
A Component Assembly Approach to Support
Human-computer Interface Construction

Qingtao Wu

Electronic and Information Engineering College, Henan University of Science and Technology, Luoyang , China
Email: wqt8921@126.com

Mingchuan Zhang, Ruijuan Zheng and Wangyang Wei

Electronic and Information Engineering College, Henan University of Science and Technology, Luoyang , China
Email: {zhlzmc, rjwo, weiwangyang}@163.com

Abstract—A good design of human-computer interface can
make the communication more effective, more easily and less
mistaking guidance for users. In order to realize the rapid
construction and dynamic reconfiguration of human-computer
interface, a rapid developing model based on component
assembly was proposed recurring to an assistant design tool
developed self-owned, as well as the assembly models of
domain component and interface components. In the rapid
construction model, the scheduling component cooperated with
configure file to achieve the established functions. In the
meantime, the interface switching were realized by event
handler, rule handler, interface forming handler and
addressing handler through cooperating with configure file
that was acquired by assistant design tool. Finally, the example
of system realization showed that the rapid construction
method was feasible.

Index Terms— Distributed System, Human-computer Inerface,
Domain Component, Interface Component, Component
Assembly

I. INTRODUCTION
With the development of computer technology, users have
higher expectations for computer system, especially to the
human-computer interactive system. Not only do users
require that the human-computer interactive interfaces(HCII)
are beautiful, easy to use, response sensitive, but also it can
be constructed rapidly and configured dynamically.

Recent years, the dynamic reconfiguration problems are
paid attention to by more and more researchers in distributed
system. Remote dynamic component configuration is
discussed, which greatly improves system flexibility using
configuration files[1]. The dynamic deployment and re-
configuration of pervasive service components in a self-
controlled manner are researched. In particular, a service
component self-deployment algorithm using partitioning
techniques and a simple service re-configuration algorithm
are proposed and evaluated. The effectiveness of the
proposed mechanisms is proved by the experiment results [2].

A new method of QoS-aware and dynamic configuration
for Web services composition is presented to improve the

adaptive capacity to both the QoS variability of component
services and the failure-prone environment [3]. There are
two topics which are researched in reference [4]. First, it
describes optimizations applied to an implementation of the
OMG’s Deployment and Configuration of Components
specification that enable performance trade-offs between
QoS aspects of DRE systems. Second, it compares the
performance of several dynamic and static configuration
mechanisms to help guide the selection of suitable
configuration mechanisms based on specific DRE system
requirements. Two methods of dynamic reconfiguration are
introduced. First, using configuration file, this method
belongs to static configuration ways. Second, utilizing
configuration operation in the program, this method belongs
to dynamic reconfiguration ways, which can adapt to some
configuration situations that can't be estimated in advance.
The software architecture supporting dynamic
reconfiguration is studied in reference [5]. It is solved with
the graph-oriented programming method, which realizes
dynamic reconfiguration and the description of software
architecture based on components in the uniform way.
Certain problems of components dynamic reconfiguration
are researched in references [3-5], and some achievements
are got. However, there are some difficulties in practical
application. Furthermore, systemic fault-tolerant has not
been considered. Component frameworks provide the
strategy for the development and deployment of complex
multiphysics applications to satisfy the need [6]. In order to
build dynamically adaptable applications, the service-
oriented component models supporting the dynamic
availability of components at run-time are researched as well
as offering the possibility in reference [7]. A new component
replacement analysis method to solve asset replacement
problems for complex electricity distribution systems is
developed[8].

By using the Plug in tool of the creator and language of
Open Flight API in the Visual C++ compiler environment,
components could be added into. The component modeling
method is applied to engineering project to acquire the
certain application value[9]. The predictable component
technology and the COMTEK-λ technology are analyzed and

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2189

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.11.2189-2195

an example of PECT is given, which used CIMTEK
technology and end-to-end delay of the delay predication
model[10]. In the process of the development of a federation
complied with Federation Development and Execution
Process, there is a new pattern of the development of the
federation, which is developed not on the base of a federate,
but on the base of simulation model component. The
technique of the composing of simulation model components
is important to construct simulation system[11].

