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Abstract— Through some modifications on the classic-
Newton direction, we obtain a new searching direction for
monotone horizontal linear complementarity problem. By
taking the step size along this direction as one, we set
up a full-step primal-dual interior point algorithm. The
complexity bound for the algorithm is derived, and the result
is the best-known for linear complementarity problem.

Index Terms— horizontal linear complementarity prob-
lem, interior-point algorithm, full-Newton step, complexity
bound.

I. INTRODUCTION

A monotone horizontal linear complementarity problem
(LCP ) is to find a pair x, s ∈ Rn such that

Mx + Ns = q, xs = 0, x, s ≥ 0, (1)

where xs denotes the componentwise (or Hadamard)
product of the vectors x and s. q ∈ Rm and M, N ∈
Rm×n, moreover M and N have the column monotonic-
ity property, i.e., for any u,w ∈ Rn

Mu + Nw = 0 ⇒ uT w ≥ 0. (2)

The formulation (1) includes linear and convex
quadratic programming problems expressed by their opti-
mality conditions in their usual format. Properties of this
formulation are described in [1], where R([M, N ]) = n
has been proved under the monotonicity hypothesis.

There are a variety of solution approaches for LCP
which have been studied intensively. Among them, the
interior-point methods (IPMs) gained much attention than
other methods. Due to the close connection between LCP
and linear and convex quadratic programming problems,
some IPMs for linear and convex quadratic programming
problems have been extended to LCP . For instance,
Gonzaga et al. [2], [3] studied the largest step path
following algorithm for LCP and showed that the fast
convergence of the simplified largest step path following
algorithm. Huang [4] proposed a high-order feasible IPM
for LCP with O (√

n log ε0
ε

)
iterations. Monteiro et al.
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[5] studied the limiting behavior of the derivatives of
certain trajectories associated with the monotone LCP .
Zhang [6] presented a class of infeasible IPMs for LCP
and showed that the algorithm has O (

n2 log 1
ε

)
under

some mild assumptions. Some other relevant references
can be found in [7], [8].

Most of IPMs follow the central path and use the so-
called primal-dual Newton search directions to obtain an
ε-solution of the problem. Even for many algorithms that
do not use the Newton’s direction directly [9]–[12], they
use the classic Newton’s direction as the basis for deriving
the new searching direction.

Because the importance of the Newton’s direction in
the designs and analyzes of IPMs, we study the New-
ton’s direction. By using the scaled Newton direction
we obtain a modified-Newton direction. Moreover we
give a full-Newton step IPM for LCP , the algorithm
uses the modified-Newton direction as the searching di-
rection, which enjoys the nice property of quadratically
convergent in the small neighborhood of cental path.
Furthermore, we derive the complexity bound for the
algorithm, and the complexity result is the best-known
for LCP .

The paper is organized as follows. In Section II, the
basic concepts of IPMs are given, which include the
central path and the classic Newton direction. In section
III, we give a scaled version of the classic Newton
direction, and from which we give a modified-Newton
direction. The generic algorithm is described in section
IV. In section V, the properties of full-Newton step are
analyzed, which include the estimation of the upper bound
for duality gap and the increase of the proximity after
one full-Newton step, the decrease of proximity after the
parameter update is also given in this section. At the end
of this section, we give a complexity result for the full-
Newton step IPM. Section VI gives a simple numerical
example. Section VII ends the paper with a conclusion.

Some notations used throughout the paper are as fol-
lows. ‖ ·‖denotes the 2-norm of a vector, ‖ ·‖1 and ‖ ·‖∞
denote the 1-norm and infinity-norm, respectively. For any
x = (x1;x2; . . . ;xn) ∈ Rn, xmin denotes the smallest
value of the components of x.
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II. PRELIMINARY

We assume the following hypotheses hold: the exis-
tence of an interior feasible solution, and the existence of
a strictly complementarity optimal solution.

