
Power Aware Job Scheduling with QoS
Guarantees Based on Feedback Control

Congfeng Jiang

Grid and Service Computing Technology Lab, Hangzhou Dianzi University, Hangzhou, 310037, China

Email:cjiang@hdu.edu.cn

Xianghua Xu, Jian Wan,Jilin Zhang
Grid and Service Computing Technology Lab, Hangzhou Dianzi University, Hangzhou, 310037, China

Email:{xhxu,wanjian,zhangjilin}@hdu.edu.cn

Yinghui Zhao
Department of Hydraulic Engineering and Agriculture, Zhejiang Tongji Vocational College of Science and Technology,

Hangzhou, 311231, China
Email: zhaoyinghuihust@gmail.com

Abstract—With the scale of computing system increases,

system performance and reliability, described by various

Quality of Service(QoS) metrics, cannot be guaranteed if

only the objective is to minimize the total power

consumptions separately, despite of the violations of QoS. In

this paper a feedback control based power aware job

scheduling algorithm is proposed to minimize power

consumption in computing system and to provide QoS

guarantees. In the proposed algorithm, jobs are scheduled

according to the real-time and historical power consumption

as well as the QoS requirements. Simulations show that the

proposed algorithm can reduce power consumptions

significantly while still providing QoS guarantees and the

performance degradation is acceptable. The results also

show that fine-grained job-level power aware scheduling

can achieve better power/performance balancing between

multiple processors or cores than coarse-grained methods.

And the results also suggest that conventional hardware

based per-component and system-wide power management

methods can save more power consumptions if they are in

assistance with job-level adaptation.

Index Terms—power aware computing system; job

scheduling; Quality of Service (QoS); feedback control

I. INTRODUCTION

Power consumption has been a major concern for not
only large scale computing system but also mobile and
embedded systems powered by batteries. With the scale
of computing system increases, power consumption has
become the major challenge to system performance and
reliability [1, 2, and 3]. For example, server farms today
consume more than 1.5% of the total electricity in the
U.S. at a cost of nearly $4.5 billion, which is estimated to
about 61 billion kilowatt-hours (kWh) in 2006 and it is
more than the electricity consumed by the nation's color

televisions and similar to the amount of electricity
consumed by approximately 5.8 million average U.S.
households [4]. According to current efficiency trends,
power consumption by servers and data centers could
nearly double again in the next five years.

Current processors are provided with support for
dynamic frequency and voltage scaling (DFS/DVS) to
allow software to regulate power consumption by varying
operating frequency and/or supply voltage. However,
with DFS/DVS support, processors are simply switched
to a sleep mode while transitioning between frequencies
and voltages and the system performance will be heavily
deteriorated by the transition delay between various
frequency and voltage levels in uniprocessors. This
situation becomes even worse in multi core processor
which does not support per-core DFS/DVS [5].
Conventional hardware based per-component and system-
wide power management methods cannot save
considerable power consumptions because they are
coarse-grained and not adaptive to various fluctuating
workloads in real scenarios. Moreover, the system
performances, for example, availability, responsiveness,
and throughput, do not scale with the number of
processors but the power consumption does. Most
unfortunately, the performance of the whole system can
be deteriorated greatly if the objective is only to minimize
the total power consumptions separately, despite of the
violations of Quality of Service (QoS) requirements.

Powering servers or computing components on and off
is frequently used for tacking transactional workloads
which consist of independent requests and short-lived
jobs. However, in modern data centers with service
consolidation and virtualization deployment, there are
coarse-grained and heterogeneous workloads whose
performance requirements are specified in terms of QoS
for each upper application in the computing environment.
Server virtualization consolidates multiple under-utilized
servers into a single physical server to exhaust physical
machines. Therefore, it is important to reduce power

Corresponding author: Congfeng Jiang,email:cjiang@hdu.edu.cn

1562 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.8.1562-1569

consumption in virtualization environments because such
advantage of virtualization also leads itself to the original
power consumption problem because there usually are
high power densities in virtualization environments.