The human factors in the design of process control
systems are argued and two types of human-machine
interfaces are distinguished[12]. Reference [13] deals with a
screen-based ecological interface designed to support the
operators' work in a medium voltage electricity distribution
control room. More specifically, the focus is placed on how
the designed interface supports operators in skill-, rule-, or
knowledge-based behavior, as well as in the transition
between the three levels of behavior. However, the
construction method of human-computer interface based on
component assembly is researched scarcely because of the
complexity and variability.

This paper considers rapid construction and dynamic
reconfiguration for HCII. A series of methods are presented
to realize the rapid construction for HCII based on domain
component and its assembly.

II. COMPONENT ASSEMBLYAND DOMAIN COMPONENT

A. The concept of component assembly
The component assembly is one of the key technologies in

the field of software component. It can be expressed as in
formula (1)[14].

application = components + composition language (1)

Over here, composition language(CL) can be expressed as

in formula (2).

CL = composition operators + glue logic (2)

The component assembly is a process that adopts certain

composition language to realize glue logic and assembles
components into a system or advanced components
according to composition operators. The components that are
used to assembly are called elementary components. The
component produced is called composite component. The
complex component produced is a software system.

B. Domain component
1) Domain component
The domain component is the component that is restricted

by special domain. That is to say, the domain component is
the component that applies in the special domain. The
domain component has further restriction than ordinary
component, but it has further certainty, which is exhibited as
follows.
• Component granularity: it is determined by the

Property of correlative business logic in the special
domain.

• Component environment: it is more simplex and steady
than the component environment of ordinary
component.

• Business logic: it is more canonical and standard than
the business logic of ordinary component.

2) Domain application framework
For a special domain, system requirements have

consequentially the commonness which is described by
domain model. Domain specific software architecture
(DSSA) proposes the resolvent aiming to the domain model.
DSSA is a high level architecture that adapts the various
system requirements in special domain. It includes
components and their assembly rules. The components are
divided into business components and framework
components. Domain application framework(DAF) that is an
instantiation of DSSA images the architecture of software
system family and provides the basic construction mode to
establish the software architecture.

The assembly process that the application is constructed
through assembling DAF and business components is
shown as in figure 1. When a certain system is developed,
the DAF is realized by framework component which is
simply called framework to differ from business component.
The DAF based on component has three properties which
are shown as follows.
• The DAF aims at the special domain.
• The DAF is an instantiation of DSSA.
• The DAF consists of a group of concurrent components.

C

C C
Interface

C

C

C

Main framework

Glue code

framework

Figure 1. the model of component assembly

III. ASSEMBLY MODEL OF INTERFACE COMPONENT
Not all interface components can be assembled directly to

form a target system. The components that can be assembled
should satisfy the special restriction. Moreover, the software
development process that utilizes component assembly to
construct target system differs from the ordinary software
development process[15].

A. The criterion of interface component assembly
Generally, the operator of component assembly can be

divided into two stages. One is to design, develop and
describe the components that possess assembled property.
The other is to assemble components according to actual

2190 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

requirement. In order to realize assembly, the criterions
should be followed.
• The frameworks need to match with runtime

environment, while components need to match with
frameworks.

• If the frameworks do not match the runtime
environment, the matching can be achieved by glue
codes which are used to framework.

• If the main frameworks match with main frameworks,
the interfaces and platform need to be matched.

• When establishing criterion of component assembly for
special domain, enumerating method is supposed to act
as the preferred method.

B. The assembly modle of interface component
The assembly process of interface component is a process

that the assembly system selects components. The core
operator is the matching of frameworks and frameworks (or
business components). The assembly system selects a
framework acting as the main framework according to the
special requirement. The main framework selects one or
more frameworks or business components according to
business logic. If business components are selected, the
matching process finishes for this matching branch. If
frameworks are selected, the matching process continues
until all branches match business components.

There is at least a framework that is called main
framework for one application. The main framework denotes
the business logic relation of the application. The business
components and frameworks are assembled by the main
framework to realize the application business logic. The
assembly model of components and frameworks is shown as
Figure 2. Because the main framework is the first entity
assembled and the function of other components is to
cooperate with the main framework, its actual function is a
component vector. The conclusions can be achieved from
figure 2.
• Business components can only be assembled to

frameworks, but can not be assembled to business
components.

• Frameworks can be assembled to other frameworks.
That is to say, simple business logic combines with
other business logic to gain complicated business logic.

• The workflow of application is determined by the
frameworks. The main framework calls frameworks
and business components. The higher frameworks call
lower framework and business components. The
system function is realized by iterative. The calling
flow can be reversed.

