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Abstract—A kind of unrelated parallel machines scheduling 
problem is discussed. The memberships of fuzzy due dates 
denote the grades of satisfaction with respect to completion 
times with jobs. Objectives of scheduling are to maximize 
the minimum grade of satisfaction while makespan is 
minimized in the meantime. Two kind of genetic algorithms 
are employed to search optimal solution set of the problem. 
Both Niche Pareto Genetic Algorithm (NPGA) and 
Nondominated Sorting Genetic Algorithm (NSGA-II) can 
find the Pareto optimal solutions. Numerical simulation 
illustrates that NSGA-II has better results than NPGA.  
 
Index Terms—parallel machines scheduling, fuzzy due-date, 
NPGA, NSGA-II 
 

I.  INTRODUCTION 

Scheduling problems have been researched for more 
than fifty years since first scheduling investigations 
undertaken by Jackson in 1955[1]. Parallel machines 
scheduling problem is a kind of important multi-machine 
scheduling problem. It means every machine has same 
work function and every job can be processed by any 
machine. Most of non-preemptive parallel scheduling 
problems are NP problems and can not be solved with 
determinative algorithm in polynomial time; even there 
are only two machines. Genetic algorithm has strong 
searching ability and robustness. So lots of researchers 
analyze parallel scheduling problem with genetic 
algorithm [2, 3, 4, 5]. 

In the conventional scheduling problem, the 
parameters such as job processing times, ready times, 
due-dates have been assumed to be deterministic. In real 
world, input data may be uncertain or imprecise. Ishii et 
al. [6] introduced the concept of fuzzy due dates to 
scheduling problems, fuzzy due dates scheduling 
problems have been investigated by many researchers [7]. 
Considering that input parameters of parallel scheduling 
problems are uncertain in real situation, we fuzzilize the 
due dates of jobs. For one feasible scheduling sequence, 
memberships of fuzzy due dates are used to denote the 
grades of satisfaction about due dates from the point of 
view of scheduling decision-makers. The objective of 
scheduling is not only to minimize the maximum 
completion times of jobs, but also to maximize the 
minimum grades of satisfaction of jobs’ completion 

times. According to analyzing the bicriteria scheduling 
problem, Pareto optimal solution is induced into describe 
the problem. First we use Niche Pareto Genetic 
Algorithm (NPGA) [8] to find the Pareto optimal 
solutions of the problem. Then we improve the searching 
method. Nondominated Sorting Genetic Algorithm 
(NSGA-II) [9] is employed and shows better result. 

The outline of this paper is organized as follows. 
Firstly, we briefly describe the parallel problem with 
fuzzy due dates. Then, we introduce the conception of 
nondominated scheduling. After that, we give the solution 
of Niche Pareto Genetic Algorithm. We also give another 
GA based solution—Nondominated Sorting Genetic 
Algorithm. In order to comparing the two GA based 
algorithms, some numerical examples and computational 
results are provided to show the effectiveness of the 
proposed algorithms. Finally, we conclude this paper with 
a summary.  

II.  DESCRIPTION OF PROBLEM 

Give m machines M1, M2, …, Mm and n jobs J1, J2, …, 
Jn. Every machine can process one job at the same time, 
and arbitrary job can be process on one machine 
simultaneity. All machines have same function. Then 
each job can be process on any machine. So we call it 
parallel machines. The processing time of job Ji is pij on 
machine Mj. The m machines are identical machines if 
there are pij = pj for all machine Mj. If the processing time 
pij = pj/sj on machine Mj for job Ji, which sj is the speed of 
machine, machines are uniform machines. If pij = pj/sij, 
which sij is the speed of job Ji on machine Mj, machines 
are unrelated machines. 

In many practical scheduling problems, due dates of 
jobs are uncertain or imprecise, and this kind of 
uncertainty or imprecision cannot be described by 
probability theory. For these situations where 
characteristics and constraints are neither deterministic 
nor probabilistic, the problems may often be modeled 
with fuzzy sets [10,11]. 

