
Context-Aware Fault Localization via Control
Flow Analysis

Lei Zhao, Lina Wang, Xiaodan Yin
School of Computer, Wuhan University

Key Laboratory of Aerospace Information Security and Trust Computing, Ministry of Education
Wuhan 430072, P.R.China

Email: zhaolei.whu@gmail.com, lnwang@whu.edu.cn, yinxiaodan.whu@gmail.com

Abstract—Coverage-based fault localization techniques are
effective to support program debugging. However, these
techniques assess the suspiciousness of program entities
individually. Such calculation oversimplifies executions and
cannot reflect execution contexts. In this paper, we use
control flow paths to analyze the execution context, quantify
edge profiles to assess how each block contributes to failures
and propose the context-aware fault localization approach
FP. We use the edge profile to represent the passed and
failed executions, calculate the coverage statistics and edge
suspiciousness scores, and then by contrasting edge
suspiciousness scores of blocks covered by a failed execution,
we propose fault proneness to evaluate how each block
contributes to the failure. At last, we take the sum of fault
proneness as the suspiciousness to assess the probability of
containing faults. We construct controlled experiments to
compare our technique with a representative technique. The
findings are as follows. 1) the FP technique performs well in
locating faults if the infected state propagation is complex,
2) but when the fault is easy to locate, the FP technique may
be overly complicated, 3) the integration of the two
techniques are more effective than any of them.

Index Terms—program debugging, fault localization, fault
proneness, control flow analysis

I. INTRODUCTION

Program debugging is a tedious, challenging and
error-prone process in software development. It is
desirable to automate the debugging as much as possible.
Fault localization is the vital step of debugging [1]. It
aims to filter statements unrelated to bugs and locate only
the remaining statements to be further examined.

Coverage based fault localization (CBFL) techniques
have been proposed to support program debugging [2].
CBFL techniques usually contrast the program spectra
information (such as coverage statistics) between passed
and failed executions to compute the suspiciousness of
individual program entities (such as statements, blocks
and predicates), and then they construct a list of program
entities in descending order of their fault suspiciousness.
Programmers may follow the suggested list to locate
faults. Empirical studies have shown that CBFL
techniques can be effective in guiding programmers to
examine code and locate faults.

However, the coverage statistics of program entities
are calculated individually. For all the entities that are

executed in a failed execution, the number of failed
executions will be equally added by 1. Several studies
have proposed that such calculation ignores the
dependency relationships between the predecessor and
successor entities, which may result that the located entity
is not the root cause of failure. For example, CBFL
techniques are always able to locate the entities at which
the program fails, but these entities do not contain faults
[5].

In addition, with the impact of random test cases, the
individual coverage statistics cannot reflect the similarity
of executions [7]. We take an example as follows for
detailed illustration. The number of failed executions that
cover the entity b is noted as failed (b) =n. The n failed
executions may follow n different control flow paths that
cover b. Also, the n failed executions can just follow the
same path that covers b. In the two cases, the number of
failed executions that executed b is n. However, if the n
failed executions follow the same path, the coverage
statistics of all the program entities covered by the path
are n. So the programmer still cannot locate the entity
containing the fault. On the contrary, if the n failed
executions follow n different paths that cover n, we can
infer that b is more likely containing faults because n
different executions are failed. That is to say, the
difference between the case that n failed executions
follow the same path and the case that n failed executions
follow n different path is distinct. Therefore, we claim
that to enable the execution context analysis during the
coverage statistics is significant to improve CBFL
techniques.

The control flow path is an appropriate way to solve
the above problem. If b contains a fault, all execution
paths that cover b may trigger the fault and perform
failure [11]. On the contrary, if b is fault free, even if b is
executed in a failed execution, the possibility that all the
executions are failed is rather low. To sum up, the
coverage statistics to paths can indicate how infected
states propagate to failure and further indicate the fault
proneness of blocks. The passed and failed executions
covering a block are not identical for every entity, so the
fault proneness of entities covered by a failed execution is
different from each other. Capturing this characteristic,
we propose a context-aware fault localization approach
via path analysis.