A. The central path

The basic idea of the IPM is to replace the second
equation in (1) by the parameterized equation xs = µe,
with µ > 0. Thus we consider the following system

Mx + Ns = q, xs = µe, x, s ≥ 0. (3)

Under the assumption, the parameterized system (3) has a
unique solution for each µ > 0. This solution is denoted
as (x(µ), s(µ)) and are called the µ-center of LCP . The
set of µ-centers (with µ running through all positive real
numbers) gives a homotopy path, which is called the
central path of LCP . If µ → 0, then the limit of the
central path exists and since the limit points satisfy the
complementarity condition xs = 0, the limit yields an
optimal solution for LCP , see [6], [13].

B. The classic-Newton direction

In feasible IPM, we are given a positive feasible pair
(x, s), and some µ > 0. Our aim is to define search
directions (4x,4s) that move in the direction of the
µ-center (x(µ), s(µ)). In fact, we want the new iterates
x+4x, s+4s to satisfy system (3) and be positive with
respect to µ. After substitution this yields the following
conditions on (4x,4s)

M(x +4x) + N(s +4s) = q,
(x +4x)(s +4s) = µe,

x +4x > 0,
s +4s > 0.

(4)

If we neglect for the moment the inequality constraints,
then, since Mx + Ns = q, this system can be rewritten
as follows

M4x + N4s = 0,
s4x + x4s = µe− xs

(5)

The unique solution of the system (5) is guaranteed by
Lemma 4.1 in [13], and we obtain the so-called classic-
Newton direction 4x and 4s.

III. NEW SEARCH DIRECTION

To describe the ideas underlying this paper, we need to
consider a scaled version of the system (5) that defines
the search directions.

A. A scaled-Newton direction

Now we introduce the scaled vector v and the scaled
search directions dx and ds according to

v =
√

xs

µ
and dx =

v∆x

x
, ds =

v∆s

s
. (6)

Following (6), the system (5) can be rewritten as

M̄dx + N̄ds = 0,
ds + dx = v−1 − v.

(7)

where

V = diag(v), X = diag(x) and S = diag(s). (8)

M̄ = MV −1X, N̄ = NV −1S. (9)

The search directions dx and ds are obtained by solving
(7), so 4x and 4s can be computed via (6).

B. A modified-Newton direction

Rearrange the second equation in (7), we obtain

v2 + v(dx + ds) = e,

taking square root at both side the equation, one has
(
v2 + v(dx + ds)

) 1
2 = e.

Using Taylor series at v2, which gives the following
equation

v +
1
2
(dx + ds) = e, (10)

rearrange the equation (10) and substitute the second
equation in (7), one obtain the new Newton system

M̄dx + N̄ds = 0,
ds + dx = 2(e− v). (11)

Once system (11) is solved, the 4x and 4s can be
computed via (6) too.

It should be mentioned that the idea of equivalent
algebraic transformation above was also proposed by [14]
for LO case. There, the power transformation ψ(t) =

√
t

was focused on xs space.
Note that dx = ds = 0 if and only if v = e and hence

x and s satisfy xs = µe, which implies that x, s are on
the µ-center (x(µ), s(µ)). Thus, we can use ‖e − v‖ as
a quantity to measure closeness to the pair of µ-centers.
We therefore define

σ(x, s;µ) = σ(v) = ‖e− v‖, (12)

where v is defined as (6).

C. Some more basic results

Let us introduce the notation

pv = dx + ds, qv = dx − ds,

then we have

dx =
pv + qv

2
, ds =

pv − qv

2
and dxds =

p2
v − q2

v

4
.

(13)
We compare the norm of pv and qv by the following
lemma.

Lemma 1: One has

‖qv‖ ≤ ‖pv‖.
Proof:
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By the monotonicity property, see (2), one has

M4x + N4s = 0 ⇒4xT4s ≥ 0 ⇔ dT
x ds ≥ 0. (14)

Thus

‖qv‖2 = eT (dx − ds)2

= eT (dx + ds)2 − 4dT
x ds

= ‖pv‖2 − 4dT
x ds

≤ ‖pv‖2,
the result follows.

