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Abstract—To meet the needs in low-bandwidth 
communication, low-storage and less computation 
environments, a new technique is introduced to construct 
short signature in the standard model. The new short 
signature scheme is constructed based on the bilinear 
pairing and has short public parameters. In addition, the 
size of the signature achieves 160 bits. Under the n-
Exponent Computational Diffie-Hellman Problem(n-CDH), 
the new scheme is provable security. Finally, we also give 
the application of the new scheme by constructing the short 
identity-based signature and threshold signatures. 
 
Index Terms—Short signature, threshold signature, identity-
based signature, n-CDH, random oracle, the standard model, 
provable security. 
 

I.  INTRODUCTION 

Short signature schemes are needed in environments 
with space and bandwidth constraints. There are going to 
be a lot of devices exchanging messages with each other 
in these environments, e.g., PDAs, cell phones, RFID 
chips, sensor networks and vehicle-2-vehicle 
communications [1, 2]. For these systems to work 
properly, messages must carry some form of 
authentication, but the system requirements on the 
authentication are particularly demanding. 

A.  Related works 
Short signature is an  active research area. As 

mentioned in [3,4], there are two paradigms of shortening 
signatures at present. 

⋅ Shorten the total length of a signature and the 
corresponding message. In such schemes[5,6], one 
encodes a part of the messageinto the signature thus 
shortening the total length of themessage-signature pair. 

For long messages, one can then achieve aDSA signature 
overhead of length of 160 bits. 

  ⋅  Shorten the signature directly. This technique is 
to shorten the signature directly while preserving the 
same level of security. Boneh, Lynn and Shacham [7] 
used a totally new approach to design such  short digital 
signatures in 2001. Their scheme is based on the 
Computational Diffie-Hellman (CDH) assumption on 
elliptic curves with low embedding degree. A number of 
desirable schemes were proposed at present. 

  Currently, provable security is the basic 
requirement for the public key cryptosystem. The 
provably secure short signature schemes are based on two 
security model. One is the random oracles model. The 
other is standard model. Most of practical efficient 
schemes are provable secure in the random oracles 
model. Random oracle model is a formal model at 
present, where a hash function is considered as a black-
box that contains a random function. However, many 
results have shown that security in the random oracle 
model does not imply the security in the real world. 
Security in the standard model usually provides a higher 
security level than security in the random oracle model. 
Gennaro, Halevi and Rabin [8] firstly proposed practical 
secure signature schemes under the strong RSA 
assumption in the standard model. In 2004, Boneh and 
Boyen [9] proposed a short signature scheme from 
bilinear groups which is secure under the Strong Diffie- 
Hellman assumption without using random oracles. Later, 
Zhang F. et a [4], Wei and Yuen  [10] also proposed 
some short signature schemes in the standard model. 
However, it is also true that schemes providing security 
in the random oracle model are usually more efficient 
than schemes secure in the standard model. Table 1 gives 
a summary of signature size of the different schemes.  

In Table 1, RO and SM denote the random oracle 
model and standard model respectively. Size is the 
signature size. 
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B.  Related works 
We construct a new short signature in the standard 

model from the bilinear pairing. The size of new 
signature achieves 160 bits, which is shorter than others 
at present. The security of our scheme depends on the n-
CDH assumption. Another contribution is the 
applications of new scheme. We construct the short 
identity-based signature and threshold signatures, by the 
same technique, thus testing the applicability of our 
scheme. 

II.  PRELIMINARIES 

A. Bilinear Pairing 
G  and 1G are cyclic groups of order N. A bilinear map e 
is a map 1:e G G G× →  with the following properties:  

(i) Bilinearity: for all ,u v ∈ G ,  a, b∈ NZ , we have    
( , )a be u v = ( , )abe u v ; 

(ii) Non-degeneracy: ∃ g G∈ such that ( , ) 1e g g ≠ . 
(iii) Computability: there is an efficient algorithm to 

compute ( , )e u v  for all ,u v ∈ G . 