In scheduling problems, every job has due date di. Jobs 
must be completed before due dates in deterministic 
scheduling problems. But due dates of jobs are not crisp 
numbers in lots of practical scheduling. A certain delay is 
tolerable up to a late date di+ei beyond which the order 
will be canceled, because the customer will resort to other 
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Figure 1.  Membership of fuzzy due date for job 

suppliers. As completion time of job Ji passes between 
due date di and late date di+ei, the customer satisfaction 
decreases until it vanishes at the latter. The greater the 
delay, the lower the satisfaction. For the interval [di, di+ei] 
in real number set, it is acceptable if job Ji can be finished 
in its interval. But the grades of satisfaction of scheduling 
decision-makers about completion time Ci of job Ji are 
different. We use fuzzy set id  to describe the uncertain 

due date. Fuzzy set id  denotes [di, di+ei], its membership 
fi(x) is: 
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Membership function denotes the grade of satisfaction 
of completion time Ci(it is x in formula (1)) about due 
date. It is given by scheduling decision-makers according 
their scheduling experience or preference. If completion 
time is not beyond low bound di, the grade of satisfaction 
is 1, which is biggest. The grade of satisfaction declines 
with increasing of Ci, If Ci is beyond di. Until completion 
time equals or is bigger than upper bound of fuzzy due 
date di+ei, the grade of satisfaction declines to zero. This 
membership is shown in Figure 1. 

For above parallel scheduling problem, we consider 
two objective functions as following. One is maximum 
completion time of jobs Cmax which is makespan of jobs: 

 Cmax=max{Ci|i=1,2,…,n}. (2) 

Another is minimum grade of satisfaction fmin(Ci) of 
job completion time Ci: 

 fmin(Ci)=min{ fi(Ci)|i=1,2,…,n}. (3) 

The objective of scheduling is to find optimal job 
sequence, which minimizes Cmax and maximize fmin(Ci) 
simultaneity. So the bicriteria scheduling problem can be 
denoted as max min| | ( , )iR d C f . 

III.  NO-DOMINATED SCHEDULING 

For above bicriteria scheduling problem 

max min| | ( , )iR d C f , the objective is to minimize the 
maximum job’s completion time Cmax and maximize the 
minimum grade of satisfaction fmin(Ci) in the same time. 
For some feasible schedule π , let schedule vector 

πν consisting two elements, maxCπ  and  minf π  in some 
feasible schedule π . We denote the solution vector as 

max min( , )S C fπ π π= . Given two feasible solutions 1π  and 

2π , their vectors are 1 1 1
max min( , )S C fπ π π=  and 

2 2 2
max min( , )S C fπ π π= , respectively. We say that vector 1Sπ  

dominates vector 2Sπ if 

 1 2
max maxC Cπ π≤ , 1 2

min minf fπ π≥  and 1 2S Sπ π≠ . (4) 

and at least one of these two inequalities is strict. If 1π  
and 2π  are such that 

 1 2
max maxC Cπ π= , 1 2

min minf fπ π= . (5) 

then we call them equivalent. Consequently, every 
equivalence class of schedules consists of all schedules 
with identical value of maxCπ  and minf π . During the process 
of maximize the both criteria maxCπ  and minf π , maybe there 
exit many nondominated schedules which have same 
values. We just need to find at least one feasible schedule 
corresponding form each equivalence class of 
nondominated feasible schedules. 

For one feasible schedule π , we say it is the 
nondominated schedule of problem if its vector Sπ  is not 
dominated by any other vectors. So the feasible schedule 
π  is the one of optimal schedules whom we are 
searching for. Sπ  is called Pareto optimal vector. For 
scheduling problem max min| | ( , )iR d C f , it has lots of 
nondominated schedules who are not dominated by any 
other feasible schedules. The vectors of those 
nondominated schedules constitute Pareto optimal 
frontier of solutions vector space. 

IV.  THE SOLUTION BASED ON NPGA 

Niche Pareto Genetic Algorithm (NPGA). In order 
to find optimal schedules of problem max min| | ( , )iR d C f , 
the corresponding Pareto optimal vectors should be 
gotten. When all Pareto optimal vectors are given, a 
Pareto optimal frontier can be constructed in two 
dimensions space. The different points in the frontier 
denote corresponding optimal schedules. But different 
optimal schedules have same Pareto optimal vectors in 
some case. Horn and Nafpliotis [8] pointed out that Niche 
Pareto Genetic Algorithm (NPGA) can find the set of 
Pareto optimal vectors. NPGA algorithm also can keep 
the diversity of Pareto optimal vectors of every 
generation and avoid populations to converge into several 
optimal vectors in population evolution process. The 
solving process is given as following according to the 
problem in our research. 

