
Research on Component Composition and
Replacement with Formal Semantics

Ruzhi Xu, Quansheng Wu, Peiguang Lin+

School of Information Engineering, Shandong University of Finance, Jinan, China, 250014
Email: llpwgh@sdfi.edu.cn

Abstract—Based on the notion of ‘design by contract’,
components interaction patterns and process patterns of
component composition, formal semantics of components
are proposed. With this basis and inspired by typing system
and process construction methods in π -calculus, in this
paper, a formal typing framework for the composition and
replacement of components are proposed. Additionally,
rules about component composition and replacement are
introduced based on component operation semantics and
π -calculus typing rules, which establish a foundation for
rigorously analyzing and reasoning the composed system.

Index Terms: Component-based Software Engineering
(CBSE); component composition; component replacement;
design by contract; π -calculus

I. INTRODUCTION

Component composition & replacement are considered
as key technology and research focus in CBSE[1].
Construction and evolution of target system can be
achieved through component composition & replacement.

At first, formal semantics of composition is proposed
in this paper based on design by contract [2], component
interaction [3] and process of component composition [4].
Contract semantics composed of signature, pre-condition
and post condition is used to describe computation
characteristics of component and is also key element of
component match and correctness validation; Behavior
semantics expressed by component interaction model is
the foundation of analysis, reasoning and validation
towards component composition and replacement ;
Operational semantics expressed by process model is the
foundation of formal modeling towards component
composition and replacement.

Formal type framework of component composition and
replacement is proposed based on formal semantics by
referencing type system and process construction in
π process calculus [5]. This type framework not only
provides deep analysis to port which is an important
entity of component composition, but also differentiates
port type and channel type of each type. Therefore
different roles played by different ports in the process of
component composition can be distinguished.

Rules for component composition and replacement are
provided based on operational semantics and type rules of
π calculus. Rigorous analysis and reasoning are done
towards composition correctness and influence range of

replacement. Run-time errors can be avoided to enhance
robustness and maintainability of target system.

In this paper, formal semantics is introduced firstly;
secondly typing system of replacement is modeled
combining with π calculus and described in detail;
thirdly rules for composition and replacement are
introduced; finally introduction and summary for
corresponding research are presented.

II. FORMAL SEMANTICS OF COMPONENT

Traditional component service description mainly
includes syntax information such as function name and
parameter list. Formal semantics [6] must be included in
component description in order to rigorously analyze and
reason component composition and replacement. There
are contract, behavior and operational semantics in
component semantics

A. Component Contract Semantics
Calculation characteristics are described by component

contract, which is denoted as TCRT (TSIG, PRE, POST)
and is composed of component service’s framework, pre-
condition and post-condition. Framework mainly
described syntax information such as function name and
parameter lists; Pre-condition is the condition which must
be satisfied in order to implement component service,
otherwise results of service implementation will be
uncertain.; Post-condition is the condition which will be
established after implementing component service.

Definition 1 (Contract) let A be some kind of
operation (an instruction or a function), when A is
arbitrarily implemented from the state in which M is
established, A will terminate to the state in which N is
also established, {M} A {N} is invoked as a contract in
which M is invoking pre-condition and N is invoking
post-condition.

For example , contract semantics for service put() of
component Stack is described as follows, in which pre
and post represent pre-condition and post-condition of
service respectively:

Component STACK [G]
 put (x: G) is -- Add x on top
 pre not full
 post not empty & item = x & count = old count + 1
 end
end

1640 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.9.1640-1648

B. Component Behavior Semantics
Component interacts with other components by the

means of providing and requesting services. If service
provided by one component satisfies service requested by
another component, we can compose these two
components. Based on different models of component
interaction, different behavior semantics will be exhibited
by composed component. Let R and S be two components:

Definition 2 (Serial Interaction) Serial interactions of
components R and S is denoted as R;S and its behavior
semantics is that operation of S followed operation of R.

Definition 3 (Uncertainty Selective Interaction)
Uncertainty selective interaction of components R and S
is denoted as R+S and its behavior semantics is that only
one operation, either R or S, can be executed based on a
specific context state.

Definition 4(Repeated Interaction) Repeated
interaction of component R is denoted as !R and its
behavior semantics is that R will be executed repeatedly.

Definition 5 (Parallel Interaction) Parallel interactions
of components R and S is denoted as R |S and its behavior
semantics is that R and S will be executed in parallel.

The following expression of component interaction
process can be obtained by combining process
construction methods of π -calculus:

()1 2 1 2 1 2:: ; | | ! | | | 0R R R R R R R R v a R= +
()v a R represents that variable a can be only visible in

R, i.e. a is private variable of process R. 0 represents
inaction, i.e. process without executing any action. While

{ / }R b a represents that variable a in R is substituted by
variable b.