Our approach uses the program control flow graph to

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 1977

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.10.1977-1984

organize the coverage and calculate edge suspiciousness.
Given a failed execution, we use the fault proneness to
assess how each block covered by this execution
contributes to the failure by contrasting the coverage
statistics of different edges covering the block. The sum
of all fault proneness for every failed execution is defined
as suspiciousness, and finally we synthesize a ranked list
to facilitate fault localization. At last, we construct
controlled experiments to validate the effectiveness of our
approach. The main contributions of this paper include
three aspects: 1) by contrasting the coverage statistics of
different edges covering the block, we propose an
approach to assess the fault proneness of blocks covered
by the same execution. 2) The experiment results show
that our approach is promising when dealing with faults
which are hard to localize with the Tarantula technique.
3) Besides, the experiment results also indicate that the
FP works better if integrated with CBFL techniques such
as Tarantula.

The paper is organized as follows: Section 2 gives
related work and a motivation example. Section 3
presents our analysis model and the FP technique,
followed by some experimental evaluations and
discussion in Section 4. Section 5 concludes this paper
and presents our future work.

II. RELATED WORK AND MOTIVATION

A. Coverage based Fault Localization
Agrawal et al. [1] are the first to propose the coverage

based fault localization technique, which is called χSlice.
In this technique, the set of statements executed only in
the failed test run, is reported as the likely faulty
statements. This idea is further developed by Renieris and
Reiss [18]. They propose the Nearest Neighborhood (NN)
technique, which selects the nearest passed execution.
Jones and colleagues [13] propose a different CBFL
technique called Tarantula. Tarantula uses the coverage
statistics and ratio of failed executions to predicate the
suspiciousness of program failures. Researchers propose
new CBFL techniques, such as Ochiai and Jaccard [3],
which are similar to Tarantula except that they use
different formulas to compute the suspiciousness. Existed
experiment results show that when multiple test runs are
available, the performance of CBFL is better than delta
debugging and program slicing based techniques [2].

Tarantula and other similar fault localization
techniques such as SBI are statements level. Statistical
debugging instruments predicates into program code and
locates faults by comparing the evaluation results of
predicates in failed test runs with those in all test runs
[14][20][21]. Predicates can be regarded as another
manner of coverage refinement by exploiting the program
state information. Santelices et al. investigate the
effectiveness of using different program entities to locate
faults. They show that the integrated results of using
different program entities may be better than the use of
any single kind of program entity [4].

The path and edge profiles have also been used in
previous studies, which are similar to our technique in
this paper. Jiang and Su propose a technique which uses

clustering to obtain fault predictors with the biggest fault
proneness, and then generate the execution paths that
traverse these predicates to reflect how the failure occurs
[8]. George and his colleagues propose the program
dependence graph (PPDG) that facilitates probabilistic
analysis and reasoning about uncertain program behavior,
particularly behavior that associated with faults. The
PPDG could be applied to fault diagnosis [22]. Chilimbi
et al. [12] believe that there are more meaningful
information in execution report based on path than
execution report based on block, and propose the
HOLMES framework. The statements are examined
according to the suspiciousness of path which covers
them. Zhang et al. [5] propose the idea of propagation of
infected states, which is very novel. Getting inspiration
from it, we design the suspiciousness calculation of paths.

B. Motivating Example
 In this section, we will take an example to illustrate our
motivation.

The statements shown in Figure 1 are a real program
segment of grep, which is a Linux program. Among the
statements, the operation '||' in the if condition statement
should be '&&'. The control flow graph is shown in
Figure 1. When examining the coverage information, we
find that the if condition statement is always executed in
either failed execution or passed executions. According to
the coverage information, the suspiciousness score of b2
cannot be assured to be larger than other blocks when the
coverage statistics based techniques are employed such as
Tarantula [13] and SBI [3].

We note that the failed executions covering b3 is failed
(b3), the passed executions covering b3 is passed (b3).
According to SBI, the suspiciousness score of b3 is failed
(b3)/ (failed (b3) + passed (b3)). Similar, the
suspiciousness score of b2 is failed (b2)/ (failed (b2) +
passed (b2)). Because failed (b2) = failed (b3) + failed (b4),
and passed (b2) = passed (b3) + passed (b4), the
suspiciousness of b2 will be no larger than the larger one
of b3 and b4.

In fact, the failed executions of b3 and b4 are caused by
the faulty condition which is generated in b2, so the
suspiciousness of b2 should be larger in ideal fault
localization method.