Encoding Method. Given parallel machines 
scheduling problem with n jobs and m machines, n+m-1 
genes denote one feasible schedule. Every chromosome is 
divided into m segments which are separated by m-1 
machines Mi(i = 1, 2, . . . , m−1). Here Mi means i-th 
machine. For example, there are six jobs and three 
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machines. Chromosome “35M11M2462” denotes that job 
J3 is processed on machine M1 firstly and then J5 is 
processed on same machine secondly. In the same time, 
job J1 is processed on machine M2. The left job J4, J6 and 
J2 are processed on machine M3 in sequence of 
J4→J6→J2. So M3 doesn’t show in chromosome. If there 
are no jobs between machines Mi and Mj, it means that Mj 
is idle. Here some schedules are created randomly. The 
initial population is created by encoding these schedules 
in order to get next generation population. 

Fitness function. We choose objectives Cmax and 
fmin(Ci) as fitness functions for the bicriteria parallel 
machines scheduling problem max min| | ( , )iR d C f . 

Selection Operator. Selection operator is critical part 
in NPGA algorithm. In order to keep the diversity of 
Pareto optimal schedules in every generation of 
population and avoid that individual converges to one 
Pareto optimal schedule; NPGA uses unique tournament 
selection method. The selection method of NPGA 
algorithm is following. Firstly, two individuals are chosen 
randomly from current population as candidates. tdom 
individuals also are chosen from current population as 
comparing set P at random. The fitness of each candidate 
is compared with all individuals of comparing set P. If 
one candidate is dominated by P and another candidate is 
not dominated by P, the late one is chosen to 
reproduction. The sharing to choose the winner if neither 
or both is dominated by P. 

Sharing is a kind of fitness sharing function which is 
used to maintain individuals to distribute around Pareto 
optimal frontier. Sharing function sh[d] is the decreasing 
function about d[i, j], such that sh[0] = 1 and sh[d ≥ σshare] 
= 0. Here d[i, j] is the distance between i and j. Generally 
speaking, sharing function is denoted by triangle function: 
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0
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Here σshare is niche radius, given by user. We get the 
niche count mi when we add all sharing functions of 
individual i with other individuals in population: 

 [ [ , ]]i
j Pop

m sh d i j
∈

= ∑ . (7) 

Here mi means the crowded degree around individual i. 
In order to avoid population converge into certain 
individual, sharing function calls for the degradation of 
an individual’s fitness by simply dividing the objective 
fitness by the niche count mi. Then we get a new fitness 

'if  as following: 

 ' /i i if f m= . (8) 

Then the fitness of individuals within one niche radius 
become to decrease and is lower than the fitness of 
individuals within other niche radius when the quantity of 
individuals in this niche radius is beyond certain number. 
So individuals with smaller fitness have less chance to 
keep in next generation. This guarantees the diversity of 
final generation of population. So in selection process of 

NPGA algorithm, the candidate with smaller niche count 
will be chosen if neither or both of two candidates are 
dominated by P. 

Then choose progress can be described as following. 
Given S is current population, P is comparing set and 
consist of tdom individuals. Pi is the ith individual. 

Step one: Randomly choose two individuals as 
candidates from population S. Randomly choose tdom 
individuals as comparing set P. 

Step two: Let i←1, comparing two candidates with ith 
individual Pi. If Pi is better than some candidate, mark the 
candidate as dominated one. If both of candidates are 
marked as dominated individuals, go to step four. 

Step three: Let i=i+1. If i≤tdom, go to step two. Else go 
to next step. 

Step four: If only one candidate is marked as 
dominated individual, remain another one which is not 
dominated by comparing set P. If both of individuals are 
dominated by comparing set P or neither one is 
dominated by comparing set P, use sharing mechanism. 

Crossover Operator. Crossover operator applies 
partial map crossover (MPX). MPX can be viewed as a 
variation of two-cut-point crossover. MPX deals with 
illegal phenomenon according to a special repairing 
process. The crossover process of MPX is following. 
Randomly choose two individuals as parents in this 
generation. Then choose two genes of every parent as 
cut-point. The substring between two cut-point of every 
parent directly remains into the same position of 
corresponding child. The other genes of children can be 
gotten from another parent according certain mapping 
relationship. 

