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Abstract— By a modification of the classic-Newton direction
in scaled version for linear optimization, we give a new
interior-point algorithm based on a very simple function.
The algorithm uses full modified-Newton step, thus no need
to perform line search. In the processing of the algorithm,
the simple function is used to control the searching direction
and measure the proximity of iterates to the central path.
Moreover, the modified-Newton step used in the algorithm
has local quadratic convergence property according to the
proximity function. The iteration complexity is derived, and
which is the best-known.

Index Terms— complexity analysis, linear optimization,
interior-point algorithm, modified-Newton direction.

I. INTRODUCTION

Interior-point methods (IPMs) for solving linear opti-
mization (LO) problems were initiated by Karmarkar [1].
They not only have polynomial complexity but are also
highly efficient in practice. For a survey we refer to recent
books on the subject [2], [3].

Many IPMs use the classic-Newton direction, Some
algorithms explicitly use this direction as they force the
iterate points to follow the central path. Even for many
algorithms that do not use this direction directly in the
algorithm statements, the classic-Newton direction is used
as the basis for deriving the new direction [2], [4]–[7].

Because the importance of the classic-Newton direction
in the designs and analysis of IPMs, we study the Newton
direction.

Recently, a new class of primal-dual IPMs was in-
troduced. These methods do not use the classic-Newton
direction. Instead they use a direction that can be charac-
terized as a steepest descent direction (in a scaled space)
for some kinds of barrier function, see Bai, Peng, etc., [4]–
[11]. Any such barrier function is determined by a simple
univariate function, called its kernel function. It should be
noted that all the aforementioned kernel function based
methods use the damped step size.

A kernel function is a univariate strictly convex func-
tion which is defined for all positive reals t and which
is minimal at t = 1 whereas the minimal value equals
0. To use the kernel function in the designing of algo-
rithm, many restrictions have been set on, for example
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self-regular, exponential convexity, etc. These restrictions
make the expression of kernel function very complex. The
interested reader may refer [4]–[11] for further under-
standing.

Considering that, for most of the IPMs, the iterates
generated by the algorithm lie in some neighborhood of
central path. The central path can be interpreted as a
sequence of minimizer points, which attain their minimal
value zero at e. In this paper, we want to define such a
neighborhood, which not only contains all the iterates but
also can be used as feasibility testification for searching
direction. For this, we introduce the following simple
function

ψs(t) = (1− t)2. (1)

Using the simple function on the coordinates, we con-
struct a separable function

Ψs(v) =
n∑

i=1

ψs(vi) =
n∑

i=1

(1− vi)2. (2)

As easily be verified, letting Ψ(v) < 1, all the coordinates
of v must positive, which means the positive constraints
for variables hold. Thus the separable function has some
kind of barrier property for restricting the iterates be
infeasible. As an application, we present an IPM based on
this simple function, and the complexity analysis shows
that the induced algorithm enjoys the best-known iteration
bound for LO.

The structure of the paper is as follows. In Section
II, we introduce how the simple function can be used
to generate the search direction for IPM. Section III, we
investigate some useful properties of the simple kernel
function. These properties will be used as tools in the
analysis of the IPM. In Section IV, we present a full
modified-Newton step IPM based on the simple function.
The full modified-Newton step used in the algorithm has
the quadratic convergence property in some neighborhood
of central-path. Furthermore, we derive the complexity for
the algorithm and obtain the best-known result for LO.
Some conclusions and remarks are given in Section V.

Some notation used throughout the paper is as follows.
The 2-norm and the infinity norm are denoted by ‖ · ‖
and ‖ · ‖∞, respectively. If x, s ∈ Rn, then xs denotes
the componentwise (or Hadamard) product of the vectors
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x and s. min(v) and max(v) denote the minimize and
maximize components of the vector v, respectively.

II. THE MODIFIED-NEWTON DIRECTION FOR LO

In this paper, we consider the LO problem

(P ) min{cT x : Ax = b, x ≥ 0},
where A ∈ Rm×n, rank(A) = m, b ∈ Rm, c ∈ Rn, and
its dual problem

(D) max{bT y : AT y + s = c, s ≥ 0}.
Without loss of generality [2], we assume that (P ) and

(D) satisfy the interior-point condition (IPC), i.e., there
exist x0, y0, and s0 such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

It is well known that finding an optimal solution of (P )
and (D) is equivalent to solving the nonlinear system as
follows,

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

xs = 0.
(3)

The third equation in system (3) is called the complemen-
tarity condition.