Examining the executions of the scheduled program,
there are two failed execution paths, which are
b1→b2→b4 and b1→b2→b3. Suppose that the fault exists
in b2, the infected program state may be generated after b2
has been executed, and the infected state can propagate to
b3 and b4 along with the path b2→b3 and b2→b4. It means

Figure 1 The motivation example

1978 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

that there should be several failed executions along with
b1→ b4, and this is in accordance with the actual
executions. In contrast, if we suppose that b3 contains a
fault, there should not be failed executions along with
b2→b4. These suppositions are not supported by the
actual executions as shown in Figure 1.

According to the above analysis, the coverage statistics
to different edges can indicate how infected states
propagate to failure and further indicate the probability of
containing faults. The qualified value is noted as the fault
proneness as defined in Section 3.

III. METHODOLOGY

A. Preliminaries

Definition 1 A basic block, also known as a block, is a
sequence of consecutive statements or expressions
containing no transfer of control except at the end.

Given that the programs do not fail with crash fault, if
one element (statement) of a block is executed, all the
other elements are also executed. This definition has also
been used in related researches [3][5].

Definition 2 EG={B,E,Path} is used to denote the
execution graphs in this paper, where B={ b1, b2, …, bm}
is the set of basic blocks of the program, Path={ path1,
path2, …, pathn} is the set of execution paths, and E={e1,
e2, …, ek} is the path edges that start from one block to
another.

In the rest of this paper, the notation e (bi, bj) is usually
used to represent the edge that goes from block bi to
block bj. The notation e (*, bj) is used to represent all the
edges that go to bj. The notation e (bi,*) is used to
represent all the edges that start from bi. Besides, the
edge e (bi, bj) is covered means e (bi, bj) has been
executed in the execution.

Definition 3 The two blocks linked by an edge are
named as successive blocks. The block from which the
edge starts is named as the predecessor block while the
other is named as the successor block.

Definition 4 The fault proneness expresses the
quantified value of how blocks contribute to a certain
failed executions. The larger the fault proneness of a
block is, the larger possibility of a block containing the
fault causing failure.

All the blocks covered by failed executions are likely
to contain faults, but in many situations, only a certain
block contains a fault. By employing the concept of fault
proneness, we want to quantify how each block
contributes to the failed execution, and in this way, we
can distinguish the block that most likely contains fault
from other blocks covered by the failed execution.

Definition 5 The fault suspiciousness is defined to
represent the probability of a block containing faults.

The fault proneness just indicates how blocks
contribute to a failed execution. For different failed
executions, the fault proneness of a block may be

different. As a result, the fault suspiciousness value must
be normalized to accumulate different fault proneness.

B. Analysis Model
In this section we use the failed execution edge shown

in Figure 2 to illustrate the computing process of fault
proneness. We note (,)e s d as a failed execution edge as
shown in Figure 2. There must be a fault in either s or d .
The fault localization is used to determine which node
has more possibilities to lead to the failed execution and
which node has higher fault proneness. If the fault is
located at s instead of d , then other execution edges
which cover s are likely to trigger the fault in s and lead
to failed executions. At the same time, the executions
which cover d instead of s may be passed executions.
On the contrary, if the fault is located at d instead of s ,
then the executions which cover s are likely to be passed
executions while executions covering d may be failed
executions. In brief, if most of executions which cover s
are passed executions while executions covering d are
failed executions, the fault is more likely to be located
at d . Also, if most of executions which cover s are failed
executions while executions covering d are passed
executions, the fault is more likely to be located at s .
Therefore, the fault proneness of d and s can be
measured through analyzing the coverage statistics of
execution edges which cover s and those of execution
edges which cover d . As a result, the comparison of
coverage statistics between execution edges covering s
and d can be taken as the quantification of fault
proneness.

C. Edge Suspiciousness Calculation
Based on the conclusion in section 3.1, how to

calculate the distribution probability of failed execution
paths becomes an urgent problem. In this section, we first
show the computing method of how to obtain the
suspiciousness in an execution flow diagram. Existing
researches indicate that it is not appropriate to use the
coverage frequency as the fault coverage rate in an edge.
In this paper, we choose the suspiciousness definition
formula mentioned in [5] to solve this problem.

()
() ()

i
i

i i

failed e
e

failed e passed e
θ() =

+
 (1)

As shown above, ()ifailed e represents the number of
failed executions that cover ie , and ()ipassed e represents

Figure 2 An illustration example

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 1979

© 2011 ACADEMY PUBLISHER

the number of passed executions that cover ie .