Mutation Operator. Our research uses following 
mutation mechanism. Select one gene in every individual 
at random and divide the individual into two parts. Then 
swap these two parts. For example, pick the third gene 
“3” in individual (123456) as swap point. Swap the two 
parts and get new individual (345612). 

Stop Condition. The algorithm stop when given stop 
condition is reached. Otherwise the algorithm keeps 
searching the Pareto optimal solutions. Here we use 
maximum times of propagation as stop condition. 

Now the NPGA algorithm for finding the optimal 
schedules can be described as follows: 

Step one: The initial population Pi including N 
individuals is generated randomly. Pi is current 
population. Evaluate the fitness of every individual of Pi. 
We can get the current best individual. Let the best 
individual be overall best one. 

Step two: Randomly choose two individuals from 
current population as candidate individual. The randomly 
choose tdom individuals to compose comparing sets P. 
Using selection operator to generate next generation 
individuals. 

Step three: Repeat step 2 till new population is 
generated which is consisted of N individuals. The new 
population replaces the current population. 

Step four. Randomly choose two individuals to get 
new individuals with crossover operator and mutation 
operator. 
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Yes
Choosing two 
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Figure 2.   Membership of fuzzy due date for job 

Step five: Repeat step 4 till get N new individuals. 
These N new individuals consist of population Pi+1. 

Step six: Evaluate the fitness of every individual of 
Pi+1. We can get the best individual and worst individual. 
Replace the worst individual of Pi+1 with overall best 
individual. If the best individual of Pi+1 is better than 
overall best individual, replace the overall best individual 
with the best individual of Pi+1.  

Step seven: If stop condition is not satisfied, Let Pi+1 
be current population Pi. Else, go to end. 

Figure 2 gives the procedure of NPGA algorithm. 

V.  THE SOLUTION BASED ON NSGA-II 

Nondominated Sorting Genetic Algorithm (NSGA-
II). NSGA-II algorithm is the modified method of 
Nondominated Sorting Genetic Algorithm (NSGA) by 
Deb et al [8]. NSGA algorithm, which is given by 
Srinivas and Deb, has following shortages: 

--First, high computing complexity of NSGA. 
--Second, lack of elitism. 
--Third, need for specifying the share parameter shareσ . 
NSGA-II algorithm improves the NSGA algorithm and 

solves above three shortages successfully. The details of 
NSGA-II algorithm are following. 

Encoding Method. Given parallel machines 
scheduling problem with n jobs and m machines, n+m-1 
genes denote one feasible schedule. Every chromosome is 

divided into m segments which are separated by m-1 
machines Mi(i = 1, 2, . . . , m−1). Here Mi means i-th 
machine. For example, there are six jobs and three 
machines. Chromosome “35M11M2462” denotes that job 
J3 is processed on machine M1 firstly and then J5 is 
processed on same machine secondly. In the same time, 
job J1 is processed on machine M2. The left job J4, J6 and 
J2 are processed on machine M3 in sequence of 
J4→J6→J2. So M3 doesn’t show in chromosome. If there 
are no jobs between machines Mi and Mj, it means that Mj 
is idle. Here some schedules are created randomly. The 
initial population is created by encoding these schedules 
in order to get next generation population. 

Fitness function. We choose objectives Cmax and 
fmin(Ci) as fitness functions for the bicriteria parallel 
machines scheduling problem | | ( , )max minR d C fi . 

Nondominated Schedules. All individuals of current 
population are sorted according to corresponding fitness 
functions. Firstly, every Pareto optimal individual is 
selected in current population. The rank number of these 
Pareto optimal individuals is one. Then delete individuals 
whose rank number are one and search Pareto optimal 
individuals in left population whose rank number are 
assigned as two. Delete individuals with rank number two 
and continue to search Pareto optimal individuals in left 
population. Current Pareto optimal individuals are labeled 
with rank number three. Repeat above process until every 
individual has it own rank number. That means 
individuals have been sorted by its fitness function. 