B. Hardness Assumption  
Security of our scheme will be reduced to the 

hardness of the n-CDH problem in the group. We briefly 
recall the definition of the n-CDH problem: 

Definition 1 (n-Exponent Computational Diffie-
Hellman Problem) Given a group G of prime order p with 

generator g and elements gα , 
2

gα , , 
n

gα G∈ , where 
α  is selected uniformly at random from pZ and n ≥  1, 

the n-CDH problem in G is to compute 
1n

gα +

. 
Note that it was shown in [11] that n-CDH problem 

is equivalent to CDH problem for n=1. 
Definition 2 We say that the (t, ε ) n-CDH 

assumption holds in a group G, if no adversary running in 
time at most t can solve the n-CDH problem in G with 
probability at least ε . 

C. Security Definition 
A signature scheme is made up of three algorithms, 

KeyGen, Sign, and Verify, for generating keys, signing, 
and verifying signatures, respectively. 

 The standard notion of security for a signature 
scheme is called existential unforgeability under a chosen 
message attack [12-18], which is defined using  

 

 
 
 
 
 
 
 
 
 
 

the following game between a challenger and an 
adversary A: 

Setup The challenger runs algorithm KeyGen to 
obtain a public key PK and a private key SK. The 
adversary A is given PK. 

Queries Proceeding adaptively, A requests 
signatures on at most sq  messages of his choice 1M , , 

sqM ∈  {0, 1}, under PK. The challenger responds to 

each query with a signature ( , )i iSign M SKσ = . 
Forgery  A outputs a pair (M, σ ) and wins the 

game if  
(1) M is not any of ( 1M , , 

sqM ); 

(2) Verify(PK, M, σ )=Valid. 

We will use a weaker notion of security which we 
call existential unforgeability under a weak chosen 
message attack. Here we require that the adversary 
submit all signature queries before seeing the public key. 
This notion is defined using the following game between 
a challenger and an adversary A:  

Query  A sends the challenger a list of sq  messages  

1M , , 
sqM ∈ {0, 1}, where iq  is one of the following: 

Response: The challenger runs algorithm KeyGen to 
generate a public key PK and private key SK. Next, the 
challenger generates signatures ( , )i iSign M SKσ = . The 
challenger then gives A the public key PK and  signatures 

iσ . 
Forgery: Algorithm A outputs a pair 

$(M,\sigma)$ and wins the game if 
(1) M is not any of ( 1M , , 

sqM ); 
(2) Verify(PK, M, σ )=Valid. 

 
Definition 3  A signature scheme is (t, ε ) existentially 

unforgeable under a weak adaptive chosen message 
attack if  no probabilistic polynomial time(running in 
time at most t) adversary has a non-negligible advantage 
ε  in the above game. 

III.  NEW SHORT SIGNATURE FROM THE BILINEAR PAIRING 

In this section, we describe our schemes as follows: 

A.  Initial Construction 
KeyGen Let G be a group of prime order p and  g be 

a random generator of G. Pick α , 1, , nα α  ,  

TABLE I. 
SIGNATURE SIZE OF DIFFERENT SCHEMES 

Scheme [3] [6] [7] [11] [13] [14] [4] [9] [10] [15] 

Model RO RO RO RO RO RO SM SM SM SM 

Size 160 160 160 160 160 320 320 320 320 320 
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1, , nβ β , from pZ at random. Set 1g gα= . Then 

choose 2g  randomly   in G. The public key is  
PK=(g, 1g , 2g ). 

 The private key is 
SK=(α , 1, , nα α  ,  1, , nβ β ). 

Note: We omit the public keys corresponding to 
1, , nα α  ,  1, , nβ β  since they are not used at the 

phase of Verify. 
Sign Message is represented as bit-strings of length 

n. Let 1( , , )nM m m= be a n-bit message to be signed, 
where {0,1}im ∈ . Signer first generates the auxiliary 
information parameters as follows: 

 Let 0h g= , then for 1, ,i n= , compute  
1

1( )
m mi i
i i

i ih h α β −

−= . 
Then the signature is computed as 

1 2 2( , ) (( ) , )n ng h hασ σ σ= = . 
Verify Given the signature σ , message M and the 

public keys, verifier accepts the signature if and only if 
the following holds. 

