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Abstract—The hierarchical clustering methods based on 
vertex similarity have the advantage that global evaluation 
can be incorporated for community discovery. Vertex 
similarity metric is the most important part of these 
methods. However, the existing methods do not perform 
well for community discovery compared with the state-of-
the-art algorithms. In this paper, we propose a new vertex 
similarity metric based on local flow model, called Local 
Flow Metric (LFM), for community discovery. LFM 
considers both the number of connecting paths and the local 
edge density which are essential measures in community 
structure. Compared with the existing metrics of vertex 
similarity, LFM outperforms substantially in community 
discovery quality and the computing time. Furthermore, our 
LFM algorithm is superior to the state-of-the-art algorithms 
in some aspects.  
 
Index Terms—hierarchical clustering, vertex similarity, 
community discovery, network flow 
 

I.  INTRODUCTION 
Many systems of current interest can be represented as 

graphs. Each of these graphs consists of vertices and their 
connecting edges, where the vertices indicate the 
individuals. Recent studies [1] suggest that many graphs 
in society and technology often exhibit hierarchical 
community structure. It is found that the communities 
correspond to some known sets of units dealing with 
related topics, such as citation networks [2], foob webs 
[3], and biochemical networks [4][5].  

The problem of community discovery plays an 
important role for the identification and characterization 
of real networks [6]. Furthermore, the discovery of 
hierarchical community structure emerges as an essential 
task for capturing an in-depth understanding of networks. 

Community discovery of graphs has been well studied. 
Early approaches include the Kernighan-Lin algorithm 
[7], spectral partitioning [8][9], or hierarchical clustering 
[10]. There are also many other kinds of methods based 
on different technologies such as spectral property of 
graph matrix [11][12][13], spin-spin interactions [14], 
random walks [15] and synchronization[16]. For more 
details, the reader can refer to the survey article by 
Fortunato [17]. 

The algorithms based on the vertex similarity compose 
a well-known branch of hierarchical clustering methods. 
Vertex similarity has been widely used in hierarchical 
clustering. However, there are just several metrics of 

vertex similarity in this field. In addition, the existing 
ones are not good for community discovery, for instance, 
the time complexity and the quality are not satisfied.  

In this paper, we propose a new vertex similarity 
metric for community discovery. The metric is based on 
local flow model which enables it to evaluate both 
topological distance and local edge density. Thus, it can 
describe the similarity between two vertices better. 

We implement the algorithm which employs the new 
metric in Java. Then we apply it to several well-known 
datasets, and compare it with the algorithms using 
existing vertex similarity metrics. In addition, we also 
compare our algorithm with the state-of-the-art 
algorithms:  Girvan-Newman algorithm [18] and the 
improved Newman algorithm (CNM algorithm) [19]. The 
results show that our metric is better than the existing 
ones, and our algorithm is superior to the state-of-the-art 
algorithms in some aspects. 

The rest of this paper is organized as follows. Section 
II formulates our problem, and proposes the measure of 
quality. Section III introduces existing metrics of vertex 
similarity. Our metric and algorithm are given in Sections 
IV and V. Experimental results are presented in Section 
VI. In Section VII, we summarize this work and point out 
the future work.  

II. PROBLEM STATEMENT 
Community structure has no universal accepted 

definition [1]. A common used one is that the division of 
vertices into groups such that there is a higher density of 
edges within groups than the edge density between them. 
In this paper, we consider simple graphs only, i.e., the 
graphs without self-loops or multi-edges. Given graph 
G , )(GV  and )(GE  denote the sets of its vertices and 
edges respectively. A community structure is a partition 

kCCCP ,..,, 21=  of graph G  such that 
)(..21 GVCCC k =∪∪∪  and ji CC ∪  ∅=  for ji ≠ . 