In this paper, we investigate the feasibility of
hardware-software joint regulation for a feedback control
based power aware job scheduling algorithm and test the
algorithm by simulations and real workload. In the
proposed algorithm, the feedback based power-aware job
scheduler regulates the job dispatching and system
performance dynamically for different workload
characteristics. A testbed for investigating this scheme is
implemented on a web server using Intel quad core
processor. The performance and overhead of the
algorithm are assessed under different workload. The
results show the potential of power consumption
reductions for hardware-software joint adaptations. We
use a multimeter with USB connection cable to measure
the real time power consumption of the system and the
measurement results show that fine-grained job-level
power aware scheduling can reduce considerable power
consumptions. The results also show that the best
algorithm varies for different experiment settings and real
workload scenarios. In particular, feedback control based
power aware job scheduling algorithm is not always
better than other algorithms in all the performance
dimensions. The performance depends on many factors
such as the accuracy of workload characterization, the
arrival rate of jobs, frequency-voltage transition delays in
specific processors, the frequency/voltage levels available,
etc.

The remainder of this paper is organized as follows: In
section 2 we propose the controlling framework of the
power aware job scheduling scheme. In section 3 we
present the feedback control based power aware job
scheduling algorithm model with QoS guarantees. Then,
in Section 4, we present simulation results and real
platform experiment results of the proposed scheduling
algorithm. We also compare the performance data with
conventional power-unaware job scheduling algorithms
or job scheduling algorithms without QoS guarantees.
Finally, we summarize the work in Section 5..

II. FEEDBACK CONTROL MODEL

There has been increasing research effort in applying
control-theoretic approaches to power and performance
management for computer systems such as internet web
servers, databases and storage systems. Since today's large
scale servers and applications are highly dynamical and
change load conditions frequently, feedback control
designs may provide desired performance guarantees.

It is commonly believed that system performance can
be maximized by operating servers at their highest power
levels under a given power budget. The main idea of this
paper is the intuition that in lower loaded periods, there is
a potential to save power consumption by dynamically
powering off part of or whole servers to address the actual
computing demands. Under such lower-load conditions,
an appropriate fine-grained job scheduling scheme can
considerably reduce power consumption. In the meantime,
under higher load condition, power aware scheduling can

also schedule jobs properly to balance power consumption
between various processors and avoid hotspots. Therefore,
the proposed power aware job scheduling in this paper
contains three parts: workload characterization and
prediction, power consumption measuring and estimation,
feedback control of power consumption through job
scheduling with QoS constraints.

A. Controlling Framework

In dynamic computing system, different tasks
demonstrate variant execution time behavior. In this
paper we use feedback control to capture the dynamic
workload behavior, which is one of the fundamental
mechanisms for dynamic systems to achieve equilibrium.
In order to precisely control the power of a system to the
desired preset point while guaranteeing the QoS
requirements of each job, an online model estimator
should be integrated in the scheduler to achieve analytical
assurance of control accuracy and system stability, even
in presence of significant workload variations or
unpredictable job variations.

In a feedback system, some variables, i.e., controlled
variables are monitored and measured by the feedback
controller and compared to their desired values, i.e., the
preset points. The differences or errors between the
controlled variables and the preset points are the input of
the controlling system. At the meantime, the
corresponding system states are adjusted according to the
differences to let the system variables approximate the
preset points as closely as possible. In order to assess the
suitability and energy saving performance of the
proposed algorithm, we regard the entire system as
consisting of the following components: inputs, actuator,
control object, outputs, sensors, etc. These components
are independent of each other such that the scheduler is
capable of working with different algorithms.

In our feedback scheme, the scheduler chooses the
preset threshold as controlling input according to the
feedback information collected from the previous task
executions and performance data such as QoS
satisfactions, power consumptions, etc. As long as the
actual real-time performance is less than or equal to the
preset threshold, the tasks can therefore be executed at a
lower frequency and voltage level. The error is measured
periodically by the sensor unit. Its output is fed back to
the scheduler to adjust the value for inputs. If a task’s

actual performance is worse than the preset threshold, the
rest of the task runs at the higher frequency or voltage to
meet the QoS requirements of the tasks. In order to
provide performance guarantees and minimize the power
consumption, the algorithm keeps the total system
utilization not lower than a specific level when reducing
processor frequency and voltage. In the following, we
propose a feedback schemes for different computing
scenarios. In the following, we describe in detail of the
feedback scheduler used in the framework.