1 1 2 2( , ) ( , )e g e g gσ σ=  
Correctness:  If σ  is  valid, one can obtain  

   

1 2 2 2 1( , ) (( ) , ) ( , ) ( , )n n ne g e g h g e g h g e g h gα ασ = = = .  
 

B.  New Construction 
 

KeyGen  Let G be a group of prime order p and  g 
be a random generator of G. Pick α , 1, , nα α  ,  

1, , nβ β , from pZ at random. Set 1g gα= . Then 

choose 2g  randomly   in G, compute 0 1( , )i
it e g gα=  

and  1 1( , )i
it e g g β= .  The public key is  

PK=(g, 1g , 2g , 0 1,i it t , v ), 
 where 1 2( , )v e g g= . The private key is 

SK=(α , 1, , nα α  ,  1, , nβ β ). 
Sign Message is represented as bit-strings of length 

n. Let 1( , , )nM m m= be a n-bit message to be signed, 
where {0,1}im ∈ . Signer first generates the auxiliary 
information parameters as follows: 

 Let 0h g= , then for 1, ,i n= , compute  
1

1( )
m mi i
i i

i ih h α β −

−= . 
Then the signature is computed as 

2( )ng h ασ = . 
Verify Given the signature σ , message M and the 

public keys, verifier accepts the signature if and only if 
the following holds. 

1

( , )
n

i
i

e g v pσ
=

= ∏ . 

where  

                            0

1

 1
 0

i i
i

i i

t if m
p

t if m
=⎧

= ⎨ =⎩
, 

Correctness:  If σ  is  valid , one can obtain  
                        ( , )e gσ = 2(( ) , )ne g h gα  

= 2( , )ne g h gα  

= 2( , ) ( , )ne g g e h gα α  
= 2 1 1( , ) ( , )ne g g e h g  

=
1

1
1( , )

n m mi i
i iive g g α β −

=∑  

=
1

11
( , )

m mi i
i i

n

i
v e g gα β −

=∏  

=
1

n

i
i

v p
=
∏ .  

C.  Efficiency 
The size of our initial scheme achieves 2 1| |G  which is 

similar with the previous schemes in the standard model. 
But our new scheme has a signature of 160 bits. It is the 
shortest signature in the standard model at present. Table 
2 gives the comprehensive comparison between our 
signature scheme and other  schemes. We assume that all 
these short signature schemes use the GDH group which 
is derived from the curve 

1633

E
F  defined by the equation 

2 3 1y x x= − + . This group provides 1551-bit discrete 
log security. 

Note: In Table 2, we denote by  e a computation of the 
pairing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D.  Security Proof 
We only give a proof of the security of our second 

scheme since the first one can be proved by the similar 
method. 

Theorem If n-CDH assumption holds, then our 
scheme is secure. 

Proof: Assume that there is an adversary A which 
breaks the proposed scheme with advantageε , we then 
show how to build an adversary B that solves the 
decisional n-CDH problem with advantage 

2n
ε . For a 

TABLE II. 
Comparison of Efficiency 

Scheme Hardness Security 
Model 

Signature 
Size Verify 

[4] k+1- 
SRP Standard 320 2e 

[9] q-SDH Standard 320 2e 

Our initial 
scheme n-CDH Standard 320 2e 

Our new 
scheme n-CDH Standard 160 1e 
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generator g G∈ and , pc Zα ∈ , set 
i

iy gα= G∈ . 

Algorithm B is given as input a random tuple (g,  y1, , 
yn). B works by interacting with A  as follows: 

Init A first outputs a message *M =( * *
1 , nm m ) that 

it wants to attack. 
We only give a proof of the security of our second 

scheme since the first one can be proved by the similar 
method. 