• The converting, mapping and gulling for in-matching
interfaces are done by frameworks.

• An application includes at least a main framework that
realizes special business logic through assembling sub-
framework and business components.

• The main framework is the first component assembled.
It expresses the runtime environment and is the vectors
of all business components actually.

Framework Framework Component Component……

…

…

…

…

Framework Framework…

…

…

Component Component…

 System Platform

Main Framework

Figure 2. The assembly modle of interface component

IV. THE RAPID DEVELOPING MODEL OF HCII

A. The design flow of HCII
Generally, the traditional design flow of HCII is divided

into requirement analysis, system analysis, interface design
analysis, interface style selecting, interface portions dividing,
interface portions implementing and system testing. In the
design process, the interface design criterion that is needed
by the customers or target system should be consulted. The
design flow of HCII based on domain component assembly
has some difference. It is divided into requirement analysis,
system analysis, interface component dividing, interface
component selecting and system testing. If the interface
component selected is nonexistent, it needs to be developed.
The traditional design flow and the design flow based on
domain component assembly are shown as in figure 3.

requirement analysis

system analysis

interface design analysis

interface style selecting

interface portions dividing

interface portions implementing

system testing

requirement analysis

system analysis

interface component
dividing

interface component
selecting

system testing

interface component
developing for inexistence

Figure 3. The design flow of HCII

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2191

© 2011 ACADEMY PUBLISHER

B. Assistant design tool
In the design process of HCII based on domain component,

the components need to be made certain to construct target
system after requirement analysis. However, the construction
process that utilizes interface components to construct target
system is very complex. Therefore, an assistant design tool is
developed independently to assist the interface design of
HCII. The functions and operation methods are introduced as
follows.

1) The functions of assistant design tool
• Interface component query: the queries results include

the description and display snapshot(vectorgraph or
photograph) of inter face components.

• The snapshot design for new interface components: if
an interface component which is absent is selected, its
simple snapshot should be designed by assistant design
tool to continue the design process of HCII.

• Interface organizing: the final interface style is
organized through assembling organically all snapshots
of interface components selected.

• Dynamic displaying of final interface: the final
interface style is displayed to be made certain by
designer or customers.

• Saving design results: the design results are saved to
provide to programming.

2) The operation methods of assistant design tool
Two operation methods are introduced in this section. One

is to put snapshots of interface component into snapshots
library. The other is to assist designer to develop HCII. The
operation flows are shown as in figure 4 and figure 5.

component interface
component?

compone
nt library

interface component

interface
component
snapshots

1...n

banding interface component and its snapshotsnapshots
library

N

Y

Figure 4. The operation flow of putting the snapshot into library

interface
organization

interface
snapshots customization

display

affirmation

design result filecomponent
assembly

interface
organization

……

……

iteration

repetition

in
te

rf
ac

e
fr

am
ew

or
k

ar
ch

ite
ct

ur
e

Figure 5. The operation flow of assisting deisgner

C. The developing model of HCII
The human-computer interactive system can be developed

rapidly recurring to the assistant design tool. Each
component in the component library has its snapshot which
can be used directly to build the interface snapshot of the
target system. For the components nonexistent in component
library, the interface snapshot can be designed by the
assistant design tool.

When designing a HCII, the snapshot of human-computer
interface is gained recurring to the assistant design tool, as
well as the design result file. The target system can be build
based on the file. The developing model is shown as Figure 6
and the developing steps are shown as follows.
• Determining components: abstracting the requirement

and determining system framework model to gain the
components which build the target system based on the
requirement analysis.

• Determining the flow of interface switching: analyzing
application workflow to gain the flow of interface
switching.

• Gain designing result: generating interface designing
result file which includes the ID of framework, the ID
of business component, the ID of the component
needing developing and interface switching
information based on the step one and step two.

• Component developing: developing the new
components whose ID is generated in step three and
putting them into the component library.

• Component assembly: assembling the various
components to gain target system according to the
design result file which is generated in step three.

• Assembly testing: testing the target system, if the target
system satisfies the need, the designing process is
accomplished. If not, the process will be iterative.