B. Power-aware and feedback mechanism (PFM)

In the power aware feedback mechanism, at the
beginning of a job scheduling round, the scheduler
chooses the average value of previous performance data

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1563

© 2011 ACADEMY PUBLISHER

as the controlled variable for our simple feedback
mechanism. The average value is only the initial value for
the future scheduling and it is a heuristic setting which
can provide a minimum guarantee for QoS satisfactions.
In the following scheduling period, each time when a job
completes, the real time performance is sensed and
collected by the feedback scheme and fed to the
controller. And the following performance values are
computed based on the initial value of performance
threshold using moving average computation.

Here are the pseudo codes of the power aware
feedback mechanism.

1. When scheduling event occurs {

2. for each task in the task set

3. Compute estimated performance data of each task

and its execution time

4. End for

5. Compute estimated power consumption of each job on

specific processor through code profiling

6. Compute QoS gains of each job

7. for each task in the task set

8. Schedule the tasks with minimum QoS gains and

power consumptions

9. Delete the task from the task set

10. Update job table

11. If cpu_queue of targeted processor is exceeded the

maximum length

12. Insert the task into next scheduling tasks set

13. Update job table

14. End if

15. Else

16. Insert the task into next scheduling tasks set

17. Update job table

18. End if

19. End for

20. }

Figure 1. The pseudo codes of PFM

III. POWER AWARE JOB SCHEDULING WITH QOS

GUARANTEES

We use a periodic and independent task model in our

framework. Let { | 1,2,3,..., }iJ J i n  denote jobs

set, (, , , , ,)i i i i i i iJ a b e c s Q , M is set of processors,

{ | 1,2,3,..., }jM M j m  , (, , , ,)j j j j j jM p f d BW PW .

Where:

ia is arrival time of job iJ ， ib is starting time of job

iJ ， ie is the average execution time of job iJ on all the

processors, i.e. expected executed time on processor jM

where there is no other running jobs except for

iJ , 1 2 3(, , ,...,)m

i i i i ie e e e e ， ijc is the expected completion

time of job iJ on processor jM ， is is the size of data

needed by job iJ (MB)， iQ is the QoS of job iJ .

As for hosts set M , jp is the speed of processor jM

(MHz)， jf is the available memory capacity of host jM

(MB) ，
jd is the available disk space on host

jM

(MB)，
jBW is the bandwidth of host

jM (Mb/s)，
jPW

is the level of power consumption of host
jM ,

1 2 3(, , ,...,)u

j j j j jPW PW PW PW PW ,

[1,],0 1v

jv u PW    ,where 0 stands for the lowest and

1 the highest.
Let Q denote a set of Quality of Service

constraints, { | 1,2,..., }iQ Q i n  , (, , , ,)i i i i i iQ T R S A P ,

where:

iT is timeliness requirement,
iR is reliability

requirement,
iS is security requirement,

iA is accuracy

requirement,
iP (Priority) is priority requirement.

For simplicity, we use discrete values to modeling the
Quality of Service constraints, i.e., the QoS constraint is
presented by several levels like very low, low, medium,
high, and very high, not a specific number like 10% or
90% because in real computing system with user
interaction a user only cares the interactive experience,
not the specific performance numbers.

Let 1 2(, ,...,)J

mec ec ec ec denote the power

consumption of m threads, and the matrix of n
performance counters in m threads

is ,[](1 ,1)i jC c i m j n     .

We define j

iG is the gains of QoS of job
iJ on

host jM , i.e.

1

(,)
q

j k k k

i i i j

k

G w g Q V


  (Eq.1)

Where k

iw is the weights of different QoS requirements

of job
iJ , and

1

1
q

k

i

k

w


 ； (,)k k

i jg Q V is the kth gains of

QoS requirements of job
iJ :

- ,
(,)

0 ,

k k k k

j i j ik k

i j k k

j i

Q V when V Q
g Q V

when V Q

 
 



 (Eq.2)

Where k

jV is the available QoS capacity of the

corresponding host.

