

AF: {AF(<ip1, t5>) = a1+b1; AF(<ip2, t1>) = a3; AF(<ip3,
t2>) = b6; AF(<p1, t1>) = f2; AF(<p1, t2>) = f2; AF(<p2, t3>)
= d2; AF(<p3, t4>) = u2; AF(<t5, op1>) = a2+b2; AF(<t1, p2>)
= d2; AF(<t2, p3>) = u2; AF(<t3, p1>) = f2; AF(<t3, op2>) =
a4; AF(<t4, p1>) = f2; AF(<t4, op3>) = b1};

IP = {ip1, ip2, ip3};
OP = {op1, op2, op3 }.
An example of a component shown in Figure 1:

Figure 1. An example of a component

V. CONCLUSION

Component-based software engineering (CBSE) is an
important branch of software engineering. In component-
based software engineering, components are the special
status of the software system. Large complex software
systems are composed of many software components.
Building software systems from reusable software
components has long been a goal of software engineers.

In order to describe the software components
effectively, an approach is presented to model
components. First, the concept and characteristics of
components are given. Second, the definition of OR-
transition Colored Petri Net is given. In according to the
properties of software components and OR-transition
Colored Petri Net, The transitions in an OR-transition
colored Petri net can be used to model the operations of
the components defined above, therefore, it is straight-
forward to map a software component into an OR-
Transition colored Petri net. So based on OR-transition
Colored Petri Net, an approach is put forward to
modeling the software components formally.

ACKNOWLEDGMENT

This work has been supported by the National Science
Foundation of China under Grant No. 60963007, by the
Science Foundation of Yunnan Province, China under
Grant No. 2007F008M, the Key Subject Foundation of
School of Software of Yunnan University and the Open
Foundation of Key Laboratory in Software Engineering
of Yunnan Province under Grant No. 2010KS01, the
promotion program for youth key teachers of Yunnan
university No.21132014, by the Science Foundation of
Yunnan Province Education Department No. 09J0037
and Yunnan University, China under Grant No.
ynuy200920.

REFERENCES

[1] Firesmith D., Eykholt E, Dictionary of Object Technology,
SIGS Reference Library, 1995.

[2] Nierstrasz O., Dami L, Component-Oriented Software
Technology, Object-Oriented Software Composition,
Prentice Hall, 1995.

[3] Sametinger J, Software Engineering with Reusable
Component”, Springer-Verlag, 1997.

[4] B. W. Weide and J. E. Hollingsworth, ``Scalability of reuse
technology to larege systems requires local certifiability,''
in Proceedings of the Fifth Annual Workshop on Software
Reuse , 1992.

[5] Talor R N, Medvidovic N, Anderson K M etal, “A
component- and message-based architectural style for GUI
software”, IEEE Transactions on Software Engineering,
1996, 22(6):390-406.

[6] Shaw M, Garlan D, Software architecture: Perspectives on
an emerging discipline. Prentice Hall， Inc.，Simon &
Schuster Beijing Office, Tsinghua University Press，1996.

[7] Yong Yu, Tong Li, Qing Liu, Fei Dai, Na Zhao, “OR-
Transition Colored Petri Net and its Application in
Modeling Software System”, Proceedings of 2009
International Workshop on Knowledge Discovery and Data
Mining. January 2009, Moscow, Russia, 15-18

[8] Wang Zhi jian, Fei Yu kuai, Lou Yuan qing, The
technology and application of software component, Beijing:
Science Press, 2005.

[9] Clements P C, Weiderman N, Report on the 2nd
international workshop on development and evolution of
software architectures for Product families, Technique
Report, CMU/SEI-98-SR-003, Carnegie Mellon University,
1998.

[10] Tong Li, An Approach to Modelling Software Evolution
Processes, Springer-Verlag, Berlin, 2008.

[11] W. Reisig, Petri Nets: An Introduction, Springer-Verlag,
Berlin, 1985.

Yong Yu, born in 1980, Ph. D. Currently
lecturer in the School of Software,
Yunnan University, Kunming, China.
Received his Bachelor, Master and
Doctor degrees from Yunnan University
in 2002, 2006 and 2009 respectively. His
main research interests include software
engineering and information security.

op2

op1 ip1

ip2

ip3

op3

d2

a3+f2

b3+f2

u2

a1+b1 a1+b1

a3

b6

f2 f2

f2 f2

d2

u2

a2+b2

d2

u2

a4

b1

t5

t1

t3

t4

t2

p2

p1

p3

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2199

© 2011 ACADEMY PUBLISHER

Tong Li, born in 1963, Ph. D. Professor. Ph.D. supervisor in the
School of Software, Yunnan University, Kunming, China. His
main research interests include software engineering and
software methodologies.
Qing Liu, born in 1963. Currently professor in the School of
Software, Yunnan University, Kunming, China. His main
research interests include software engineering and software
methodologies.
Fei Dai, born in 1982, Ph.D. candidate in the School of
Software, Yunnan University, Kunming, China. Received
his Bachelor and Master degrees from Yunnan University
in 2005 and 2008 respectively. His main research
interests include software engineering and software
process.

2200 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