C. Component Operational Semantics
Component composition includes multiple stages such

as service matching and establishing of interaction
channel, invoking and execution of service, as well as
service replying and result requesting. Let R (Requestor)
and S (Server) represent two components of requesting
and providing service, so there will be the following
process model in component composition:

(1) Service match: detect if service s provided by S can
satisfy service r requested by R; (2)Establishment of
interaction channel: When R is invoking the service of S,
a interaction channel c must be established between port r
and s;(3)Service invoking: R sends request for invoking
service of S through interaction channel and agrees to
establish reply channel simultaneously;(4)Service
execution: Corresponding service will be executed after S
receives invoking request from R through interaction
channel ;(5)Service reply: S sends corresponding reply
information through reply channel after executing
requested service;(6)Service result: R receives execution
results of service from reply channel.

In π -calculus , basic element for describing behavior

is action ():: T | T |PORT PORTx y x yα τ= .Where TPORT

represents type of active port, output action x y
represents sending name y through channel (port) x ,

input action ()x y represents receiving name y from x ,
unobservable action τ is inner action in process and is
not visible outside process.

Combining with the process pattern of component
composition, behavior semantics displayed in the process
of component composition by various ports is shown as
following prefix:

() ()1 1:: T | T | T ,..., , | T ,..., ,REQ C I SER C I INV I s R EXE I t Rr r s s r a a r s x x sπ =
() | T | TREP R RES Rs b r y

Where TREQ represents service requested, TSER
represents service provided, TINV represents service
invoked, TEXE represents service executed, TREP
represents service replied, and TRES represent result of
service.

III. TYPING FRAMEWORK OF COMPONENT COMPOSITION
AND REPLACEMENT

The major use of typing system is to prevent errors
during operation [5, 7, 8, 9], and it is key factor to analyze
and reason the correctness of component composition.
Combining with the typing system of π -calculus, the
following type judgments are introduced in this paper.

Where { }1 1: T ,..., : Tn nv vΓ = called type environment and it
is gives type Ti to name, while each iv appears in Γ only
once:

PΓ├ Expression P is well-typedness, i.e.
every variable in P is defined in Γ

: TxΓ├ Name x belongs to type T
Γ├ T S≤ Type T is subtype of type S
Based on characteristics of component composition

and formal semantics of component, the following typing
framework is introduced in this paper:

T :: TBSC=
 Basic type

() | T T ... T TSIG LNK× × ×
 Signature

() | T TPRD
 Predicate

 | TLNK
 Link type

T :: T TLNK C P=
 Channel and Port type

()T ::= T T T TC CTR × ×
 Contract

() | T T ... T TINT LNK× × ×
 Interaction

() | T TRLY
 Reply

()T :: T | T | T | T | T | TP REQ SER INV EXE REP RES= ±

 Port type
Where a group TBSC representing basic types such as

Integer and String is supposed. TSIG and TPRD belong to

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1641

© 2011 ACADEMY PUBLISHER

basic type representing signature and predicate of service.
TCTR,TINT and TRLY all belong to link type and they are
classified by data type transferred through the channel.

Component composition usually involves in three
entities including data, port and component and port
representing component service is the most important one.
p=(pCTR, pINT, pREP) is used to represent component port,
where pCTR is the contract port defined by type structure,
pre- and post-condition, pINT is interactive port to
implement service invoking and execution, pREP is reply
port to transfer replied information of service.

To differentiate different roles played by various ports
during the process of component interaction, port type &
channel type of each port will be classified in this paper.

Tp(p) or p :p t is used to represent the port type of port p.
It describes the functional and directional characteristics
of component port. Functional characteristics is described
by contract port and interactive port, while directional
characteristics refers to input or output port.

Action prefix describing behavior semantics of
component in the previous section represents port type.

For example, Cr is service request port, while Cs is its
paired port for service providing, i.e.

()T = TREQ p Cr , ()T = TSER p Cs . They can also be

represented as : TC p REQr and : TC p SERs .
Each port has one direction and it is called polar. "＋"

represents output, i.e. this port can only be used to send
information; "－" represents input, i.e. this port can only
be used to receive information.

Each group of ports(pCTR, pINT, pREP) usually follows
certain direction model. For example, (＋ ＋ －)
represents request port, i.e. send contract and interaction
messages, and receive reply message via interactive
channel; (－－＋) represents server port, i.e. receive
contract and interaction messages, and send reply
message via interactive channel.

Tc(p) or p :c t is used to represent channel type for port
p and it describes capability of transferring entity through
port.