Selection Operator. For NSGA-II algorithm, selection 
process is very important. In order to keep the diversity of 
Pareto optimal schedules in every generation of 
population and avoid that individual converges to one 
Pareto optimal schedule; NSGA-II algorithm uses unique 
crowded-comparison approach instead of sharing 
function of NSGA. The selection strategy of NSGA-II is 
showed as following. First, NSGA-II algorithm defines 
density estimation. In order to get density estimation 
surrounding one individual in the population, NSGA-II 
algorithm calculates the average distance of two most 
closed individuals on either side of this individual along 
each objective. In every generation of population, NSGA-
II need choose appropriate individuals from current 
Pareto optimal individuals into next generation. It means 
that it depends on density estimation of current Pareto 
optimal individuals which individuals can be remained in 
next generation. The total density estimation of individual 
can be gotten by accumulation all density estimation of 
its different objective functions. Specifically, current 
Pareto optimal individuals are ranked from smallest one 
to biggest one according to the value of this objective 
function for certain objective function. For biggest and 
smallest individuals on the end, the density estimation of 
their objective function is assigned an infinite value. For 
the other individuals between biggest one and smallest 
one, their density estimation is absolute normalized 
difference of the objective function values of two 
adjacent individuals. Then the total density estimation of 
one individual can be figured out by accumulation the 
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Figure 3.   The solution of NSGA-II 

density estimation of all different functions of this 
individual. 

NSGA-II algorithm is not like Niche Pareto Genetic 
Algorithm (NPGA) [8] and doesn’t require estimating the 
value of sharing parameter shareσ . The latter two 
algorithms use sharing function to select individuals 
which can be remained in next generation during 
selection process. But the number of optimal individuals 
should be known in advanced if we estimate the value of 
sharing parameter. For some situation that the distribution 
of optimal individual can not be known in advanced, it 
becomes difficult to select sharing parameter. Otherwise 
the value of sharing parameter has great influence to final 
result. 

Crossover Operator. Crossover operator applies 
partial map crossover (MPX). MPX can be viewed as a 
variation of two-cut-point crossover. MPX deals with 
illegal phenomenon according to a special repairing 
process. The crossover process of MPX is following. 
Randomly choose two individuals as parents in this 
generation. Then choose two genes of every parent as 
cut-point. The substring between two cut-point of every 
parent directly remains into the same position of 
corresponding child. The other genes of children can be 
gotten from another parent according certain mapping 
relationship. 

Mutation Operator. Our research uses following 
mutation mechanism. Select one gene in every individual 
at random and divide the individual into two parts. Then 
swap these two parts. For example, pick the third gene 
“3” in individual (123456) as swap point. Swap the two 
parts and get new individual (345612). 

 Elitist selection strategy. Deb et al point out that 
elitist selection strategy can dramatically speed up 
converging speed and performance and keep all current 
Pareto optimal individuals remain in next generation of 
population. It can enhance performance of algorithm and 
speed up that population converges into Pareto optimal 
solutions. 

Stop Condition. The algorithm stop when given stop 
condition is reached. Otherwise the algorithm keeps 
searching the Pareto optimal solutions. Here we use 
maximum times of propagation as stop condition. 

Then NSGA-II algorithm can be described in figure 3 
as following. 

Step one: Create initial population Pt, t=1 with N 
individuals at random, which Pt is current population. 

Step two: Randomly choose two individual as parents 
and use crossover and mutation operator to get two new 
individual. Repeat above selection, crossover and 
mutation process till N new individuals are created. These 
N new individuals compose population Qt. 

Step three: Combine the population Pt and Qt to get 
bigger population Rt. Sort all individuals in Rt according 
density estimation and get biggest rank number F_1. 

Step four: Choose all individuals whose rank number 
is one to remain in next generation of population Pt+1. If 
there are no N individuals, continue to choose the 
individuals with next rank number. When it goes to rank 
number F_n, go to step six if the size of population Pt+1 
exactly reaches N. And go to step five if individuals are 
more than N. 

step five: Calculate the density estimation of all 
individual with rank number F_n. Put right individuals 
into population Pt+1 according to descending order of 
density estimation of individuals till the number of 
individuals in population Pt+1 is exactly N. 

Step six: Set Pt+1 as current population Pt and go to step 
two if stop condition doesn’t been reached. 