A. The central path

The basic idea underlying primal-dual IPMs is to
replace the complementarity condition by the nonlinear
equation xs = µe, with parameter µ > 0 and with
e = (1, . . . , 1)T . The system (3) now becomes:

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0,

xs = µe.
(4)

The existence of a unique solution to the above system is
well-known [12]. We denote the unique solution of system
(4) by (x(µ), y(µ), s(µ)) for each µ > 0. x(µ) is called
the µ-center of (P ) and (y(µ), s(µ)) is the µ-center of
(D). The set of µ-centers (with µ > 0) defines a homotopy
path, which is called the central path of (P ) and (D)
[13]. If µ goes to zero then the limit of the central path
exists. This limit satisfies the complementarity condition,
and hence yields optimal solutions for (P ) and (D) [2].

B. The classic-Newton direction

Primal-dual IPMs follow the central path approxi-
mately. Let us briefly indicate how this goes. Without
loss of generality we assume that (x(µ), y(µ), s(µ)) is
known for some positive µ [2], (which means that we
have a primal feasible x(µ) > 0 and dual feasible y(µ)
and s(µ) > 0).

In feasible IPM, we are given a positive feasible pair
(x, s), and some µ > 0. Our aim is to define search
directions (4x,4s) that move in the direction of the
µ-center (x(µ), s(µ)). In fact, we want the new iterates
x+4x, s+4s to satisfy system (4) and be positive with

respect to µ. After substitution this yields the following
conditions on (4x,4s)

A (x +4x) = b, x +4x > 0,
AT (y +4y) + (s +4s) = c, s +4s > 0,

(x +4x) (s +4s) = µe.

If we neglect for the moment the inequality constraints,
then, since Ax = b and AT y + s = c, this system can be
rewritten as follows

A4x = 0,
AT4y +4s = 0,
x4s + s4x = µe− xs.

(5)

Since A has full row rank, the above system uniquely
defines a search direction (4x,4y,4s) for any x > 0
and s > 0 [2], and this is the so-called classic-Newton
direction. The third equation is called the centering equa-
tion.

C. Scaling
We follow [5], [7], [9] and reformulate the above

approach by defining the same search direction in a
different way.

To make this clear, in what follows, we associate to
any triple (x, s, µ), with x > 0, s > 0 and µ > 0, the
vector

v =
√

xs

µ
.

Note that if x is primal feasible and s is dual feasible then
the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if
and only if v = e. Introducing the notations

Ā = AV −1X and V := diag(v), X := diag(x), (6)

and defining the scaled search directions dx and ds

according to

dx :=
v4x

x
and ds :=

v4s

s
. (7)

Using this notation, the system (5) can be rewritten as

Ādx = 0,
1
µ

ĀT4y + ds = 0,

dx + ds = v−1 − v.

(8)

Note that dx and ds are orthogonal vectors, since the
vector dx belongs to the null space and ds to the row
space of the matrix Ā. Hence we will have dx = ds = 0
if and only if v−1 − v = 0, which is equivalent to v = e.
We conclude that dx = ds = 0 holds if and only if the
pair (x, s) coincides with the µ-center (x(µ), s(µ)).

D. The modified-Newton direction
In the scaled centering equation we replace v−1 − v

by the negative gradient of the convex function Ψs(v).
Thus the new search direction is obtained by solving the
system

Ādx = 0,
1
µ

ĀT4y + ds = 0,

dx + ds = −∇Ψs(v),

(9)
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for dx, 4y and ds, and then computing 4x and 4s from

4x =
xdx

v
, x =

sds

v
,

according to (7).

III. THE SIMPLE FUNCTION

In the following, we give some basic properties of the
simple function ψs(t). After some basic calculations, one
has

ψ′s(t) = −2(1− t) and ψ′′s (t) = 2. (10)

It easily verify that ψs(1) = ψ′s(1) = 0 and ψs(t) is
strictly convex.

Lemma 1: One has

ψs(t) =
1
4
ψ′s(t)

2 and − tψ′s(t) = 2
(
t− t2

)
.

Proof: The results are immediately from (10).
The scaled function induced by ψs(t) is given as (2).

Since v > 0 such that Ψs(v) is minimal at v = e and
Ψs(e) = 0, thus Ψs(v) can also be used as proximity
function to show how close the iterates is to the central
path.

Corollary 1: One has

−v∇Ψs(v) = 2
(
v − v2

)
.

Proof: It is the direction consequence of the second
part of Lemma 1 in vector form.

The following lemma estimates the lower bound for the
components of v in terms of Ψs(v).