Channel type can restrain interaction and composition
between components, while pCTR :c TCTR(TSIG(T1,…,Tn,
TRLY(T)), TPRD(PRE), TPRD(POST)) represent contract
types that must be satisfied by interaction channel when it
is transferred through contract type. Where pINT :c
TINT(T1,…,Tn, TRLY(T)) means that data and reply
information can be delivered by interaction port, pREP :c
TRLY (T) means that only data can be carried by reply port.
Framework of contract port TSIG(T1,…,Tn, TRLY(T))
represents reply channel TRLY (T) is built at the same time
when delivering parameters T1,…,Tn by invoking
component service. Pre- and post-conditions are
represented by predicate type TPRD. Channel types of each
port during component composition process are shown as
follows:

()() () ()()1: T T T ,...,T ,T T ,T PRE ,T POSTC CTR SIG n RLY PRD PRDr

()() () ()()1: T T T ,...,T ,T T ,T PRE ,T POSTC CTR SIG n RLY PRD PRDs ’ ’ ’ ’ ’

()()1: T T ,...,T ,T TI INT n RLYr
()()1: T T ,...,T ,T TI INT n RLYs ’ ’ ’

(): T TR RLYr (): T TR RLYs ’
Where interaction and reply ports can be only visible

by two components involved in interaction, i.e. the
interaction channel built during component composition
is private channel between components.

IV. RULES FOR COMPONENT COMPOSITION

Typing rules are used to define semantics of typing
system in π -calculus [5]. Based on typing rules,
effectiveness of one specific judgment can be judged on
the basis of known effected judgments. The format for
typing rule is as follows:

[Rule Name] 1 1 ... side-conditionn nΓ Γ
Γ

├ ├

├

S S
S

Here, each rule has a name determined by its
conclusion. The part above horizontal line is multiple
hypotheses of rule i iΓ S├ , while the part below it is

rule’s only conclusion Γ S├ .The part after is the
optional side-condition. The meaning of rule is that
conclusion is valid when all hypotheses are satisfied.

A. Basis Typing Rules
Following are some basic typing rules combined with

typing framework of component composition:
Rule 1 (Sub-typing Relation Rule) Sub-typing relation

≤ is a preorder relation, i.e. it has reflexivity and
transitivity:

 [SUBREFL]
T S

T S
=

Γ ≤├

[SUBTRANS]
U T T S

U S
Γ ≤ Γ ≤

Γ ≤
├ ├

├

Rule 2 (Reply Channel Sub-typing Rule) If data type
T' delivered by reply channel R' is the subtype of T
delivered by reply channel R, then type ()T TRLY ’ for
reply channel R' is the subtype of ()T TRLY for reply
channel R:

[SUBRLY] () ()
T T

T T T TRLY RLY

Γ ≤
Γ ≤

├

├

’
’

Rule 3(Contract Typing Rule) If types of s, p1, p2 are
framework type, pre-condition type and post-condition
type, then the contract type of contract TCTR (s, p1, p2) is

()() () ()()1T T T ,...T ,T T ,T T ,T TCTR SIG n RLY PRD PRD :
[ISCTR]

1 1 2

1 2 SIG 1

: T (T ,...T ,T (T)) : T (T) : T (T)
T (, ,) : T (T (T ,...T ,T (T)),T (T),T (T))
c SIG n RLY c PRD c PRD

CTR c CTR n RLY PRD PRD

s p p
s p p

Γ Γ Γ
Γ
├ ├ ├

├

Rule 4(Framework Sub-typing Rule) If all data types
in framework S' are subtypes of corresponding data types
in framework S, and type for reply channel in S is the

1642 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

subtype of that for reply channel in S', then framework
type for S' is the subtype of that for S:

[SUBSIG]
1 1

1 1

T T ... T T T (T) T (T)
T (T ,...,T ,T (T)) T (T ,...,T ,T (T))

n n RLY RLY

SIG n RLY SIG n RLY

Γ ≤ Γ ≤ Γ ≤
Γ ≤

’ ’ ’
’ ’ ’

├ ├ ├

├

Rule 5(Predicate Sub-typing Rule) If condition COND'
implicates condition COND, then predicate type for
COND' is the subtype of predicate type COND:

[SUBPRD]
COND COND

T (COND) T (COND)PRD PRD

→
Γ ≤

’
’├

Rule 6 (Contract Sub-typing Rule) If contract C' is the
contract obtained after weakening pre-condition and
strengthening post-condition of contract C, and the
framework type for C' is the subtype of that for C, then
the contract type for C' is the subtype of that for C:

[SUBCTR]
PRE PRE POST POST T T

T (T , PRE , POST) T (T , PRE, POST)
SIG SIG

CTR SIG CTR SIG

Γ ≤ Γ ≤ Γ ≤
Γ ≤

’ ’ ’
’ ’ ’

├ ├ ├

├

Rule 7 (Sub-typing Rule for Interaction Channel) If all
data types in interaction channel I' are subtypes of
corresponding data types in interaction channel I, and
type for reply channel in I is the subtype of that for reply
channel in I', then interaction channel type for I' is the
subtype of that for I:

 [SUBINT]
1 1

1 1

T T ... T T T (T) T (T)
T (T ,...,T ,T (T)) T (T ,...,T ,T (T))

n n RLY RLY

INT n RLY INT n RLY

Γ ≤ Γ ≤ Γ ≤
Γ ≤

’ ’ ’
’ ’ ’

├ ├ ├

├

B. Service Matching and Well-typedness
Above basic typing rules can be used to represent sub-

typing relation among all entities (data, port and
component) involved during component composition.
Sub-typing relation can be used to judge not only whether
two service ports match with each other or not, but also if
they can be composed together.