Setup To generate the system parameters, B sets 
g1=y1. Then it selects randomly a *

pZγ ∈ and sets  

2
ng y g γ= = 

n

gα γ+ . 

It chooses *, ,i i pa Zα β ∈ for 1 i n≤ ≤  and computes 
 

*

0 * *
1

 0
 1

i
i

i
i

g if m
g

y if m

α⎧ =⎪= ⎨
=⎪⎩

, 

*
1

0 *

 0
 1

i

i

i
i

i

y if m
g

g if m

β

β

⎧ =⎪= ⎨
=⎪⎩

, 

where 1 i n≤ ≤ . It implicitly sets to private key  

( aα ,
*
im

iα α ,
*1 im

iβ α
− , 1 i n≤ ≤ ) 

 and the public key 
PK=(g, 1g , 2g , 0 1,i it t , v ) 

 where 0 1 0( , )i it e g g=  and  1 1 0( , )i it e g g=  for 1 i n≤ ≤  
and 1 2( , )v e g g= . 

Signature Queries  A issues up to q private 
signature queries. Each query qi works as follows:  

Suppose A asks for the signature corresponding to 
an message 1( , , )i i inM m m= . The only restriction is 

that *
iM M≠ . It means that there exists at least an j 

such that *
ij im m≠ .  To respond the query, B first derives 

the auxiliary information parameters as follows: 
 

11 1
1 1

11 1
1 1

*
1 1

1 *
1 1 1

 

 

m mi i

m mi i

i

i

g if m m
h

y if m m

α β

α β

−

−

⎧ ≠⎪′ = ⎨
≠⎪⎩

, 

12 2
2 2

12 2
2 2

12 2
2 2

*1 2 2
* *

2 1 2 2 1 1
* *

2 2 1 12

  
       

 

                                    

m mi i

m mi i

m mi i

i

i i

i i

h if m m
h y if m m m m

if m m m my

α β

α β

α β

−

−

−

⎧ ′ ≠⎪
⎪′ = = ∧ ≠⎨
⎪ = ∧ =⎪⎩

, 

Finally, 0 1( , , , )nH h h h′ ′ ′=  is obtained. For 
simplify, we suppose that k denotes the number of 
positions such that *

ij im m≠ . Then one can obtain 

( )iM
n kh yτ′ = ,  where  1

1

( ) ij ij
n

m m
i j j

j

Mτ α β −

=

=∏ and k n< . 

Finally, B sets  i
i

n

hh
y g γ

′
= and  the signature as 

follows: 
                                  ( )a

nh ασ ′= . 
In fact, one can obtain 

                                    ( )a
nh ασ ′= = ( )an n

n

y g h
y g

γ
α

γ

′
 

                                         = 2( )a
ng h α . 

Thus, B can derive a valid signature for iM . 
          Notice that, from the received inputs, A gets no 

information at all about the *M  chosen by B, thus such a 
choice will be  identical to the challenge message with 

probability 
1
2n . 

        Forgery  Finally, A  outputs a forged signature  *σ  
for  *M . Using this signature, B can give the solution to 
the given the n-CDH problem. In fact, 
        *σ  = 2( )a

ng h α = 2
a a

ng hα α = 1 1 ( )a a a
n ny g hγ α
+ . 

If *σ is valid, then 
*( )M

n kh yτ=  and ( )a
nh α = 

*( )
1

a M
ky τ
+ .  Hence  

1

*

*

1( )
1 1

( )a
na M a

k

y
y gτ γ

σ −

+
+

= . 

Probability Following the above, if A has an 
advantage ε  against our scheme, B will solve the n-CDH 
problem with advantage 

2n
ε . 

IV.  APPLICATIONS 

A.  Identity-based Signature 
In this section, based on the our previous signatures, 

we give an identity based signature scheme in the 
standard model. 