Lemma 2: One has

min(v) ≥ 1−
√

Ψs(v).
Proof: Using (2) and Lemma 1, one has

Ψs(v) =
n∑

i=1

ψs(vi) =
1
4

n∑

i=1

ψ′s(vi)2 =
1
4
‖∇Ψs(v)‖2.

Thus

2
√

Ψs(v) = ‖∇Ψs(v)‖ ≥ |ψ′s (min(v))| ≥ −ψ′s (min(v)) .

Using (10), one has

ψ′s (min(v)) = −2 (1−min(v)) ,

thus √
Ψs(v) ≥ 1−min(v).

This completes the proof.
We give an upper bound for the 2-norm of vector v in
terms of Ψs(v).

Lemma 3: One has

‖v‖ ≤ √
n +

√
Ψs(v).

Proof: Using (2), one has

Ψs(v) =
n∑

i=1

(1−vi)2 = ‖v‖2−2eT v+n ≥ (‖v‖ − ‖e‖)2 .

This implies

‖v‖ ≤ ‖e‖+
√

Ψs(v) =
√

n +
√

Ψs(v),

which completes the proof.

IV. FULL MODIFIED-NEWTON STEP IPM

It is assumed that we are given a positive primal-dual
pair

(
x0, s0

)
> 0 and µ0 > 0 such that

(
x0, s0

)
is close

to the µ0-center in the sense of the proximity function

Ψs(v0) ≤ τ , where v0 =

√
x0s0

µ0
.

Generic IPM with full modified-Newton steps

Input:Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ, 0 < τ < 1;
a strictly feasible pair

(
x0, s0

)
with µ0 > 0

such that Ψs(v0) ≤ τ.
begin:
x := x0; s := s0; µ := µ0.

while xT s ≥ ε
solve (9) and obtain (4x,4s), let
x := x +4x;
s := s +4s;
µ-update: µ := (1− θ)µ;

endwhile
end

Figure 1.

A crucial question is, of course, how to choose the
parameters that control the algorithm, i.e., the threshold
parameter τ , the barrier update parameter θ, so as to
minimize the iteration complexity.

A. Some useful tools

We first investigate the proximity function Ψs(v) in
details. It follows from system (2), (9) and Lemma 1 that

Ψs(v) =
1
4
‖dx + ds‖2. (11)

We denote

pv = dx + ds and qv = dx − ds. (12)

Thus one has

Ψs(v) =
1
4
‖pv‖2. (13)

Lemma 4: Let pv and qv defined as (12), one has

‖pv‖ = ‖qv‖.
Proof: Using the orthogonality property of dx and

ds and (12), we have

‖pv‖2 = eT (dx + ds)2

= ‖dx‖2 + 2 (dx)T
ds + ‖ds‖2

= ‖dx‖2 − 2 (dx)T
ds + ‖ds‖2

= eT (dx − ds)2

= ‖qv‖2 ,

which completes the proof.
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B. Feasibility of a full modified-Newton step

We denote the result of the full modified-Newton step
given by system (9) at (x, y, s) by (x+, y+, s+), ie.,

x+ := x +4x, , y+ := y +4y, s+ := s +4x.

Using (7), one has

x+ = x +4x = x

(
e +

dx

v

)
=

x

v
(v + dx) ,

and

s+ = s +4s = s

(
e +

ds

v

)
=

s

v
(v + ds) .

We associate to any triple (x+, s+, µ), with x+ > 0, s+ >
0 and µ > 0, the vector

v+ =

√
x+s+

µ
. (14)

Remember that, by the third equation of system (9), we
have dx + ds = −∇Ψs(v). It follows from Corollary 1
that

(
v+

)2 =
x+s+

µ
= (v + dx) (v + ds)
= v2 + v(ds + dx) + dxds

= e− (e− v)2 + dxds. (15)

Thus, the condition for feasibility step follows.
Lemma 5: The new iterates (x+, y+, s+) are strictly

feasible if
Ψs(v) < 1.

Proof: For the proof we introduce a step length α ∈
[0, 1], and define

x(α) = x + α4x, y(α) = y + α4y, s(α) = s + α4s.

We then have x(0) = x, x(1) = x+ and similarly s(0) =
s, s(1) = s+. Hence, we have

x0s0 = xs > 0.

We write
x(α)s(α) = (x + α4x)(s + α4s)

= xs + α(x4s + s4x) + α24x4s.

Thus
x(α)s(α)

µ
= v2 + αv (dx + ds) + α2dxds.

Using Corollary 1, ie., v(dx+ds) = 2
(
v − v2

)
, we obtain

x(α)s(α)
µ

= (1− α)v2 + α
(
e− (v − e)2

)
+ α2dxds.