VI.  SIMULATION EXAMPLE 

In order to validate the effectiveness of NSGA-II 
algorithm, we use Visual C++6.0 to realize the algorithm 

and make several example to simulate it on computer 
with PIII CPU. The size of problems n×m (n jobs and m 
machines) is 30×3, 40×4, 50×5 and 60×6, respectively. 
The processing times of jobs are integer numbers of 
interval [0, 50] gotten at random. Randomly create one 
scheduling sequence S and calculate the completion times 
Ci(S) of each job Ji. The low bound of fuzzy due date id  
of job Ji is denoted by di= Ci(S)-x, which x is the random 
number in the interval [1, 100]. The span ei of fuzzy due 
date id  also is the random number of close interval [1, 

TABLE I.   
RESULTS OF FOUR PROBLEMS WITH NAGA-II AND NPGA 

n×
m 

NPGA NSGA-II 

A T(s) Cmax fmin A T(s) Cmax fmin 

30
×3 4 11 

147.00 0.415 

2 12 
147.00 0.415 

148.00 0.662 
149.00 0.670 150.00 0.701 153.00 0.729 

40
×4 2 12 118.00 0.852 2 12 

120.00 0.855 

122.00 0.860 125.00 0.833 

50
×5 3 13 

100.00 0.833 
3 13 

99.00 0.814 

106.00 0.849 105.00 0.854 
110.00 0.861 109.00 0.858 

60
×6 2 14 

192.00 0.370 

5 14 

181.00 0.271 

185.00 0.322 

195.00 0.648 
190.00 0.357 
194.00 0.579 
197.00 0.684

n×m means the size of problem. A is quantity of optimal individuals. T 
is running time of computer for the responding problem, whose unit is 

second. 
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100]. Above-mentioned four problems are NP-hard 
problems even in the case of single objective function. 
Here we also use Niched Pareto Genetic Algorithm 
(NPGA) of Horn and Nafpliotis to solve these four 
instances. We compare the resolution and running time of 
NPGA and NSGA-II. The two algorithms consider 
maximum completion time and fuzzy due date of jobs 
simultaneity when the size of population is 100 
individuals. We set that crossover probability is 0.8 and 
mutation probability is 0.1. In NPGA algorithm, the 
quantity of individuals in comparing set is ten. And the 
shape of niche of sharing function is 0.5. Then results are 
showed as following table 1. 

VII.  SUMMARY 

Our research discusses a kind of parallel machine 
scheduling problem with fuzzy due dates. Fuzzy due 
dates mean those due dates of jobs are not crisp numbers 
and can vary in certain interval. It is acceptable if the 
completion times of jobs are in this interval. But for 
scheduling decision-makers, the grades of satisfaction of 
jobs completion times are different. So it makes jobs 
scheduling more flexible and realistic. Here the purpose 
of scheduling is to minimize the maximum completion 
times of jobs and maximize the minimum grades of 
satisfaction of fuzzy due dates. For the bicriteria 
scheduling problem, the concept of nondominated 
schedules is introduced. The solution vector (Cmax, fmin) of 
nondominated schedule doesn’t dominated by the 
solution vector of any other schedules. So these 
nondominated solution vectors are Pareto optimal 
solutions. All Pareto optimal solutions construct the set of 
Pareto optimal solutions. 

NPGA algorithm can solve scheduling problem in our 
research. But NPGA algorithm requires that scheduling 
decision-makers give shape of niche or estimate shape of 
niche. Scheduling decision-makers also should give 
individual quantity of comparing set in tournament 
selection. These two parameters have some influence to 
NPGA algorithm. But there is not deterministic 
mathematical method or formula to compute these two 
parameters. It depends on experience to determine them. 
It affects the usage of NPGA algorithm in practical 
scheduling application. So we apply NSGA-II algorithm 
to search the Pareto optimal solutions of parallel 
machines scheduling problem with fuzzy due dates. 
NSGA-II algorithm uses crowed-comparison approach to 
keep appropriate individuals into next generation. It is 
different from sharing function of NPGA. Crowed-
comparison approach doesn’t require estimating the 
shape of niche. It selects individuals by computing ranks 
of nondominated sets of individuals and crowed distances 
of individuals. This method makes selection operator 
more clear and convenient. Moreover, crowed-
comparison approach needn’t choose comparing set and 
avoid estimate size of comparing set. All of above 
advantages make NSGA-II algorithm is easier to use and 
less computation than NPGA. The original version of 
NSGA-II algorithm given by Deb requires storing 
dominated individual set of every individual and it needs 

O(n2) space complexity. Our research modified original 
version and give a kind of computing method with 
smaller space complexity. The new method makes space 
complexity reduce to O(n). 
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