Setup  Let G be a group of prime order p and  g be a 
random generator of G. Pick α , 1, , nα α  ,  1, , nβ β , 

from pZ at random. Set 1g gα= . Then choose 2g , 

0 1, , , tu u u  randomly in G, compute 0 1( , )i
it e g gα=  

and  1 1( , )i
it e g g β= .  The public key is  

PK=(g, 1g , 2g , 0 1,i it t , 0 1, , , tu u u v ), 
 where 1 2( , )v e g g= . The master key is  

Msk=(α , 1, , nα α  ,  1, , nβ β ). 
Keygen  Let 1( , )nID v v=  denote the user's 

identity, where {0,1}iv ∈ . Then the private keys 
corresponding to ID are generated in the following 
manner. PKG first generates the auxiliary information 
parameters as follows: 

Let 0h g= , then for 1, ,i n= , compute  
1

1( )
v vi i
i i

i ih h α β −

−= . 
Then the signature is computed as 
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2( )ID nd g h α= . 
Sign Message is represented as bit-strings of length 

n. Let 1( , , )tM m m= be a t-bit message to be signed, 

where {0,1}im ∈ . Then pick randomly *
pr Z∈  and 

compute the signature as follows: 

         1 2 0
1

( , ) ( ( ) , )i

t
m r r

ID i
i

d u u gσ σ σ
=

= = ∏ . 

Verify Given the signature σ , message M and the 
public keys, verifier accepts the signature if and only if 
the following holds.  

1 0 2
1 1

( , ) ( , )i

n t
m

i i
i i

e g v p e u uσ σ
= =

= ∏ ∏ . 

where  

                            0

1

 1
0

i i
i

i i

t if m
p

t if m
=⎧

= ⎨ =⎩
, 

Correctness:  If σ  is  valid , one can obtain  
 

1( , )e gσ  

= 0
1

( ( ) , )i

t
m r

ID i
i

e d u u g
=
∏  

= 2 0
1

(( ) ( ) , )i

t
m r

n i
i

e g h u u gα

=
∏   

= 2 0
1

(( ) , ) (( ) , )i

t
m r

n i
i

e g h g e u u gα

=
∏  

= 2 1 1( , ) ( , )ne g g e h g 0
1

(( ) , )i

t
m r
i

i

e u u g
=
∏  

=
1

1
1( , )

n m mi i
i iive g g α β −

=∑
0

1

( , )i

t
m r
i

i

e u u g
=
∏  

=
1

11
( , )

m mi i
i i

n

i
v e g gα β −

=∏ 0 2
1

( , )i

t
m
i

i

e u u σ
=
∏  

=
1

n

i
i

v p
=
∏ 0 2

1

( , )i

t
m
i

i

e u u σ
=
∏ .  

Efficiency : The well known identity-based signature in 
the standard model is issued by Paterson[19]. But it's 
signature size is 480 bits. The size of our scheme 
achieves 320 bits. 

Security Analysis 

Theorem  If n-CDH assumption holds, then our 
scheme is secure. 

The proof can be obtained from the previous proof. 

B.  Threshold Signature 
In this paper, we also focus on the short threshold 

signature. To the best of our knowledge, very few works 
have dealt with this problem recently. A (t, n) threshold 
signature is to distribute a secret key and signature 
generation among n parties in order to remove single 
point of failure. The goal is to allow any subset of t or 
more parties to jointly produce a signature while 

preserving security of the system even in the presence of 
an active adversary up to t-1 parties. Threshold signature 
plays an important role not only in cryptographic 
literature but also in practice. Table 3 gives a summary of 
threshold signature size of the different schemes. 

 
 
 
 
 
 
 
 
 
 
 
 
4.2.1 First Construction 

Based on the initial construction, we give a new short 
threshold signature as follows: 

KeyGen Let G be a group of prime order p and  g be 
a random generator of G. Pick α , 1, , nα α  ,  

1, , nβ β , from pZ at random. Set 1g gα= . Then 

choose 2g  randomly   in G, pick up randomly 

1 1, , ta a −  and construct a t-1 degree polynomial 
1

1
( )

t
i

i
i

f x a xα
−

=

= +∑ .  Let iP denote the i th−  signer 

where 1, ,i n= . For 1, ,i n= , compute  ( )f i
iv g= . 