During component composition, match, i.e. service
provided can satisfy requested service, need to be judged
firstly. Type for contract channel composes of framework,
pre- and post-condition. Based on traditional refinement
relation(weakening pre-condition and strengthening post-
condition), match is defined as follows:

Definition 6 (Match) For server rC :c TCRT(TSIG, PRE,
POST) and request sC :c TCRT(TSIG', PRE', POST'), if
T T PRE PRE POST POSTSIG SIG= ∧ → ∧ →’ ’ ’ , then
server sC matches rC.

The implied condition for this definition is: TREQ and
TSER are required to be complementary and have opposite
port direction when they are matched. It is denoted as
() ()T TC Cr s⇔ .
Interaction channel between components will be

established after matching and the type of delivered entity
must be type allowed by the channel while delivering
information along this channel, i.e. type satisfaction.

Definition 7 (Interaction Typing Satisfies Contract
Typing) For interaction typing ()()1T =T T ,...,T ,T TI INT n RLY

and contract typing ()T =T T ,PRE,POSTC CTR SIG , if
interaction port sI of service s satisfies restraint

()()1T T T ,...,T ,T TSIG SIG n RLY= , and if the pre-condition PRE
is valid, the post-condition POST will be valid after the
execution of sI, we call interaction typing TI satisfies
contract typing TC, and denote it as T TI C╞ .

In the meantime, based on description of port channel
typing, successful interaction between components also
requires that reply typing TR must satisfy interaction
typing TI and data typing T must satisfy reply typing TR,
i.e. T TR I╞ and T TR╞ .

Based on typing framework of component composition,
typing judgment EΓ├ represents that all variables in
expression E have definitions under the typing
environment Γ , i.e. E has well-typedness. The
fundamental effect of well-typedness lies in : Once
composition service contract is established on the basis of
typing framework for component composition, it can
guarantee correct behavior of composition and interaction.
Well-typedness has the following attributes (No concrete
proof will be given since they are relatively simple):

Lemma 1(Judgment in program with well-typedness
will not fail) If RΓ├ , then execution of R will not fail.

Lemma 2 (Variable substitution can keep well-
typedness) If RΓ├ , and : T, : Tx vΓ├ , then { }R /v xΓ├ .

Lemma 3(Transition can keep well-typedness) If
1RΓ├ and 1 2R R→ , then 2RΓ├ .

Combined with typing satisfaction, well-typedness for
component composition is defined as follows:

Definition 8 (Well-typedness for Component
Composition)

(1) If () ()T Tc I c Cr r╞ , then TREQ C Ir rΓ├ , otherwise
TREQ C Ir r fails.

(2) If () ()T Tc I c Cs s╞ , then ()TSER C Is sΓ├ , otherwise
()TSER C Is s fails.

(3) If a is data type, and () ()T Tc R c Ir r╞ ,

then T ,INV I Rr a rΓ├ , otherwise T ,INV I Rr a r fails.

(4) If y is data type, and () ()T Tc R c Is s╞ ,
then ()T ,EXE I Rs y sΓ├ , otherwise ()T ,EXE I Rs y s fails.

Here, execution of action fails means that data
delivered through channel violates typing constraint of
channel, interaction fails means that two action involved
in interaction are well-typedness but they violates typing
constraint of channel.

Successful parallel composition must satisfy the
following well-typedness rule based on interaction
semantics of component and the concept of well-
typedness

Rule 8 (Well-typedness Rule for Parallel Composition)
[WELLPAR-COMP]

()
()

T T T () T ()
T | T

REQ C I PRO C I c C c C

REQ C I PRO C I

r r p p p r
r r p p

Γ Γ Γ ≤

Γ

├ ├ ├

├

If TREQ C Ir rΓ├ and ()TSER C Is sΓ├ all are valid, but
() ()T Tc C c Cs rΓ ≤├ is not valid, then parallel composition

fails.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1643

© 2011 ACADEMY PUBLISHER

C. Transition Rule for Component Composition
In order to understand dynamic activity of system,

action is used to mark transition relation between
processes in π calculus [12]. Transition relation marked by

action α is denoted as
α

→ . Transition
x y

P Q→ means that

process P evolves into process Q after sending name y

through channel (port) x; Transition
()x y

P Q→ means that

process P evolves into process Q after receiving y from x;
Transition P Q

τ

→ means process P can evolve into
process Q without being visible from outside.

Combined with process pattern for component
composition, we built modeling on dynamic activity
using transition relation as follows.

From the definition of match, a sub-typing relation is
formed when service s served by component S matches
service r requested by component R. At this moment, an
interaction channel will be established between these two
components and service interaction occurs through this
channel. Match transition rule is used to represent as:

Rule 9 (Match Transition Rule)

[TRANSMAT] ()
()

()

T . T .