IV. GENERIC PRIMAL-DUAL IPMS FOR LCP

We investigate a full-Newton step algorithm using the
modified-Newton direction. It is assumed that we are
given a positive primal-dual pair (x0, s0) > 0 and µ0 > 0
such that (x0, s0) is close to the µ0-center in the sense
of the proximity measure σ(x0, s0;µ0). In the algorithm
4x and 4s denote the modified-Newton step, as defined
before.

Generic primal-dual IPMs for LCP

Input:
A threshold parameter τ > 0;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
a strictly feasible (x0; s0) and µ0 = (x0)T s0/n
such that σ(x0, s0;µ0) ≤ τ.

begin
x := x0; s := s0;µ := µ0;
while xT s ≥ ε do

begin
x := x + ∆x;
s := s + ∆s;
µ := (1− θ)µ;

end
end

The most import matter in the algorithm is how to
choose the parameters that control the algorithm, i.e., the
threshold parameter τ , the barrier update parameter θ so
as to minimize the iteration complexity.

V. COMPLEXITY ANALYSIS

In this section, we derive the complexity bound for the
IPM based on the modified-Newton direction.

A. Feasibility condition

Let x+ = x + 4x and s+ = s + 4s. We want
the new iterates be strictly positive, so we only have to
concentrate on the sign of the vectors x+ and s+. We call
the Newton step strictly feasible if x+ and s+ are positive.
The main aim of this subsection is to find conditions for
strict feasibility of the full-Newton step.

Lemma 2: If σ(v) < 1, then the iterates (x+, s+) are
strictly feasible.

Proof: For each 0 ≤ α ≤ 1, let introduce the
notation x(α) = x + α4x and s(α) = s + α4x. Then
we have

x(α)s(α) = xs + α(s4x + x4s) + α24x4s,

by (6), we obtain

x(α)s(α)
µ

= v2 + αv(dx + ds) + α2dxds.

Furthermore, from (13) we get

x(α)s(α)
µ

= (1−α)v2 + α(v2 + vpv) + α2

(
p2

v − q2
v

4

)
.

Using the second equation of (11) we find that

v2 + vpv = 2v − v2

= e− (e− v)2

= e− p2
v

4
,

and this relation leads to
x(α)s(α)

µ
= (1− α)v2 + α

(
e− (1− α)

p2
v

4
− α

q2
v

4

)
.

(15)
Evidently, the inequality x(α)s(α) > 0 is satisfied if

∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥
∞

< 1.

Since∥∥∥∥(1− α)
p2

v

4
+ α

q2
v

4

∥∥∥∥
∞

≤ (1− α)
‖p2

v‖∞
4

+ α
‖q2

v‖∞
4

≤ (1− α)
‖p2

v‖
4

+ α
‖q2

v‖
4

.(16)

By Lemma 1, one has

(1− α)
‖p2

v‖
4

+ α
‖q2

v‖
4

≤ ‖p2
v‖
4

≤ ‖pv‖2
4

= σ(v)2

≤ 1 (17)

Hence, for each 0 ≤ α ≤ 1 we have x(α)s(α) > 0.
Consequently, the sign is the continuous function of α,
x(α) and s(α) remains the same for every 0 ≤ α ≤ 1.
Hence x(0) = x > 0 and s(0) = s > 0 yields x(1) =
x+ > 0 and s(1) = s+ > 0. This completes the proof.

B. Duality gap

In general the new iterates x+ and s+ do not coincide
with µ-centers. But we have the surprising property that
the duality gap less than the value at the µ-centers, where
the duality gap equals nµ.