We define iD as the available theoretical scheduling set

of job iJ with QoS satisfactions, (| 0)j j

i i iD D G  

In order to avoid the QoS contention, the gains of QoS
satisfactions must be minimized while still guarantying
the QoS requirements. Assume that

1

(| 0) min (,)
q

j j k k k

i i i i i j

k

OP D G w g Q V


 
    

 
 (Eq.3)

Then the objective function for power and QoS
constrained scheduling for job set iJ is

min min(max{ ()})
i

i

i T T i

J J

S OP c



  
  

  
 (Eq.4)

Eq.4 is NP-hard and can be solved by heuristics
scheduling. With the above task model, we use heuristics
scheduling algorithm to solve this problem of power

1564 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

aware job scheduling with QoS constraints. The
algorithm is triggered by a scheduling event. When the
number of jobs in the job set becomes a fixed maximum
number, like 5, we call this a scheduling event. A job is
submitted to the primary scheduler and the backup
scheduler respectively. Thus for different objectives
higher power savings can be achieved when higher
missed deadlines or QoS violations are allowed. The
time-varying workload parameters, such as workload
intensity, real-time power consumed, are specified as the
scheduling variable that is used to parameterize the
scheduling model. The utilization of scheduling
parameters can be generalized to accommodate more
sophisticated workload characterizations and more
complicated multiple server environments.

IV. SIMULATION AND EXPERIMENT RESULTS AND

PERFORMANCE ANALYSIS

A. Simulation Setup and Parameters Settings

Feedback control based scheduling algorithm is
capable of modifying its own scheduling decision and
program behavior through time, depending on the
execution characteristics. Here, the objective of the
feedback control is to schedule jobs to processors while
guarantying the QoS requirements and minimizing the
total power consumptions of the computing system,
preserving its simplicity and low overhead. We test this
algorithm and describe its behavior under a number of
workloads. Simulations include an analysis of the
performance sensibility with the variation of the control
parameters and its application in a multi processor
computing system. Although the processors of a
Massively Parallel Processing system such as a
computing cluster or a supercomputer may slightly differ
in clock frequency and available memory, these
differences usually have little influence on most
applications in practice [6]. Hence, in the simulation we
use an MPP with multiple machines as the testbed and it
is feasible for job migration.

In our simulations, we construct synthetic workloads
using jobs with varying arrival rate and execution time.
Moreover, in order to evaluate the robustness of our
algorithm, we allow the jobs to follow different
distributions, such as Gaussian, Possion, Uniform,
Weibull, and heavy tailed distribution. In the simulation
process, different data sets are used and the data sets
represent different orders of magnitude in server activity
and time duration. We generate a wide range of
workloads by varying the number of jobs and their
execution times in our simulations. Specifically, we
conduct over 7 sets of experiments, and the number of
jobs in each experiment is selected according to a specific
distribution. The relative performance of an algorithm in
each experiment is compared by normalizing its original
values. Table 1 lists the key simulation parameters of one
simulation.

TABLE I. REPRESENTATIVE SIMULATION PARAMETERS AND

SETTINGS

Number of jobs 100,000,000
Number of processors 16
Site processing speed 8 nodes with 2.4GHz and 8 nodes with

1.8GHz
Job arrival rate Poisson distributed in [0.2, 0.9]
Job execution time Normal distributed in [0.1, 10000]

B. Simulation Results and Analysis

We use simulations and real workload experiments to
study the performance of the proposed scheduling
algorithm. Extensive sets of tests are executed to simulate
the performance of our feedback scheduling power-aware
framework under overload and under loaded conditions.
In simulations, we use various matrix and vectors to
modeling the controlling system, including task sets (i.e.,
arrival rate, task's period, deadline, actual execution time,
worst case execution time, estimated execution time, etc),
QoS requirements, power consumptions, and other
system parameters. In a simulation setting, all tasks being
scheduled are assumed to be periodic and each task's
actual execution time is assumed to be known in advance
and is indicated in matrix declared in the same .m
program. Each task indicates its QoS needs quantitively
to the scheduler, which in turn is able to know the global
QoS requirements of the system to meet all task
requirements. At the initial round when scheduling events
occur (the threshold is reached and the scheduling is
triggered), the scheduler make the task scheduling
decision and the processor voltage/frequency scaling.
After several scheduling periods, the scheduler makes
the scheduling decision and adjusts the processor
frequency and voltage level according to the feedback
information collected from the sensor units.

The common approach to study the performance of the
scheduling algorithm is to compare it with a non-power-
aware or non-QoS-aware scheduling algorithm. Thus we
studied and compared the performance of the simple and
frequently used heuristics such as EDF, Min-min [7],
Max-min [7], QoS guided Min-Min [8], Sufferage [9],
and MCT (Minimum Completion Time [10], with PFM
by testing various scenarios.