Interface

com ponent
Interface

switching flow
Designing result

file

C
om

po
ne

nt
 d

ev
el

op
in

g

Com ponent
assem bly

Assem bly
testing

Target
system

Interface
com ponent

searching

Com ponent library

Figure 6. the rapid developing model of HCIS

V. THE CONSTRUCTION OF DISTRIBUTED HCII

A. System deployment
The system deployment is done by deployment

programmer. When constructing a distributed human-
computer interface, the deployment programmer deploys the
interface components, scheduling components, frameworks

2192 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

and configure file for each node according to the design
results files which are generated by assistant design tool.
Each node has a scheduling component, a configure file,
several frameworks and several interface components. The
scheduling component and configure file are the core of each
node. The scheduling component realizes the business logic
through scheduling frameworks and interface components
according to configure file. The deployment model is shown
as in figure 7.

1) Scheduling component
The interface scheduling process is illustrated using

example of node 1 as follows. According to requirements,
the operator of node 1 does an action which is called an
event. This event affects possibly the interior or exterior of
component generating event. If the effect is inner, the
component generating event deals with the event by self. If
the effect is outer, the scheduling component forms a new
frame interface according to the rules which is generated by
assistant design tool and described in configure file.

2) Configure file
The configure file that determines the interface switching

is generated by assistant design tool. It includes the event id,
interface form, component id, component memory address,
framework id, framework memory address, interface
switching flow, etc.

3) Frameworks
The frameworks refer to all the frameworks deployed in

the certain node.
4) Interface components
The interface components refer to all the interface

components deployed in the certain node.

interface components

scheduling component

configure file

frameworks

node 1

interface components

scheduling component

configure file

frameworks

node Nnode …
……

deployment
programme

Figure 7. The deployment model of HCII

B. System running
When the system is running, each node works normally

according to the user’s operation and the switching flow
determined by configure file. The interface switching is
taken charge by scheduling component which includes event
handler, rule handler, interface forming handler and
addressing handler. The flow chart of scheduling component
is shown as in figure 8.

begin

initialization

event handling

inner handling

inner event?

unloading interface
components

framework change?

unloading frameworks

addressing handling

loading frameworks

loading interface components

unloading interface
components

components
change?

end

rule handling

loading interface
components

YN

Y N

Y

N

Figure 8. The flow chart of scheduling component

1) Event handler
The event handler monitors whether there are events

produced or not. If there are events produced, the event
whose PRI is highest is resolved according to event library
that is record in configure file. The results resolved such as
event id, corresponding rule id are sent to rule handler.

2) Rule handler
When receiving a rule id, the rule handler resolves the rule

to generate components lists and their assembly relationship
according to rule library which is record in configure file.

3) Interface forming handler
The interface forming handler forms the display interface

according to the components lists and their assembly
relationship that are generated by rule handler.

4) Addressing handler
When forming the final display interface, the memory

addresses of components are made sure by addressing
handler to load components.

VI. AN EXAMPLE OF SYSTEM REALIZATION
The architecture of example is made up of Information

Process System, Application System, Data-Command
Agency and Human-computer Interactive System. The
software platform is CORBA. Among them, the Information
Process System produces and processes the simulation
necessary data. The Data-Command Agency manages the
data and command uniformly. The architecture is shown as
in figure 9.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2193

© 2011 ACADEMY PUBLISHER

Main framework

Assembly tool

Application system

Framework Framework…

Interface
components

Interface
components…

CORBA

In
fo

rm
at

io
n

pr
oc

es
s s

ys
te

m

Scheduling framework

Assembly tool
Human-computer interactive system

Display
framework

…

GUI GUI …

Display
framework

Data-command agency

GUI GUI…

Figure 9. the architecture of example

The scheduling model of the Human-computer Interactive
System is determined according to the configure file which is
generated recurring to the assistant design tool. In the model,
the nodes cooperate with other nodes to accomplish the
scheduling business logic. The event handler receives events,
processing them and sending them to rule handler according
to the event library. The rule handler receives and processes
rules to generate interface forming information. When
scheduling happens, the memory addresses of components
are made sure by addressing handler to load components and
accomplish interface switching. The scheduling model is
shown as Figure10.

event manager

event library

rule library rule manager

component library

event handler

rule handler
adressing
handler
interface

forming handler

interface component

command
processor

data
processor

human-computer interfacenode 1…N
Figure 10. the scheduling model

VII. CONCLUSION
Three achievements are acquired in this paper. First, the

assembly models of domain component and interface
component are presented which is the base for further
research. Second, the rapid construction model and method
of distributed human-computer interface are proposed
recurring to an assistant design tool developed self-owned, as
well as the functions and operation methods of the tool are
introduced. Third, the feasibility of the rapid construction
model is proved by the example of system realization.