Lemma 3: Let x+ = x +4x and s+ = s +4s. Then
we have

(x+)T s+ ≤ µn.
Proof: Observe that making the substitution α = 1

in (15) that equation becomes

x+s+

µ
= e− q2

v

4
,

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 2025

© 2011 ACADEMY PUBLISHER



and using this equation we get

(x+)T s+ = eT (x+s+)
= µ

(
eT e− eT q2

v

4

)

= µ
(
n− ‖qv‖2

4

)

≤ µn.

This implies the lemma.

C. Quadratic convergence

we first estimate the increase of the proximity after one
full-Newton step.

Theorem 4: Let σ+ := σ(x+, s+;µ) and

v+ :=

√
x+s+

µ
. If σ(v) ≤ 1. Then

σ+ ≤ σ2

1 +
√

1− σ2
.

Hence, the full-Newton step is quadratically convergent.
Proof: We deduce from Lemma 2 that the full-

Newton step is strictly feasible, thus x+ > 0 and s+ > 0.
Observe that making the substitution α = 1 in (15) that
equation becomes

(
v+

)2 = e− q2
v

4
. (18)

Thus

v+
min =

√
1− ‖q2

v‖∞
4

≥
√

1− ‖qv‖2
4

≥
√

1− ‖pv‖2
4

=
√

1− σ2,

(19)

Furthermore, (18) and (19) lead to

σ(v+) =
∥∥∥∥

e− (v+)2

e + v+

∥∥∥∥
≤ 1

1 + v+
min

‖e− (v+)2‖

≤ 1
1 +

√
1− σ2

∥∥∥∥
q2
v

4

∥∥∥∥
≤ σ2

1 +
√

1− σ2
,

the last inequality follows from the fact that

‖q2
v‖ ≤ ‖qv‖2 ≤ ‖pv‖2.

Consequently, we have σ(v+) < σ2, and this implies the
lemma.

Theorem 4 implies that after a full-step the proximity
to the µ-center is small than the square of the prox-
imity before the full-step. In other words, full-step is
quadratically convergent. Moreover, the theorem defines a
neighborhood of the µ-center where the quadratic conver-
gence occurs, namely σ(v) ≤ 1. This result is extremely
important. It implies that when the present iterate is close
to the µ-center, then only a small number of full-steps
brings us very close to the µ-center.

D. Proximity changes after one iteration

After the full-Newton step, a µ-update will arise the
changes of µ-center. We assume that µ is reduced by the
factor (1− θ) in each iteration.

Lemma 5: Let σ = σ(x, s;µ) < 1 and µ+ = (1− θ)µ,
where 0 < θ < 1. We have

σ(x+, s+;µ+) ≤ θ
√

n + σ2

1− θ +
√

(1− θ)(1− σ2)
Proof: From (18) and (19) we deduce

σ(x+, s+;µ+)

=

∥∥∥∥∥e−
√

x+s+

µ+

∥∥∥∥∥
=

1√
1− θ

∥∥√1− θe− v+
∥∥

=
1√

1− θ

∥∥∥∥
(1− θ)e− (v+)2√

1− θe + v+

∥∥∥∥
≤ 1√

1− θ(
√

1− θ + min(v+))

∥∥∥∥−θe +
q2
v

4

∥∥∥∥

≤ 1
1− θ +

√
(1− θ)(1− σ2)

(
θ
√

n +
‖q2

v‖
4

)

≤ θ
√

n + σ2

1− θ +
√

(1− θ)(1− σ2)
,

which completes the proof.

E. Fixing the parameter

We want to find an update parameter θ and a threshold
parameter τ . Thus, after each iteration of the algorithm,
the property

σ(x, s;µ) ≤ τ

is maintained, and hence the algorithm is well defined.
By Lemma 5, it suffices if

θ
√

n + σ2

1− θ +
√

(1− θ)(1− σ2)
≤ τ. (20)

The left side of the inequality (20) is monotonically
increasing according to σ, it certainly suffices if

θ
√

n + τ2

1− θ +
√

(1− θ)(1− τ2)
≤ τ. (21)

At this state, if we set

τ =
1
2

(22)

and assume that n ≥ 4, it suffices if

θ = 1/2
√

n (23)

that the inequality (21) certainly establish. Thus the full-
Newton step interior-point algorithm well defined for
LCP .
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F. Complexity bound

In the previous subsections we have found that if at
the start of an iteration the iterates satisfy σ(v) ≤ τ ,
then after a full step and an µ-update, the iterates satisfy
σ

(
x+, s+;µ+

) ≤ τ , where τ and θ as defined in (23) and
(22).