D. Quantification of fault Proneness
Let us reexamine the executions which are shown in

Figure 2. The notation ((,))inprob e s d is used to represent
the proportion of ((,))e s dθ to ((*,)e dθ , which is the
sum of edge suspiciousness values of all edges which go
to d . The notation ((,))outprob e s d is used to represent the
proportion of ((,))e s dθ to ((,*))e sθ , which is the sum of
edge suspiciousness values of all edges which start
from s . In this example, ((,*))e sθ includes 1((,))e s dθ ,
and ((,))e s dθ . ((*,))e dθ includes 1((,))e s dθ , 2((,))e s dθ
and ((,))e s dθ .

If all the executions along 1(,)e s d and 2(,)e s d are
passed executions while the executions along

1(,)e s d and 2(,)e s d are failed executions, then d has the
higher fault proneness. According to Equation (1), the
value of both 1((,))e s dθ and 2((,))e s dθ are equal to 0,
while the value of 1((,))e s dθ and 2((,))e s dθ are larger
than 0. In such case, the value of ((,))inprob e s d is less
than ((,))outprob e s d . By contrast, if all the executions
along 1((,))e s dθ and 2((,))e s dθ are failed executions
while the executions along 1((,))e s dθ and 2((,))e s dθ are
passed executions, then s has higher fault proneness. In
this case, the value of ((,))inprob e s d is larger
than ((,))outprob e s d . In conclusion, the value of

((,))inprob e s d and ((,))outprob e s d can be used to
indicate the fault proneness of s and d , respectively. The
next, we will use ((,))inprob e s d and ((,))outprob e s d to
qualify the values of fault proneness of s and d . The
equation of ((,))inprob e s d is given as below.

(*,)

(*,)

((,))
((,))

[((*,))]
e d

in
e d

e s d
prob e s d

e d

θ

θ
∀

∀

∗
=

∑
∑

 (2)

, where ((,))e s dθ represents the edge suspiciousness
of (,)e s d ,

(*,)
[((*,))]

e d
e dθ

∀∑ represents the sum of

suspiciousness of all the edges that go to d ,
and

(*,)e d∀∑ represents the number of edges that go

to d . The reason for setting
(*,)e d∀∑ in Equation (2) is

to deal with the case that ((,)) 0e s dθ = . Take the example
shown in Figure 2. If 1((,)) 0e s dθ = and 2((,)) 0e s dθ = ,
the value of Equation (2) equals 3. If

(*,)e d∀∑ is not set

in Equation (2), the value equals 1, which cannot be
distinguished from the case that there are only one edge
that goes to d . Actually, that 1((,)) 0e s dθ =
and 2((,)) 0e s dθ = indicates that s may have higher fault
proneness. It satisfies the equation value of Equation (2).

The equation of ((,))outprob e s d is given as below.

(,*)

(,*)

((,))
((,))

[((,*))]
e s

out
e s

e s d
prob e s d

e s

θ

θ
∀

∀

∗
=

∑
∑

 (3)

, where ((,))e s dθ represents the edge suspiciousness
of (,)e s d ,

(,*)
[((,*))]

e s
e sθ

∀∑ represents the sum of

suspiciousness scores of all the edges that go from s , and

(,*)e s∀∑ represents the number of edges that go from s .

As demonstrated above, ((,))inprob e s d and
((,))outprob e s d can oppositely indicate the fault proneness

of s and d . Therefore, the ratio of fault proneness of s to
fault proneness of d is designed as below.

((,))
() : ()

((,))
in

out

prob e s d
proness s proness d

prob e s d
=

, where ()proness s and ()proness d denote the values of
fault proneness of s and d , respectively.

E. Normalization of fault Proneness
The structures are complex in real programs and the

control flow graphs are also complex. By comparing the
probability of edge suspiciousness, the ratio of fault
proneness of two successive blocks can be qualified.
However, there are many blocks covered by the same
execution. In order to calculate which block mostly
contributes to a failed execution, the fault proneness must
be normalization.