T . | T . *

C I C Ir r p p

REQ C I PRO C I

REQ C I PRO C I

r r R R p p P P

r r R p p P R P
τ Θ→ →
→

Here, additional condition is T T
C Cs rΘ ≡ ≤ and its

connection { } { }()
def

* / | /= I IR S v c R c r S c s introduces a
new variable c, which represents the private interaction
channel built between R and S while matching.

After private interaction channel c is built between S
and R, component R sends parameter a: ta (satisfy T Ta x≤)
to this channel and reply channel r : T

RR r invoke service
sI from S. It can be represented using Interaction
Transition Rule as follows:

Rule 10(Interaction Transition Rule)
[TRANSINT]

()
()

()

, ,

T , . T , .

T , . | T , . * { / }

I R I Rr a r p x p

INV I R EXE I R

INV I R EXE I R

r a r R R p x p P P

r a r R p x p P R P a x
τ Θ→ →
→

Here, additional condition is T T
I Is rΘ ≡ ≤ ,parameter a :

PRE(a must satisfy pre-condition). T
Ir and T

Is are
interaction type ()()1T ,..., ,TINT r RLYt t t and

()()1T ,..., ,TINT p RLYt t t’ ’ ’ respectively and their reply
channel (type TRLY) is a private channel between R and S.

After completing service interaction, component S
will send back reply information b : tb(satisfy T Tb y≤) to
component R through reply channel. It can be represented
using Reply Transition Rule as follows:

Rule 11(Reply Transition Rule)
[TRANSRLY]

()
()

()

T . T .

T . | T . { / }*

RR p br y

RES R REP R

RES R REP R

r y R R p b P P

r y R p b P R b y P
τ Θ→ →
→

Here, additional condition is T T
R Rs rΘ ≡ ≤ , return value

b : POST(i.e. b must satisfy post-condition) is the inner
calculation result of service s.

D. Formal Model of Component
Action prefix[5] .Pπ in π -calculus means that process

P can be executed only after executing action π .For
example, process (). .0x z y z means the sequences:
Receive z through x; Send z through y; turn to inaction.

On the basis of behavior semantics for component
composition model and combining with action prefix in
π -calculus, modeling for request component, server
component and the system composed of them is shown as
follows using formal semantics.

Definition 9 (Request Component) Request
component is composed of a group of request port and it
is defined as follows:

()()def
1 1 1 1 1 1 1

1(,...,) T .! T , .T .0=i m REQ C I INV I R RES RR r r r r r a r r y

 | ...

()() | T .! T , .T .0m m m m m m m
REQ C I INV I R RES Rr r r a r r y

Based on the definition of action prefix, request
T i i

REQ C Ir r of the port must be satisfied before interaction
other random ports. Request of one port can be used
repeatedly once interaction channel is built on this port
(refer the part after !). Since request component should
work as a whole, request from all ports must be satisfied.
Here parallel composition (|) among all ports is used.

Definition 10 (Server Component) Server component
is composed of a group of server port and it is defined as
follows:

() ()()(def
1 1 1 1 1 1 1

1(,...,) ! T .! T , .T .0=n PRO C I EXE I R REP RP p p p p p y p p b

 + ...
() ()()) + T .! T , .T .0n n n n n n n

PRO C I EXE I R REP Rp p p y p p b
All ports from server component can be duplicated

(refer to first ! in the expression) to handle multiple
requests simultaneously. Action semantics of each port is
similar to that of request component. Since there is no
need for server component to involve in port interaction
among all ports, selective composition (+) is used
between ports.

Definition 11 (Composed System) System is
composed of request and server component after parallel
composition:

() ()1 1

def

1 1 1 1(,...,) | ,..., | ... | ,...,= j jn m j mComposedSystem P p p R r r R r r
Definition 12 (Component) A component is not only

the request component but also request component, i.e. it
can both request and serve:

((()1 1 1 1 1 ! ! T , .T .0INV I R RES Rr a r r y

 + ...
()) + T , .T .0m m m m m

INV I R RES Rr a r r y

)1 + (,...,)nP p p
Before providing any service, all requests must be

satisfied, i.e. interaction channel must be established.

1644 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

When server port is invoked, it will possibly trigger
request port of this component to invoke service of other
components. Then it will accomplish its own service.

V. COMPONENT REPLACEMENT AND EVOLUTION

During maintenance and evolution of software system,
specification and realization of component may change;
new upgrade version of component may be available;
component may be replaced by other more competitive
component [10]. Through this process, new component
must be analyzed to check if it is consistent with current
system environment and influences overall behavior of
system. In addition, some components have to be
replaced followed by change of system environment and
application of new technology. This will influence overall
behavior of system and lead to inconsistence. Therefore,
influence of replacement to other components must be
analyzed and adjustment of other components may be
made to realize dynamic evolution of system.