There are still some problems remained to study such as
the granularity division of the interface components, the
mathematic model of effect evaluating of scheduling and
composition of interface components, which will be
researched in the future work .

ACKNOWLEDGMENT
The financial support from the National Natural Science

Foundation of China (NSFC) under grant No. 61003035 and
Henan Natural Science Foundation of China under grant No.
072300410210 is acknowledged gratefully.

REFERENCES
[1] Lu, Liu; Zongyong, Li; Ruibo, Li. “Improving information system

flexibility through remote dynamic component configuration”.
International Conference on Service Systems and Service
Management(ICSSSM 06). Oct.2006, pp. 461-466.

[2] Ou, Shumao; Liu, Dongsheng; Yang, Kun. “Dynamic algorithms for
self-deployment and self-configuration of pervasive service
components”. Intelligent and Software Intensive Systems (CISIS 09)
IEEE Press, Mar. 2009, pp. 525-530.

[3] Yang, Huaizhou, Li Zengzhi. “Research on QoS-aware and dynamic
configuration of web services composition system,” Journal of Xi'an
Jiaotong University, vol. 44, Feb.2010, pp.25-30.

[4] Venkita Subramonian, Gan Deng, Christopher Gill. “The design and
performance of component middleware for QoS-enabled deployment
and configuration of DRE systems,” Journal of Systems and Software,
Vol.80, May 2007, pp.668-677.

[5] Wu Haomin, Cao Min. “Description of Software Architecture
Supporting Dynamic Reconfiguration and Abstract Programming”.
Computer Engineering & Applications. Oct 2004, pp.94-98.

[6] Brandt Steven, Allen Gabrielle, Eastman Matthew. “Dynamic
deployment of a component framework with the Ubiqis system,”
International Conference on the Applications of Digital Information
and Web Technologies(ICADIWT 09), Aug.2009, pp.68-74.

[7] Lazar, I. Parv, B. Motogna, S. “A platform independent component
model for dynamic execution environments,” the 10th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC 08), Sep.2008, pp 257-264.

[8] Espiritu Jose F, Coit David W. “Component replacement analysis for
complex electricity distribution configurations,” IIE Annual
Conference and Expo 2008, May.2008, pp.170-175.

[9] Jiaoyan Wang, Fengju Kang, Minghao Liu. “The Technology for
Rebuilding 3D Models by Components,” Computer Simulation, vol
26, Oct.2009,pp.252-255(in Chinese).

[10] Fang Yu, Gui-lan Shen, Xie Huang. “Software components assembly
based on predictability,” Computer Engineering and Desing, vol 29,
Nov. 2008, pp.2970-2972(in Chinese).

[11] Chun-guang PENG, Jian-xing Gong, Ke-di Huang. “Research of
Simulation Model Component Assembler Based on BOM,” Journal
of System Simulation, vol 20, Dec. 2008, pp. 3175-3178(in Chinese).

2194 JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011

© 2011 ACADEMY PUBLISHER

[12] Friedhelm Nachreiner, Peter Nickel, Inga Meyer. “Human factors in
process control systems: The design of human-machine interfaces,
Safety Science,” Volume 44, Issue 1, Safety and Design, January
2006, pp.5-26.

[13] Sotiria Drivalou, Nicolas Marmaras. “Supporting skill-, rule-, and
knowledge-based behaviour through an ecological interface: An
industry-scale application,” International Journal of Industrial
Ergonomics, Volume 39, Issue 6, November 2009, pp.947-965.

[14] Naiyana Tansalark, T.Claypool. “XCompose: An XML-Based
Component Composition Framework,” http:// www.cs.iastate.
edu/~lumpe/wcl2003/camera/naiyana.tansalarak.pdf.

[15] Ming-chuan Zhang, Hong-yi Wang, Shi-bao Sun. Research on
Assembly and Fault-tolerant of Interface Component in Distributed
Human-computer Interactive System,” The Third International
Symposium Computer Science and Computational
Technology(ISCSCT 2010), Aug.2010, pp.417-421.

JOURNAL OF SOFTWARE, VOL. 6, NO. 11, NOVEMBER 2011 2195

© 2011 ACADEMY PUBLISHER