1 2 1{ }n npath b b b b−= → → … → → is employed here
to represent a failed execution path,
and ib path∈ . 1ib − refers to the predecessor block of ib ,
and 1ib + is the successor block of ib .The ratio of fault
proneness of 1ib − to that of ib is

1
1

1

(,)
() : ()

(,)
in i i

i i
out i i

prob b b
proness b proness b

prob b b
−

−
−

= .

Similarly, the ratio of fault proneness of ib to that of

1ib + is 1
1

1

(,)
() : ()

(,)
in i i

i i
out i i

prob b b
proness b proness b

prob b b
+

+
+

= . As a

consequence, the ratio of the fault proneness of 1ib − to
that of 1ib + can be calculated as below.

1 1 1

1 1 1

() (,) (,)
() (,) (,)

i in i i in i i

i out i i out i i

proness b prob b b prob b b
proness b prob b b prob b b

− − +

+ − +

∗
=

∗

Therefore, the ratio of fault proneness of successive
blocks can be traversed.

For the 1 2 1{ }n npath b b b b−= → → … → → , the ratio
of fault proneness of blocks from 1b to nb is given as
below.

1980 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

1 2

1 2

1 2

2 3 1 2

2 3

() : () : ()
(,)

: (,)
(,) (,):

(,)

n

in

out

out out

in

proness b proness b proness b
prob b b
prob b b
prob b b prob b b

prob b b

 =

∗

… :

1
1

1
2

:

(,)
:

(,)

i n

out i i
i
i n

in i i
i

prob b b

prob b b

=

+
=
=

+
=

∏

∏

……
 (4)

F. Block suspiciousness calculation
The fault proneness is corresponding to a certain failed

execution. The uniform assessment must be designed to
assess the suspiciousness of blocks of the entire program.

We use the sum of fault proneness scores to represent
the block suspiciousness, of which the calculation is
shown as below.

()
(() | (() 0 & &))i i i

suspiciousness b
proness b failed path b path

 =

> ∈∑
 (5)

After obtaining the suspiciousness of every block, we
assign the suspiciousness of the block to every statement
in this block. Through this way, we get the rank list of
blocks in descending order of their suspiciousness. Some
special statements such as macro definitions in C
programming language are never executed, so the
suspiciousness of these statements is assigned as 0.

IV. EXPERIMENTS AND DISCUSSION

In this section, the experiments will be proposed to
evaluate the effectiveness of our technique.

A. Experiments Setup
In this paper, we use the UNIX programs, obtained

from the Software-artifact Infrastructure Repository (SIR),
as the subjects [15]. They have been used in other related
research [3][6][14]. The numbers of statements are all
between 8000 and 10000. All the three subjects have 5
different versions, respectively. Different types of faults
are inserted into each version of all programs, relevant
test cases are provided. In addition, SIR also provides
corresponding tools such as gen_fault_matrix, which is
used to distinguish tests cases with which programs fail
from those with which programs pass.

Table 1 shows the statistics of subject programs used
in the experiments and the corresponding test suites. Take
the flex for example, v1 to v5 in SIR correspond in the
2.4.7 to 2.5.4 versions of real flex programs. Different
types of faults are seeded into different versions of source
code. In Table 1, there are 19 different faults in the v1
version and 20 different faults in the v2 version. The
numbers of test cases in flex, grep and gzip are 567, 809
and 213 respectively. In our experiments, we seed only
one fault into the source files each time and run the test
cases to collect executions. That is to say, n different
faults in the same version correspond to n different
groups of experiments.

We select Tarantula [13], which is one of the
statements level based techniques to build the controlled
experiments. In our experiments, we exclude those faults
which cannot be manifested with all test cases in the test
suite [3][5]. Besides, we also exclude those faults which
occur in the declaration of variable, functions or macro.
Several previous studies also employ such manners
[3][5][13]. We construct experiments on the platform of
ubuntu 10.4. The compiler is gcc-4.4.1 and the
component gcov is used to collect the coverage
information.

B. Evaluation Metric
After calculating the fault suspiciousness, all blocks

are sorted in a descending order of fault suspiciousness to
form the ranked list. The larger fault suspiciousness
means higher priority to be examines in the ranked list.

In previous studies, the evaluation metric is defined as
the ratio of statements which are needed for programmers
to examine. That is, developers check all the statements
in ascending order of their ranks in the ranked list, until
the faulty statement is found. This metric can be notes as
(f / F)*100%, in which F represents the number of
executable statements and f represents the number of
statements which are needed to examine [3][6].