Lemma 6: If the barrier parameter µ has the initial
value µ0 and is repeatedly multiplied by 1 − θ, with
0 < θ < 1, then after at most

⌈
1
θ

log
nµ0

ε

⌉

iterations we have xT s ≤ ε.
Proof: At the initial point, one has (x0)T s0 = nµ0,

after one iterate, by Lemma 3, the duality gap

(x1)T s1 ≤ (1− θ)nµ0,

thus, after k iterates, the duality gap satisfies

(xk)T sk ≤ (1− θ)knµ0.

So, it suffices if

(1− θ)knµ0 ≤ ε,

taking logarithm gives

k log(1− θ) + log n + log µ0 ≤ log ε. (24)

Since
log(1− θ) ≤ −θ.

It certainly suffices if

−kθ + log n + log µ0 ≤ log ε,

this gives

k ≥ 1
θ

log
nµ0

ε
,

this completes the proof.
The following theorem holds trivially.
Theorem 7: Setting τ = 1/2 and θ = 1/2

√
n, the

initial duality gap is (x0)T s0 = nµ0, the modified-
full-Newton step primal-dual IPMs for LCP has the
complexity bound

O
(

2
√

n log
nµ0

ε

)
.

Proof: Substitution (23) in Lemma 6, the result
follows.

VI. A SIMPLE NUMERICAL EXPERIMENT

In general, though there exists (x0; s0) > 0 for the
LCP problem is strictly feasible, we don’t know the value
of (x0; s0). Thus we should modify the system (5) as
follows

M4x + N4s = q −Mx−Ns,

s4x + x4s = 2
(
µxs

1
2 − xs

)
.

(25)

We consider the following example:

M =




0.0368 0.0188 0.0920 0.0211 0.0332 0.0162
0.0188 0.0393 0.0634 0.0176 0.0300 0.0248
0.0920 0.0634 0.4293 0.0617 0.1355 0.1124
0.0211 0.0176 0.0617 0.0203 0.0239 0.0107
0.0332 0.0300 0.1355 0.0239 0.0513 0.0480
0.0162 0.1248 0.0124 0.0107 0.0480 0.0824




,

q = (0.1630,−0.2820, 0.4500,−0.3560, 0.2420,−0.2489)T

and N = −E.
Without loss of generality, we choose x0 = s0 = e as

the initial point. Setting ε = 10−8, τ = 1
2 and θ = 1

2
√

n
.

After 90 iterates, an optimal solution of the example is
given by

x∗ = (0.4169 0.0000 0.0000 0.0000 4.4476 0.0000)T

and

s∗ = (0.0000 0.4233 0.1910 0.4711 0.0000 0.4691)T .

VII. CONCLUSION

In this paper, we gave a full-Newton step IPM for LCP,
the full-Newton step has the quadratically convergent
property in the small neighborhood of central path. The
complexity bound is the best-known results for LCP.

Although the full-Newton step IPM based on the new
search direction admits the best-known iteration bound,
however, from a practical perspective it may be not so
efficient. The reason may come from the finite barrier
property of the equation dx + ds = 2(e − v), i.e., at the
boundary of the feasible solution set, where the elements
of v equal to zero, one obtains that dx + ds = 2e,
which implies that it difficult to design the large-update
algorithm based on this searching direction.

Our further research may focus on designing the infea-
sible algorithm based on this modified-Newton direction.
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