In π calculus, 0 represents inaction process without
executing any action. It is called degradation 0 when it
chooses to compose left or right element of 1 2P P+ ,
otherwise it is called non-degradation 0. For example,
first 0 in ()0 .0x y+ is degradation while second one is
non-degradation.

Definition 13 (Context): A context is obtained when
vacancy []. replaces non-degradation 0 in process
formula.

The difference between context and process is that
context uses vacancy []. to replace non-degradation 0 in

process. When process P replaces vacancy []. in context,

it is denoted as []C P . For example,

[] ()0 . . .0C z w x y= + is a context, while

() () ()0 . .0C z b z w z b x y= +⎡ ⎤⎣ ⎦ is obtained when process

()z b replaces vacancy.
Each component is a process formula from the view of

formal model of component. Based on definition of well-
typedness, correct behavior can be shown in composed
system only when process formula in composition has
well-typedness, i.e. system is consistent. So consistence
of system must be guaranteed when replacing component
in system:

Definition 14(Consistent Replacement): Given random
context C, when []C PΓ├ implicates []C PΓ├ ’ ,
component P can be consistent replaced by component P'.

A. Static Replacement
Since component uses ports to request and provide

services, component replacement means ports
replacement. Interaction between components is
determined by contract type of port and interaction
channel type between components. If component
replacement only influences contract type, then
interaction channel need not to be rebuilt and static

analysis can be done towards contract to judge
consistence of this replacement. Therefore, this
component replacement is called static replacement.

Port replacement and then component replacement are
discussed as follows.

Proposition 1(Consistent Replacement of Service
Request Port) If T () T () T () T ()p C p C c C c Cr r r r= ∧ ≤’ ’ ,

then request port : TC p REQr can be consistently

replaced by : TC p REQr ’ .

Proof: From assumptions, contract ports Cr and

Cr ’ have same kind of port type while channel type of Cr

is the subtype of that of Cr ’ , i.e. r is the refinement of r'.
So r' has stronger pre-condition and weaker post-
condition. From Lemma 3, if C Ir rΓ├ ,

and T () T ()c C c Cr r≤ ’ , then C Ir rΓ ’├ . Since no new
interaction channel needs to be rebuilt in static
replacement, i.e. T () T ()c I c Ir r≤’ is satisfied between
interaction channel, then we have C Ir rΓ├ ’ ’ , therefore

well-typedness is preserved, i.e. the replacement of Cr ’

to Cr is consistent replacement.
For port replacement, its replacement environment is

the component where port resides. But for component
replacement, its replacement environment must include
other interaction components, i.e. system composed of
components. So component providing service must be
included when discussing replacement of request
component.

Proposition 2(Consistent Replacement of Service
Request Component) let in component composition |R P ,
service p provided by P and service r requested by R are
linked together, service r' provided by component R' is a
replacement of r, if T () T ()c C c Cp r≤ ’ , then the
replacement of component R by request component R' in
component composition |R P , i.e.

| |R P R PΓ → Γ ’├ ├ .
Proof: Known from service p and r are linked

together, T () T ()c C c Cp r≤ i.e. service provided by p
satisfies service requested by r. Also
because T () T ()c C c Cp r≤ ’ , so service provided by p
satisfies service requested by r'. This means that
replacement of R by R' will not influence composition, so
this replacement maintains well-typedness and is
consistent replacement.

Replacement of provide port and component is similar
to that of request port and component:

Proposition 3(Consistent Replacement of Service
Provide Port) if T () T () T () T ()p C p C c C c Cp p p p= ∧ ≤’ ’ ,
then provide port : TC c PROp can be replaced consistently

by : TC c PROp ’ .
Proof: Similar to the proof of Proposition 1.

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1645

© 2011 ACADEMY PUBLISHER

Proposition 4(Consistent Replacement of Service
Provide Component) let in component composition |R P ,
service p provided by P and service r requested by R are
linked together, service r' provided by component R' is a
replacement of r, if T () T ()c C c Cp r≤’ , then the
replacement of component P by provide component P'I n
component composition |R P , i.e.

| |R P R PΓ → Γ ’├ ├ .
Proof: Similar to the proof of Proposition 2.

B. Dynamic Replacement
Replacement of component occurred during system

running is called dynamic replacement, which will
change composition environment & lead reestablishment
of interaction channel between components. There’s a
run-time environment T (:)RTE pe p t in each port to
record environment information during interaction. Its
semantics is denoted as T (:)RTE pe p t⎡ ⎤Γ ⎣ ⎦ in typing
environmentΓ . Dynamic replacement can be achieved
by changing run-time environment of ports dynamically
and reestablishment of interaction channel. For example,
execution of run-time environment

()()T : T T ,PRE ,POSTRTE C CTR SIGe r ’ ’ ’ will change

binding contract ():T T ,PRE,POSTC CTR SIGr in typing
environmentΓ .