Similar to peer studies, we adopt (f / F)*100% as
evaluation indicator in this paper, which is noted as code
inspection percentage in the following sections.
Meanwhile, the executable statements do not include
program annotation, blank line, function, variable
declaration and types, etc.

C. Results Analysis
In our experiment, we select a typical CBFL technique

Tarantula to compare with our approach. Tarantula is
often chosen as alternatives for comparison in other
evaluations of fault-localization techniques.

The experiments results are shown in Figure 3 and
Figure 4. The results show the code inspection percentage
on individual fault. The results shown in Figure 3 are
used to express the effectiveness of our FP technique than
Tarantula. However, the FP does not always perform well
for every fault, that is, the effectiveness is not always
better than Tarantula. We take results shown in Figure 4
for detailed analysis. First, we bring out the promising
results.

Table 1 Statistics of Subject Programs

Program subjects No. of faults within
different versions

No. of test
cases

flex
v1 v2 v3 v4 v5

567
19 20 17 16 9

grep
v1 v2 v3 v4 v5

809
18 8 18 12 1

gzip
v1 v2 v3 v4 v5

213
16 7 10 12 14

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 1981

© 2011 ACADEMY PUBLISHER

As shown is Figure 3, the x-axis refers to the serial
numbers of faults of which the code inspection
percentage is higher than 10% when Tarantula is
employed, and the y-axis refers to the code inspection
percentage to locate faults. If the length of the bar is
shorter, the corresponding technique is more effective.
The red bars represent the results of FP technique in this
paper, and the blue bars refer to the results of Tarantula.
From the results we can see that our results are promising
when dealing with faults which are hard to be located
with Tarantula method.

However, the FP technique may be not fit for all types
of faults. We found that for some faults, the code
inspection percentage also will be 40% or higher with FP
technique. For detailed analysis, we selected the faults of
which the code inspection percentage is higher than 10%
with FP technique, and then compare the results between
FP and Tarantula. As shown in Figure 4, the x-axis means
the serial number of faults, and the y-axis refers to the
code inspection percentage to locate faults. From the
results we can see that when dealing with the faults of
which the code inspection percentage is lower with
Tarantula technique, the FP technique is complication
instead of facilitating the fault localization.

D. Integrating FP with Tarantula
By analyzing the experiment results, we find several

interesting phenomenon. The Tarantula is good at dealing

with cases that the fault location is where the failure
occurs. This type of fault is usually an operation error or
assignment error, for example, the 4th fault of flex is
caused by the error parameter when invoking printf
function. But FP is good at fixing more complex faults
such as the error expression of branch condition. We
believe our approach is useful in complex fault
localization because the challenge of automated
debugging is just how to deal with the complex
executions, and if the execution is simple, the fault is also
easy to be detected. Besides, to our knowledge, we found
that there is no fault localization technique which does
well in dealing with all types of faults. As a consequence,
the integration of different types of fault localization
techniques such as Tarantula, CBI, or FP may be a novel
solution. For example, we take the value of 10% as the
threshold. First, we take the Tarantula technique to locate
faults, if the fault is not located until the code inspection
is up to 10%, then we will choose the FP technique
instead. Suppose the code inspection percentage is 5%
with FP, so the overall result of code inspection
percentage will be 15% or lower if some statements have
been examined twice.

To support our analysis, we construct some
experiments to combine the FP with Tarantula. The brief
processes are as follows. 1) Take the Tarantula to locate
faults. 2) If no fault is located until the code inspection
percentage is up to 10%, use the FP instead. Otherwise,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

10%

20%

30%

40%

50%

60%

The serial numbers of faults

%
 o

f C
od

e
Ex

am
in

ed

Tarantula
FP

Figure 3 The comparisons of code inspection percentage for faults of which the code inspection percentage is higher than 10% with
the Tarantula technique.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

10%

20%

30%

40%

50%

The serial numbers of faults

%
 o

f C
od

e
Ex

am
in

ed

Tarantula
FP

Figure 4 The comparisons of code inspection percentage for faults of which the percentage of code inspection is higher than 10%
with the FP technique.

1982 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

the process is end. 3) Locate the fault with FP technique
until the fault is located. We take the sum of the code
inspection percentage with two different techniques as the
overall code inspection percentage.