To evaluate the scheduling algorithm, we use the
following metrics:

1) Makespan: the total running time of all jobs;
2) Average waiting time: the average waiting time

spent by a job in the grid.
3) Scheduling success rate: the percentage of jobs

successfully completed in the system;
4) Power consumption: the power consumed by the

jobs.
5) Average violating rate of QoS: the percentage of

QoS violation when scheduling user jobs out of total jobs.
6) Average migration rate: the percentage of migrated

jobs out of total scheduled jobs.
7) Overall utilization: the percentage of resources

used out of total available resources.

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1565

© 2011 ACADEMY PUBLISHER

The simulation results are shown in Figure 2. All the
data in the figures are mean values of 20 simulation
results.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

M
ak

es
p

an
(s

ec
)

Scheduling Algorithms

Makespan

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(a) Makespan

0

10

20

30

40

50

60

A
ve

ra
ge

 W
ai

ti
ng

 T
im

e(
se

c)

Scheduling Algorithms

Average Waiting Time

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(b) Average waiting time

94

95

96

97

98

99

100

S
ch

ed
u

li
n

g
S

u
cc

es
s

R
at

e(
%

)

Scheduling Algorithms

Scheduling Success Rate

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(c) Scheduling success rate

0

1

2

3

4

5

6

7

Po
w

er
 C

on
su

m
pt

io
n(

kw
.h

)

Scheduling Algorithms

Power Consumption

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(d) Power consumption

0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 V
io

la
tin

g
R

at
e

of
 S

L
A

(%
)

Scheduling Algorithms

Average Violation rate of QoS

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(e) Average violation of QoS

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 A
ve

ra
ge

 M
ig

ra
ti

on
 R

at
e(

%
)

Scheduling Algorithms

Average Migration Rate

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(f) Average migration rate

1566 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

0

10

20

30

40

50

60

70

80

90

100

O
ve

ra
ll

ut
ili

za
tio

n(
%

)

Scheduling Algorithms

Overall utilization

EDF

Min-Min

Max-Min

Qos-Min-min

Sufferage

MCT

PFM

(g))Overall utilization

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 p
ow

er
-u

ti
li

za
ti

on

Scheduling Algorithms

power-utilization comparsion

Overall utilization

Power consumption

(h) Power-utilization comparison

Figure 2. Relative performance

In Figure 2(a), the makespan order of the scheduling
algorithms from maximum to minimum is: (1) Max-Min,
(2) QoS-Min-min, (3) Min-Min, (4) PFM, (5) Sufferage,
(6) MCT, and (7) EDF. The makespan of EDF is the
smallest because of its smallest computation consumption.
PFM dynamically schedules jobs to computing sites
according to the real time power consumption and QoS
constraints. Thus the makespan of PFM is relatively large.

In Figure 2(b), the average waiting time order of the
scheduling algorithms from maximum to minimum is: (1)
EDF, (2) Max-Min, (3) PFM, (4) Sufferage, (5) QoS-
Min-min and MCT, and (6) Min-Min. EDF has the
longest average waiting time because it executes tasks
without global information such as waiting times of other
tasks. Consequently, EDF makes a significant increase of
total execution time and makes the average waiting time
longest eventually.

In our simulations, a task will be dropped if it couldn't
be finished successfully after ten times. Thus, the
scheduling success rate can't reach to 100%.

In Figure2(c), PFM has the highest scheduling success
rate in a failure-prone multi-processor environment. PFM
reschedules the tasks whose demand couldn't be satisfied
on the current time when next scheduling event occurs.
Thus, PFM increases the scheduling success rate
significantly.

In Figure 2(d), the power consumption order of the
scheduling algorithms from highest to lowest is: (1) Max-
Min, (2) Qos-Min-min,(3)Min-Min,(4)Sufferage, (5)EDF,
(6)MCT, and (7)PFM. PFM has the lowest power
consumption because it takes into account the real time
power consumption when scheduling tasks.

Since PFM also optimizes the QoS requirements and
satisfactions while scheduling tasks, it has the lowest
average violation rate of QoS and the lowest average
migration rate through Figure 2(e) and Figure 2(f).