Run-time environment is introduced on the basis of
formal model of component, contract of request and
provide component becomes to:

()() () ()()
def def

! T : . ! T : .= =i RTE r i RTE pR e r t R r P e p t P p
Contract of request component R is dynamically

replaced by R'

()()
def

! T : .
CRTE C r CR e r t R r= ’

(()

def

T : .
CRTE C r CR e r t R r=’ ’

(() T . T : .

CREQ C I RTE C r Cr r e r t R r+ ’

((()1 ! T ,..., , . T : .
CINV I s R RTE C r Cr a a r e r t R r+ ’

()))) T .0RES Rr y+ It

represents that execution of ()T : .
CRTE C r Ce r t R r’ will lead the

reestablishment of interaction channel (see TREQ C Ir r),
or re-requesting service when interaction channel remains

unchanged (see 1T ,..., ,INV I s Rr a a r), or re-receiving service

result (see ()TRES Rr y).
Dynamic replacement transition rules of request and

provide ports can be obtained based on Proposition 1& 3:
Rule 12 (Dynamic Replacement Transition Rules for

Request Port) Dynamic replacement of request port
:C Cr t by :C Cr t’ ’ is achieved by executing run-time

environment ()T :RTE C Ce r t’ ’ :

 [REPLREQ-PORT]

()
: : T

T : :
C c C C p REQ

C C
RTE C C C p C

r t r
t t

e r t r t
Γ Γ

≤
Γ ⎡ ⎤⎣ ⎦

├ ├

├
’

’ ’ ’ ’

Rule 13 (Dynamic Replacement Transition Rules for
Provide Port) Dynamic replacement of request port

:C Cp t’ ’ by :C Cp t is achieved by executing run-time

environment ()T :RTE C Ce p t’ ’ :
 [REPLPRO-PORT]

()
: : T

T : :
C c C C p PRO

C C
RTE C C C p C

p t p
t t

e p t p t
Γ Γ

≤
Γ ⎡ ⎤⎣ ⎦

├ ├

├
’

’ ’ ’ ’

From the definition of consistent replacement,
replacement based on two above rules is consistent
replacement.

Proposition 5 (Dynamic Replacement of Ports Can
Keep Consistency) Dynamic replacement of ports based
on rules [REPLREQ-PORT] and [REPLPRO-PORT] is consistent
replacement, i.e. for PΓ├ , P' replaces P based on any

rule of Rule 12 and 13, we have PΓ├ ’ .
Proof: Similar to the proof of Proposition 1 and 3.□
Dynamic replacement rules of component can be

similarly obtained on the basis of Proposition 2 and 4.

C. Non-consistent Replacement
Following the usage of new technology and change of

environment, some components have to be replaced. This
replacement will influence overall behavior of system and
non-consistency will appear in system. At this time,
influence of replaced component to other components in
system must be analyzed; then corresponding adjustment
can be made to other components to realize dynamic
evolution of the system.

Since components interact through the links among
them, dependency among components must be analyzed
based on network composed of linked components, in
order to analyze influence of non-consistent replacement
to the system. As we know from formal model of
component, provide port may depend on request port of
the port itself, while request port may also depend on
provide port of other component. This dependency has
transitivity. Therefore when one component is replaced,
all components influenced by this replacement can be
found by calculating dependency closure among ports.
We should also notice that, change of provide port may
still satisfy service request, so no further influence over
request component.

Flow graph [11] in π calculus is used to describe space
structure of linked process. It can be used to represent
network composed of linked components. In the
meantime, dependency graph can be obtained by
considering inner dependency relation between ports of
same component.

Definition 15 (Flow Graph) Nodes in flow graph are
composed of ports rC , rI , rR,, pC, pI , pR, directed edges are
composed of links (rC, pC), (rI , pI), (rR, pR). The direction
of directed edge (r, p) is from r to p, represents that r
depends on p.

1646 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

Definition 16 (Dependency Graph) Dependency graph
is the graph that is obtained by extending flow graph
using inner dependency (p, r) of component.

From the definition of dependency graph, there are two
kinds of edges: (r, p) represents dependency and
describes sub-typing relation between components; (p, r)
represents inner dependency of component and describes
dependency of provide port to request port of same
component.

If dependency graph after component replacement still
has well-typedness, this graph is called consistent
dependency graph:

Definition 17 (Consistent Dependency Graph) 如 If all
edges (r, p) in dependency graph satisfies
T () T () T () T ()c c p pp r r p≤ ∧ ⇔ , then this graph
is consistent.

If non-consistency occurs after replacement, a certain
edge in dependency will not keep well-typedness. The set
of all influenced edges will be obtained by calculating
dependency closure of this edge.

Definition 18 (Influence Set of Replacement) If a
certain edge in dependency can not keep well-typedness,
all edges influenced by this edge is the set

{(,) | 2, 1,i j ip p i j p≥ ≥ depends on }jp .

After influence set is obtained, dynamic evolution will
be realized by replacing influenced components or
reestablishing channel.