Therefore, the components of x(α)s(α) will be positive
if

(1− α)v2 + α(e− (v − e)2) + α2dxds > 0. (16)

Since α ∈ [0, 1], we have that (1 − α)v2 ≥ 0. Thus the
inequality (16) is true for

e− (v − e)2 + αdxds > 0. (17)

Using (12), and by (10) and system (9), one has

pv = 2(e− v) and p2
v − q2

v = 4dxds. (18)

thus the inequality (17) can be interpreted as

e− p2
v

4
+ α

p2
v − q2

v

4
> 0,

which means

(1− α)
p2

v

4
+ α

q2
v

4
< e.

Thus one concludes that the components of x(α)s(α) will
be positive if

max
(

(1− α)
p2

v

4
+ α

q2
v

4

)
< 1. (19)

Since∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥ ≤ (1− α)

∥∥p2
v

∥∥
4

+ α

∥∥q2
v

∥∥
4

≤ (1− α)
‖pv‖2

4
+ α

‖qv‖2
4

=
‖pv‖2

4
,

the last equation follows from Lemma 4. Using (13), we
have ∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥ ≤ Ψs(v).

Assuming that Ψs(v) < 1, one has
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥ ≤ 1.

Since

max
(

(1− α)
p2

v

4
+ α

q2
v

4

)
≤

∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥ ,

we arrive that

max
(

(1− α)
p2

v

4
+ α

q2
v

4

)
< 1

certainly holds. Hence, the the components of x(α)s(α)
are positive for α ∈ [0, 1]. Since x(0) and s(0) are
positive and since x(α) and s(α) depend continuously
on α, it follows that x(1) and s(1) are also positive. This
completes the proof.

C. Duality gap

In general the new iterates x+ and s+ do not coincide
with µ-centers. But we have the surprising property that
the duality gap less than the value at the µ-centers, where
the duality gap equals nµ.

Lemma 6: The duality gap after a full modified-
Newton step satisfies

(
x+

)T
s+ ≤ µn.

Proof: It follows from (15) and by (18), we have

(v+)2 = e− (v − e)2 + dxds

= e− p2
v

4
+

p2
v − q2

v

4

= e− q2
v

4
. (20)
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Using (14) gives

(
x+

)T
s+ = µeT

(
v+

)2 = µeT

(
e− q2

v

4

)

= µ

(
n− ‖qv‖2

4

)
≤ µn,

which completes the proof.

D. Quadratic convergence

To prove the effect of a full modified-Newton step on
proximity function, the following lemma is needed.

Lemma 7: Let Ψs(v) < 1. Then one has

min(v+) ≥
√

1−Ψs(v).
Proof: Using (20), one has

min(v+)2 = min
(

e− q2
v

4

)
≥ 1− max

(
q2
v

)

4
.

Since, by (13), one has

Ψs(v) =
‖qv‖2

4
≥ max

(
q2
v

)

4
,

the inequality

min(v+)2 ≥ 1−Ψs(v)

certainly holds. This completes the proof.
Theorem 8: If Ψs(v) < 1 and v+ is defined as (14),

then we have
Ψs(v+) < Ψs(v)2.

Proof: Using (20), we have

n∑

i=1

(
1− v+

i

)2
=

n∑

i=1

(
1− (

v+
i

)2
)2

(
1 + v+

i

)2

≤

∥∥∥e− (v+)2
∥∥∥

2

(1 + min(v+))2

≤

(‖q2
v‖
4

)2

(
1 +

√
1−Ψs(v)

)2

≤

(
‖qv‖2

4

)2

(
1 +

√
1−Ψs(v)

)2 .

Thus, by (13), we have

Ψs(v+) =
n∑

i=1

(
1− v+

i

)2

≤ Ψs(v)2(
1 +

√
1−Ψs(v)

)2

< Ψs(v)2,

the results follows.
Remark 1: Theorem 8 implies that after a full

modified-Newton step the proximity to the µ-center is
small than the square of the proximity before the full
modified-Newton step. In other words, full modified-
Newton step is quadratically convergent. Moreover, the

theorem defines a neighborhood of the µ-center where
the quadratic convergence occurs, namely

Ψs(v) < 1.

This result is extremely important. It implies that when
the present iterate is close to the µ-center, then only a
small number of full modified-Newton steps brings us
very close to the µ-center.