We also compare the overall utilization and power-
utilization in Figure 2(g) and Figure 2(h). The results
show that the power consumption is highly correlated
with the utilizations.

The results in Figure 2 show that no single algorithm
achieves the highest performance for all metrics.
However, PFM exhibits relatively better performance
with highest success rate, moderate level of makespan
and average waiting time, lowest power consumption,
average violation rate of QoS and the lowest average
migration rate due to its power aware and QoS aware
scheme. The simulation results show that substantial
performance improvements can be obtained. As the
experimental results finally turn out, the performances of
our algorithm is fairly insensitive to the distributions we
choose.

V. CONCLUSIONS

Recent processor support for dynamic frequency and
voltage scaling makes it possible for power consumption
regulation in software level. However, DVS and DFS are
not enough for processor power reductions if they are
issued only by entering a sleep mode. Therefore, it is
feasible to harness job scheduling for power management
in computer system. Moreover, fine-grained job-level
power aware scheduling can achieve application specific
performance QoS guarantees than system wide or per-
component power management.

In this paper we propose a job scheduling algorithm
based on feedback control theory and characterize
workload through data gathered from trace data to
capture possible application behavior. The job scheduling
model is independent of implementation platforms and
therefore feasible for future applications on multi-
processor systems. By exploring the nature of
dependence of server performance on time-varying load
and operating conditions, the proposed general
framework is possibly applicable to a diverse spectrum of
server-based applications.

Performance such as Makespan, Average waiting time,
Scheduling success rate, Power consumption, Average
violating rate of QoS, Average migration rate are
assessed for different job scheduling algorithms.
Measurements provides a quantitative assessment of the

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1567

© 2011 ACADEMY PUBLISHER

potential of energy savings for power and QoS aware job
scheduling algorithms as opposed to conventional job
scheduling algorithms that disregard power consumption
and QoS constraints. Simulation and experiment results
show that the proposed algorithm can save significant
power consumptions while still providing QoS guarantees
and the performance degradation is acceptable. The
results also show that fine-grained job-level power aware
scheduling can achieve better power/performance
balancing between multiple processors than coarse
grained methods.

Moreover, fundamental to the goal of power savings
and performance maximization is an understanding of the
dedicated workloads. Since global power consumption
mode is different in different systems with specific
performance-oriented applications and it is also different
for different platforms with different performance
constraints and QoS requirements, estimating power
consumption is critical for job scheduling and obtaining
processor and system power consumption is non-trivial
and using real platform simulators is time consuming and
prone to error. Therefore, it is still an open problem to
reduce energy consumption, while still meeting
performance demands, system loads and reliability.

Although there are also tradeoffs such as latencies,
performance degradations, conflicts and coordination,
between the power reduction and performance of the
specific application, it’s worthy of implementing a bin-
level power management schemes to reduce power
consumption as much as possible. With the ongoing trend
of server consolidation and emerging hardware, the
power management problem is still active and researchers
and engineers are still trying to address this issue through
various efforts. It is highly likely that combination of
hardware level and software level power management can
overcome this power management problem and provide
better performance for large scale computing systems.

In the future, several extensions can be made further
under different dimensions. For example, the scheduled
tasks will be extended to be real tasks whose actual
execution time is not known until its completion. And the
scheduler can be implemented as a kernel module in an
OS to provide power aware job scheduling.

ACKNOWLEDGMENT

The funding support of this work by State Key
Development Program of Basic Research of China (Grant
No. 2007CB310900), Natural Science Fund of China
(NSFC, Grant No. 60873023 and 60973029), Science and
Technology Research and Development Program of
Zhejiang Province, China (Grant No. 2009C31033),and
Hangzhou Dianzi University Startup Fund (Grant No.
KYS 055608058 and KYS 055608033,) are greatly
appreciated.

REFERENCES

[1] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M.
Kistler, and T.W. Keller, “Energy management for
commercial servers,”Computer, Vol.36, pp.39-48,2003.

[2] X. Wang, M. Chen, C. Lefurgy,and T.W. Keller, “SHIP:
Scalable hierarchical power control for large-scale data
centers,”in Proceedings of 2009 18th International
Conference on Parallel Architectures and Compilation
Techniques(PACT’09),pp.91-100,2009.