Following the above steps, we construct experiments
on the three subject programs, which are flex, grep and
gzip. The results of the flex, grep and gzip are shown in
Figure 5 (a), Figure 5 (b) and Figure 5 (c), respectively.

As shown in Figure 5 (a), Figure 5 (b) and Figure 5 (c).
The integration technique of FP and Tarantula is noted as
FP-T. The red plot refers to the percentage of faults
located within a range of code inspection percentage
when using FP-T and the blue plot refers to the result of
Tarantula. It is clear that FP-T is more effective than
Tarantula, especially when the range of code inspection
percentage is up to 10% or larger.

The results indicate that our analysis of the integration
could be useful. In our future work, we are planning to
study the classification of faults and propose the theory
basis for the integration of different CBFL techniques.

E. Discussion
To our knowledge, our work may also been helpful for

related studies. 1) There are several studies which focus
on the test suite reduction for effective fault localization,
and have done some empirical studies [3][10][23]. The
FP technique which mostly depends on the structure of
execution profiles may be useful to analyze, verify and
improve the test suite reduction techniques. 2) On the
similarity of test cases, previous studies point out that
CBFL technique should be improved for the case that
some of test cases may be similar [5][9]. There are
duplicate calculations for some cases. The FP technique
mostly depends on the structure, which is static and can
reduce the impact of test cases similarity as well. In FP
technique, the coverage statistics of edges covering a
block is thought to be a significant factor to indicate the
suspiciousness of the block. This may not be sustainable
for multi-faults localization, for the reason that different
failed executions caused by different faults may cover the
same blocks [16]. These blocks may be regarded as much
more suspiciousness by FP technique, but actually they
are fault free. But, the multi-faults localization itself is
hard to be solved just according to the coverage
information. For example, one failed execution covers

b1→b2→b4, while another failed execution covers b1→b3

→ b4. In such situation, it is hard to conclude that b1
contains a fault, or both b2 and b3 contain faults. At
present, nearly all the fault localizations calculate the
code inspection percentage statically, neglecting the
feedback of developers [17]. With the feedback of
developers during debugging process, can the code
inspection percentage be changed dynamically? In the
above example, since that b1 and b4 are fault free with the
feedback, can the developers verify that there may be two
faults existing in b2 and b3 respectively? We plan to do
some experimental studies given that the feedbacks are
available.

V. CONLUSION

In this paper, we propose the FP fault localization via
control flow analysis. In this approach, we use control
flow paths to analyze the program executions, qualify
edge suspiciousness, and by contrasting edge
suspiciousness scores of blocks covered by a failed
execution, we propose fault proneness to evaluate how
each block contributes to a failed execution. At last, the
block suspiciousness calculation is proposed.

By comparing the results of experiments between ours
and Tarantula, we claim that our approach to some extent
is effective, but it is not promising in any cases. All the
different types of coverage information, different types of
fault and different test suites affect the results of fault
location techniques. The research of automated
debugging could be combined with test cases generation,
static analysis and other related techniques.

ACKNOWLEDGMENT

This work is funded by the major project of Chinese
National Natural Science Foundation (90718006,
60970114) and the Self-research program for Doctoral
Candidates (including Mphil-PhD) of Wuhan University
in 2008.

REFERENCES

[1] H. Agrawal, J. Horgan, S. Lodon, and W. Wong, “Fault
localization using execution slices and dataflow tests,” in

(a) Flex (b) grep (c) gzip

Figure 5 The comparisons of code inspection percentage between the FP-T and Tarantula on the flex, grep and gzip subjects.

JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011 1983

© 2011 ACADEMY PUBLISHER

Proceedings of the 6th International Symposium on
Software Reliability Engineering, Toulouse, France, 1995,
pp. 143–151.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in
Proceedings of the 20th IEEE International Conference on
Automated Software Engineering (ASE 2005), Long
Beach, California, 2005, pp. 273-282.

[3] Y. Yu, J. A. Jones, and M. J. Harrold, “An empirical study
of the effects of test-suite reduction on fault localization,”
in Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008), Leipzig, Germany,
2008, pp. 201-210.

[4] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold,
“Lightweight fault localization using multiple coverage
types,” in Proceedings of the 31st International Conference
on Software Engineering (ICSE 2009), Vancouver,
Canada, 2009, pp. 56–66.