The public key is  
PK=(g, 1g , 2g , ,iv v ), 

 where 1 2( , )v e g g= . And the private key for each signer 

iP  is SK=( ( )f i , 1, , nα α  ,  1, , nβ β ). 
Partial Signing Message is represented as bit-

strings of length n. Let 1( , , )nM m m= be a n-bit 
message to be signed, where {0,1}im ∈ . Signer first 
generates the auxiliary information parameters as follows: 

 Let 0h g= , then for 1, ,i n= , compute  
1

1( )
m mi i
i i

i ih h α β −

−= . 
Then the signature is computed as 

( )
1 2 2( , ) (( ) , )f i

i i i n ng h hσ σ σ= = . 
Threshold Signing Anyone can be designated to 

reconstruct the partial signature. After having received 
the partial signatures, the designated signer first verifies 
the validity of partial signatures. He accepts it if and only 
if the following holds: 

1 2 2( , ) ( , ) ( , )i i i ie g e v g e vσ σ= . 
Let Ω  denote the set of validate users. Then the 

signature is reconstructed as   

1 2( , )σ σ σ= =( 2,iL
i ii

σ σ
∈Ω∏ ), 

where iL  is Lagrange coefficient. 

TABLE III. 
Signature size of the different threshold schemes 

Scheme [20] [21] [22] [24] [25] [26] 

Model RO RO SM SM SM SM 

Size 320 960 320 480 320 320 
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 Verify Given the signature σ , message M  and the 
public keys, verifier accepts the signature if and only if 
the following holds: 

1 1 2( , ) ( , )e g ve gσ σ= . 
Correctness: One can verify easily the correctness of 

partial signature and threshold signature. 

4.2.2  Main Construction 

Based on the above construction, we give a new short 
threshold signature as follows: 

KeyGen Let G be a group of prime order p and  g be 
a random generator of G. Pick α , 1, , nα α  ,  

1, , nβ β , from pZ at random. Set 1g gα= . Then 

choose 2g  randomly   in G, compute 0 1( , )i
it e g gα=  

and  1 1( , )i
it e g g β= . Pick up randomly 1 1, , ta a −  and 

construct a t-1 degree polynomial 
1

1
( )

t
i

i
i

f x a xα
−

=

= +∑ .  

Let iP denote the i th−  signer where 1, ,i n= . For 

1, ,i n= , compute  ( )f i
iv g= . The public key is  

PK=(g, 1g , 2g , 0 1,i it t , 0 1,i iy y  ,iv v ), 

 where ( ) ( )
0 1( , ), ( , )i if i f i

i iy e g g y e g gα β= = ,  iv = 
( )

2( , )f ie g g , 1 2( , )v e g g= , 1, ,i n= . And the 
private key for each signer iP  is  

SK=( ( )f i , 1, , nα α  ,  1, , nβ β ). 
Partial Signing Message is represented as bit-

strings of length n. Let 1( , , )nM m m= be a n-bit 
message to be signed, where {0,1}im ∈ . Signer first 
generates the auxiliary information parameters as follows: 

 Let 0h g= , then for 1, ,i n= , compute  
1

1( )
m mi i
i i

i ih h α β −

−= . 
Then the signature is computed as 

( )
2( ) f i

i ng hσ = . 
Threshold Signing Anyone can be designated to 

reconstruct the partial signature. After having received 
the partial signatures, the designated signer first verifies 
the validity of partial signatures. He accepts it if and only 
if the following holds: 

1
1

( , )
n

i i
i

e g v kσ
=

= ∏ . 

where  

                            0

1

 1
 0

i i
i

i i

y if m
k

y if m
=⎧

= ⎨ =⎩
, 

Let Ω  denote the set of validate users. Then the 
signature is reconstructed as   

σ = iL
ii

σ
∈Ω∏ , 

where iL  is Lagrange coefficient. 
 Verify Given the signature σ , message M  and the 

public keys, verifier accepts the signature if and only if 
the following holds: 

1

( , )
n

i
i

e g v pσ
=

= ∏ . 

where  

                            0

1

 1
 0

i i
i

i i

t if m
p

t if m
=⎧

= ⎨ =⎩
. 