VI. RELATED RESEARCH

In software integrated environment “Qingniao III
system” [12], systematic and thoroughly research has been
done on component composition. They proposed
component composition technology based on system
structure and described component service using syntax
information on the basis of function name and parameter
lists. Architecture describing language ABC (architecture
based composition) /ADL is proposed too. Reference [9]
proposed component composition language PICCOLA on
the basis of π calculus. PICCOLA can support the
description of different types of components and
therefore it can support different kinds of component
composition. It is based on modeling over interacting
objects using process. The key concepts are glue code
used in component composition and matching as well as
script language used in describing glue code. Reference
[7] expressed PICCOLA more thoroughly. On this base,
reference [8] proposed a framework of component
composition and replacement based on π calculus.

Reference[2] emphasized on important roles played by
contract in system correctness during the composition of
the object-oriented software. By introducing specific pre-
condition and post-condition in programming language, it
expressed formal semantics of software and established
foundation of correctness of software.

Following the development of Web applications, Web
Services on the basis of component composition became
research focus recently. Reference [13] combined research
on Semantic Web and formal component model and

discussed component contract, composition and
reasoning based on web. In the meantime, Szyperski of
Microsoft research center did detailed research on
dynamic upgrading and expansion, composition
reasoning, as well as component contract [14]. His research
is based on component system structure such
as .NET/COM+ and etc. He also proposed component
maturity model and AsmL.

VII. CONCLUSION

Component composition and replacement are key
technology and research focus in CBSE. Component
contract semantics, behavior semantics and operational
semantics are proposed in this paper. On the basis of
above, formal type framework is proposed by referencing
typing system in process algebra π -calculus and method
in process structure. Then formal typing framework is
forwarded by combining behavior semantics of process
pattern in component composition and replacement. We
analyze port which is important entity of composition
thoroughly by using this typing framework. Port type and
channel type of each port as well as different roles played
by different ports in the process of component
composition can be differentiated.

In the meantime, rules for composition and
replacement are given on the basis of operational
semantics as well as typing rules in π calculus. Rigorous
analysis and reasoning can be done to correctness of
composition and influence range of replacement on the
basis of above rules. Error during execution is prevented
to strengthen robustness and maintainability of target
system.

REFERENCES
[1] Yang FQ, Mei H, Li KQ. Software reuse and software

component technology. Acta Electronica Sinca, 1999,
27(2):68~75 (in Chinese with English abstract).

[2] Meyer B. Object-Oriented Software Construction. Second
edition. Santa Barbara: Prentice Hall Professional
Technical Reference.1997.

[3] Ren HM, Qian LQ. Research on component composition
and its formal reasoning. Journal of Software, 2003,
14(6):1066~1074(in Chinese with English abstract).

[4] Pahl C. A formal composition and interaction model for a
web component platform. Proc. of ICALP Workshop on
formal methods & component interaction. Elsevier
Electronic Notes in Theoretical Computer Science, 2002,
66(4).

[5] Sangiorgi D, Walker D. The π -Calculus – A theory of
Mobile Processes. Cambridge University Press, 2001.

[6] Kung-Kiu L A formal approach to software component
spec. Proc. of OOPSLA Workshop on specif. & verif. of
component-based systems, Iowa, 2001.88~96

[7] Lumpe M. A π -calculus based approach for software
composition [Ph.D. thesis]. Bern: Universität Bern, Institut
für Informatic und angewandte Mathematic, 1999.

[8] Pahl C. A Pi-calculus based framework for the
composition and replacement of components[C]. Proc. of
OOPSLA Workshop on specification and verification of
component-based systems, Iowa, 2001.97~106.

[9] Lumpe M, Achermamm F, Nierstrasz O. A formal
language for composition. In: Leavens GT, Sitaraman M,

JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011 1647

© 2011 ACADEMY PUBLISHER

eds. Foundations of Component-based Systems.
Cambridge University Press. 2000,69~90.

[10] Vigder M, Dean J. Building maintainable COTS-based
systems. In: Proceedings of the International Conference
on Software Maintenance, ICSE98. IEEE Computer
Society Press, 1998.132~138.

[11] Milner R. Communicating and Mobile Systems: the π -
Calculus. Cambridge University Press. 1999.

[12] Yang FQ, Mei H, Li KQ, Yuan WH, Wu Q. An
introduction to JB3 system supporting component reuse.
Computer Science, 1999, 26(5):50~55.

[13] Pahl C. Ontology-based description and reasoning for
component-based development on the web. ESEC/FSE
Workshop on Specification and Verification of
Component-based Systems SAVCBS'03.Helsink, Finland.
2003. 84~87.

[14] Szyperski C. Component Technology – what, where, and
How? In: Proceedings of the 25th International Conference
on Software Engineering (ICSE ' 03). IEEE Computer
Society Press, 2003. 684~693.

1648 JOURNAL OF SOFTWARE, VOL. 6, NO. 9, SEPTEMBER 2011

© 2011 ACADEMY PUBLISHER