[3] X. Wang,and M. Chen , “Cluster-level feedback power
control for performance optimization,” in Proceedings of
IEEE 14th International Symposium on High Performance
Computer Architecture(HPCA 2008), pp.101-110, Feb.
2008.

[4] Report to Congress on Server and Data Center Energy
Efficiency. U.S. Environmental Protection Agency,
ENERGY STAR Program, August 2, 2007.Available
at:http://www.energystar.gov/ia/partners/prod_developmen
t/downloads/EPA_Datacenter_Report_Congress_Final1.pd
f

[5] Y. Wang,K. Ma, and X. Wang, “Temperature-constrained
power control for chip multiprocessors with online model
estimation,” in Proceedings of the 36th annual international
symposium on Computer architecture (ISCA’09),pp.314-
324,June 2009.

[6] C. Franke, J. Lepping, and U. Schwiegelshohn, “Greedy
scheduling with custom-made objectives,”Annals of
Operations Research,in press.

[7] T.D. Braun, H.J. Siegel, N. Beck,L. L. Bölöni,M.
Maheswaran,A.I. Reuther,J.P. Robertson, et al., “A
Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems, ” Journal of Parallel and
Distributed Computing, Vol. 61,pp.810-837,2001.

[8] X. He, X. Sun, and G.V. Laszewski, “QoS guided Min-
Min heuristic for grid task scheduling, ”Journal of
Computer Science and Technology, Vol.18,pp. 442-
451,2003.

[9] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F.
Freund, “Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems,” Journal of
Parallel and Distributed Computing, Vol. 59, pp.107-
131,1999.

[10] L.D. Briceño , M. Oltikar, H.J. Siegel, and A.A.
Maciejewski, (). “Study of an iterative technique to
minimize completion times of non-makespan machines,”
in Proceedings of 2007 IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2007),pp.1-
14,2007

Congfeng Jiang is a lecturer of
School of Computer Science and
Technology, Hangzhou Dianzi
University, China. He is with the Grid
and Service Computing Lab in
Hangzhou Dianzi University.

Before joining Hangzhou Dianzi University, he was a PhD

candidate in Huazhong University of Science and Technology
from 2002 to 2007. He received his PhD degree in 2007. His
current research areas include power aware computing system,
virtualization, grid computing, etc.

Dr. Jiang is a member of China Computer Federation (CCF),
IEEE and IEEE Computer Society.

1568 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

Xianghua Xu is an associate professor
at Hangzhou Dianzi University and the
vice director of Grid and Service
Computing Lab in Hangzhou Dianzi
University.

Dr Xu received his PhD degree in 2005 from Zhejiang

University, China. His research areas include service computing,
parallel and distributed computing system, virtualization, grid
computing, etc.

Dr. Xu is a member of China Computer Federation (CCF) and
the IEEE.

Jian Wan is the director of Grid and
Service Computing Lab in Hangzhou
Dianzi University and he is the dean of
School of Computer Science and
Technology, Hangzhou Dianzi
University, China.

Prof. Wan received his PhD degree in 1996 from Zhejiang

University, China. His research areas include parallel and
distributed computing system, virtualization, grid computing,
etc.

Prof. Wan is a member of China Computer Federation (CCF).

Jilin Zhang is a lecturer of School of
Computer Science and Technology,
Hangzhou Dianzi University, China. He
is with the Grid and Service Computing
Lab in Hangzhou Dianzi University.

Before joining Hangzhou Dianzi University, he was a PhD

candidate in Beijing University of Technology from 2005 to
2009. He received his PhD degree in 2009. His current research
areas include parallel processing, complier optimization,
virtualization, distributed computing, etc.

Dr. Zhang is a member of China Computer Federation (CCF)
and the IEEE.

Yinghui Zhao is a lecturer of
Department of Hydraulic Engineering
and Agriculture, Zhejiang Tongji
Vocational College of Science and
Technology, Hangzhou, China.

Before joining Zhejiang Tongji Vocational College of

Science and Technology, she was an engineer in China
Southern Power Grid Company. She received her Master degree
from Huazhong University of Science and Technology in 2007.
Her current research areas include remote sensing images
processing, geographical information system (GIS), etc.

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1569

© 2011 ACADEMY PUBLISHER