Correctness: One can verify easily the correctness of 
partial signature and threshold signature. 

Efficiency In our first scheme,  both the partial 
signature size and the threshold signature size achieve 
320 bits. But in our new scheme, these sizes achieve 160 
bits, which is the shortest signature in the standard model 
at present. In addition, the pairing ( 0 1,i iy y ) and ( 0 1,i it t  ) 
are precomputed. Hence, there is only one pairing 
computation in the verifying stage. Table 4 gives the 
comprehensive comparison between our signature 
scheme and other schemes. We assume that all these 
short signature schemes use the GDH group which is 
derived from the curve 

1633

E
F  defined by the equation 

2 3 1y x x= − + . This group provides 1551-bit discrete 
log security. 

Note: In Table 4, we denote by e  a computation of the 
pairing. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.3 Security Analysis 

 
A threshold signature scheme is secure if it has the 

properties of unforgeability and robustness. The proposed 
threshold signature has the property of robustness. In fact, 
the threshold signature is reconstructed from at least t 
partial signatures. The designated player first verifies all 
the partial signatures and then chooses the valid ones to 
reconstruct a threshold signature. Even if having 
corrupted up to t-1 signers, the adversary still cannot 
produce a valid threshold signature since there is no way 
to get the t-th valid partial signature. 

In order to prove the property of unforgeability of 
the scheme, we use the method given by R.Gennaro et al. 
[23], which indicates that a threshold signature is 
unforgeable if the underlying signature is secure and the 

TABLE IV. 
Comparison of Efficiency 

Scheme Hardness Security 
Model 

Signature 
Size Verify 

[24] CDH Standard 480 2e 

[9] CDH Standard 320 2e 

Our first 
scheme n-CDH Standard 320 2e 

Our second 
scheme n-CDH Standard 160 1e 
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threshold signature is simulatable.  A threshold signature 
scheme is simulatable if the following properties hold: 

(1) The private key generation and distribution 
protocol is simulatable, that is, there is a simulator to 
simulate the view of the adversary on the execution. 

(2) The threshold signature generation protocol is 
simulatable. That is, there exists a simulator to simulate 
the view of the adversary on the execution of threshold 
signature generation.  

The private key generation and distribution protocol 
in our scheme is only a variant of our first scheme. So we 
only prove that the threshold signature generation 
protocol is simulatable. We assume that the adversary has 
corrupted up to t-1 signers 

1 1
, ,

ti iP P
−

.  The simulator is 
given the system parameters, the corrupted user's private 
key, the message M and the corresponding signature σ . 
The simulator first generates the partial signature iσ  for 
each corrupted signer where 1 1i t≤ ≤ − . It can compute 
the partial signature tσ  for uncorrupted signer 

ti
P . In 

fact, let σ = iL
ii

σ
∈Ω∏ , where 1 1{ , , , }t ti i i−Ω = . Then 

the simulator can compute 

{ }
i

t

Lt
ii i

σσ
σ

∈Ω−

= ∏ . 

 Hence we can obtain the following Lemma. 
Lemma The proposed threshold signature is 

simulatable. 
Hence we can obtain the following theorem. 
Theorem  If n-CDH assumption holds, then our 

scheme is secure. 

V.  CONCLUSION 

In this paper, we propose a short signature scheme  which 
is more efficient than other short signature schemes 
proposed so far. Based on the n-CDH problem, we 
provide a rigorous proof of security for our scheme in the 
standard model. Finally, we give the application of the 
proposed scheme by constructing the short identity-based 
signature and threshold signature. 
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