E. The effect of a full modified-Newton step and param-
eter update on proximity function

In the following, we focus on the decrease of prox-
imity function just before and after a µ-update. Denote
Ψs (x+, s+;µ+) as the proximity after a full modified-
Newton step and an µ-update, ie.,

Ψs(x+, s+;µ+) = Ψs

(√
x+s+

µ+

)
= Ψs

(
v+

√
1− θ

)
,

where v+ is defined as (14).
Theorem 9: If Ψs(v) ≤ 1, then

Ψs

(
x+, s+;µ+

) ≤ (θ
√

n + Ψs(v))2(
1− θ +

√
1− θ

√
1−Ψs(v)

)2 .

Proof:
It follows from (20) and Lemma 7, that we have

n∑

i=1

(√
1− θ − v+

i

)2

=
n∑

i=1

(
1− θ − (

v+
i

)2
)2

(√
1− θ + v+

i

)2

≤

∥∥∥−θe + e− (v+)2
∥∥∥

2

(√
1− θ + min(v+)

)2

≤

(
θ
√

n + ‖q2
v‖
4

)2

(√
1− θ +

√
1−Ψs(v)

)2

≤

(
θ
√

n + ‖qv‖2
4

)2

(√
1− θ +

√
1−Ψs(v)

)2 .

Using (13), we have
n∑

i=1

(√
1− θ − v+

i

)2

≤ (θ
√

n + Ψs(v))2(√
1− θ +

√
1−Ψs(v)

)2 .

Since

Ψs

(
v+

√
1− θ

)
=

n∑

i=1

(
1− v+

i√
1− θ

)2

=
1

1− θ

n∑

i=1

(√
1− θ − v+

i

)2

,

one concludes that

Ψs

(
x+, s+;µ+

) ≤ (θ
√

n + Ψs(v))2(
1− θ +

√
1− θ

√
1−Ψs(v)

)2 .

This completes the proof.
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F. Fixing the parameter

We want to find a threshold τ and an update parameter
θ, which at the start of iterate satisfies Ψs(v) ≤ τ .
After a full modified-Newton step and an µ-update, the
property Ψs

(
x+, s+;µ+

) ≤ τ is maintained. In this case,
by Theorem 9, it suffices for

(θ
√

n + Ψs(v))2(
1− θ +

√
1− θ

√
1−Ψs(v)

)2 ≤ τ .

The left side of the above inequality is monotone increas-
ing according to Ψs(v), which means that

(θ
√

n + Ψs(v))2(
1− θ +

√
1− θ

√
1−Ψs(v)

)2

≤ (θ
√

n + τ)2
(
1− θ +

√
1− θ

√
1− τ

)2 .

Thus the Ψs

(
x+, s+;µ+

) ≤ τ suffices for

(θ
√

n + τ)2
(
1− θ +

√
1− θ

√
1− τ

)2 ≤ τ (21)

At this stage, by some elementary calculations, if we set

τ =
1
2

and θ =
1

3
√

n
, (22)

an upper bound for the left side of the inequality (21)
is 0.4487 ≤ 0.5, which means that the inequality (21)
certainly holds. In this case, we concludes that (x, s) > 0

and Ψs(v) ≤ 1
2

are maintained during the algorithm. Thus
the algorithm is well defined.

G. Iteration complexity

In the previous subsections we have found that if at
the start of an iteration the iterates satisfy Ψs(v) ≤ τ ,
then after a full step and an µ-update, the iterates satisfy
Ψs

(
x+, s+;µ+

) ≤ τ , where τ and θ as defined in (22).
Lemma 10: (Lemma II.17 in [2]) Assume that x0 and

s0 are strictly feasible, and let µ0 =

(
x0

)T
s0

n
. Moreover,

let xk and sk be the vectors obtained after k iterations. If
the barrier parameter µ is repeatedly multiplied by 1− θ,
with 0 < θ < 1, then after at most

⌈
1
θ

log
µ0n

ε

⌉

iterations we have xT s ≤ ε.

For θ =
1

3
√

n
, the following theorem holds trivially.

Theorem 11: Setting τ =
1
2

and θ =
1

3
√

n
, the initial

duality gap is
(
x0

)T
s0 = nµ0, the full modified-Newton

step primal-dual IPMs for LO has the iteration bound

O
(

3
√

n log
µ0n

ε

)
.

V. CONCLUSION

The simple function used in this paper has the finite
barrier property, the complexity result for the IPM based
on this function admits the best-known iteration bound
for LO.

It should be noted that the direction used in this
paper can also be obtained by an equivalent algebraic
transformation on the central path, where the Taylor series
is used to derive the new direction, the interested reader
may refer [14] for further understanding.

Our further research line may focus on two aspects.
One is to find a better analysis method, by which the
simple function can be used in the analysis of large-
update methods. The other is doing the numerical tests
for a few improvements of algorithms and exploiting its
performance for real-world problems.
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