[5] E. Wong and Y. Qi, “Effective program debugging based
on execution slices and inter-block data dependency,”
Journal of Systems and Software, vol. 79, no. 2, 2006, pp.
891-903.

[6] Z. Zhang, W. K. Chan, and T. H. Tse, “Capturing
propagation of infected program states,” in Proceedings of
the 17th International Conference on Foundation of
Software Engineering (FSE/ESEC 2009), Amsterdam,
Nederland, 2009, pp. 43–52.

[7] E. Wong, Y. Qi, L. Zhao, and K. Cai, “Effective fault
localization using code coverage,” in Proceedings of the
31st Annual International Computer Software and
Application Conference (COMPSAC 2007), Beijing,
China, 2007, pp. 449–456.

[8] L. Jiang and Z. Su, “Context-aware statistical debugging:
from bug predictors to faulty control flow paths,” in
Proceedings of the 22nd IEEE International Conference on
Automated Software Engineering (ASE 2007), Atlanta,
USA, 2007, pp. 184-193.

[9] D. Hao, L. Zhang, Y. Pan, H. Mei, and J. Sun, “On
similarity-awareness in testing-based fault localization,”
Journal of Automated Software Engineering, vol. 2008, no.
15, 2008, pp. 207–249.

[10] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test
generation for effective fault localization,” in Proceedings
of the 2010 Internet Symposium on Software Testing and
Analysis (ISSTA 2010), Trento, Italy, 2010, pp. 49–59.

[11] J. Voas, “Pie: A dynamic failure-based technique,” IEEE
Transaction on Software Engineering, vol. 18, no. 8, 1992,
pp. 717-727.

[12] T. Chilimbi, B. Liblit, K. Mehra, and K. V. A. Nori,
“Holmes: effective statistical debugging via efficient path
profiling,” in Proceedings of the 31st International

Conference on Software Engineering (ICSE 2009),
Vancouver, Canada, 2009, pp. 34–44.

[13] J. A. Jones and M. J. Harrold, “Visualization of test
information to assist fault localization,” in Proceedings of
the International Conference on Software Engineering
(ICSE 2002), Orlando, USA, 2002, pp. 467–477.

[14] B. Liblit, A. Aiken, A. Zheng, and M. I. Jordan, “Bug
isolation via remote program sampling,” in Proceedings of
the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI 2003), 2003,
pp. 141–154.

[15] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting
controlled experimentation with testing techniques: an
infrastructure and its potential impact,” Empirical Software
Engineering, vol. 10, no. 4, 2005, pp. 405-435.

[16] C. Liu, X. Zhang, and J. Han, “A systematic study of
failure proximity,” IEEE Transaction on Software
Engineering, vol. 34, no. 6, pp. 826–843, 2008.

[17] D. Hao, L. Zhang, T. Xie, H. Mei, and J. Sun, “Interactive
fault localization using test information,” Journal of
Computer Science and Technology, vol. 24, no. 5, 2009,
pp. 962–974.

[18] M. Renieris and S. Reiss, “Fault localization with nearest
neighbor queries,” in Proceedings of the 18th IEEE
International Conference on Automated Software
Engineering (ASE 2003), Montreal, Canada, 2003, pp. 30–
39.

[19] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the
accuracy of spectrum-based fault localization,” in
Proceedings of the Testing: Academic and Industrial
Conference, Practice and Research Techniques, 2007, pp.
89-98.

[20] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in Proceedings
of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI 2005), 2005,
pp. 15-26.

[21] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff, “Statistical
debugging: a hypothesis testing-based approach,” IEEE
Transaction on Software Engineering, vol. 32, no. 10, 2006,
pp. 1-17.

[22] G. K. Baah, A. Podgurski, and M. J. Harrold, “The
probabilistic program dependence graph and its application
to fault diagnosis,” in Proceedings of the 2008
International Symposium on Software Testing and
Analysis (ISSTA 2008), Seattle, WA, USA, 2008, pp. 189–
208.

[23] B. Baudry, F. Fleurey, and Y. L. Traon, “Improving test
suites for efficient fault localization,” in Proceedings of the
26th International Conference on Software Engineering
(ICSE 2006), 2006, pp. 82–91.

1984 JOURNAL OF SOFTWARE, VOL. 6, NO. 10, OCTOBER 2011

© 2011 ACADEMY PUBLISHER