Modularity of community structure is a quantitative 
measure of the quality of the partition [19]. It can be 
employed to evaluate the quality of different partitions of 
the same graph. Definition of modularity given below 
states that communities in a good partition have dense 
intra-community edges and less inter-community edges: 
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where ijA  is the adjacency matrix, m is the total 

number of the edges, and ik  is the degree of vertex i .  
The function δ  yields one if vertices i  and j  are in the 
same community )( ji CC =  while δ  yields zero if 
vertices i  and j  belongs to different communities. 

The task of our problem is to find an optimal partition 
P  which makes the modularity )(PQ  maximum. 

It is well know that our problem is an NP-hard 
problem [17]. Thus, there is no polynomial time 
algorithm for this problem unless NPP = . Most existing 
methods are approximation algorithms. In addition, the 
measure modularity has limits [17]. Thus, the resulting 
community structure will be favorable if it corresponds to 
the actual structure in real world.   

III. EXISTING METRICS OF VERTEX SIMILARITY 
Hierarchical clustering methods have a main branch 

which contains a series of algorithms based on vertex 
similarity. The idea of these methods is to compute the 
similarity between each pair of vertices, firstly, no matter 
whether they are connected by an edge or not. Then, 
merge the vertex or the (temporary) community into the 
vertex or community most similar to it. Similarity metrics 
are the basis of these methods. 

However, it appears that these algorithms perform well 
for specific types of problems, but work poorly in more 
general cases [20]. The reason is that existing vertex 
similarity metrics are designed for particular kinds of 
graphs. That is, these metrics are just well defined with 
respect to specific kinds of graphs. Thus, the algorithms 
based on these metrics cannot tackle a variety of graphs. 

One common used vertex similarity metric for 
community discovery is the overlapping part between the 
neighborhoods of the vertices i  and j , given by the ratio 
between the inter-section and the union of the 
neighborhoods.  

The formula is as follows:  

|)()(|
|)()(|),(

ji
jijisNR Γ∪Γ

Γ∩Γ
=                              (2) 

where )(iΓ  is the neighbor set of vertex i . 
 Another metric is the number of independent paths 

between two vertices. Independent paths do not share any 
edge (vertex), and their number is related to the 
maximum flow that can be conveyed between the two 
vertices. It can be computed under the constraint that 
each edge can carry only one unit of flow. 

An alternate metric considers all paths running 
between two vertices. In this case, there is one problem 
that the total number of paths is infinite, but this can be 
avoided if one performs a weighted sum of the number of 
paths, where paths of length l  are weighted by the factor 

lα , with 1<α  . 
In brief, the above metrics consider either edge density 

in neighbors or the number of connecting paths. Since the 
community structure is affected by the local edge density 
and the number of connecting paths in global, these 
metrics are not good enough for community discovery.  

IV. A NEW VERTEX SIMILARITY METRIC BASED ON 
LOCAL FLOW MODEL 

A. Definition and Properties 
Our local flow model aims to compute the similarity 

metric in small part of the graph taking edge density into 
account. The metric is evaluated by a max network flow 
of the (local) subgraph induced by a small diameter of the 
considering vertex. Furthermore, for each edge of the 
subgraph, its capacity is determined by its distance from 
the considering vertex. The capacity decreases as the 
distance increases. 

 Let ),( EVG =  be a simple graph. Assume that two 
vertices i  and j  are supposed to compute similarity. Let 

),( yxdis  be the distance between vertices x  and y  
where )(GVx,y∈ . Set )}()(min{)( b,i,disa,idiside =  
where the edge )(a,be =  and )(, GVia,b ∈ . 

 Since network flow is employed, we introduce related 
definitions and formulas. A flow network is a real 
function )()(: GVGVf × ℜ→  such that the flow along 
any edge can not exceed its capacity. Hence, we show the 
determination of the capacities of edges. The maximum 
capacity of edge is maxCap . Let decreasing factor α  be a 
small constant such that 10 <<α , and radL  be a 
threshold which is  a small positive integer. For each edge 

)(GEe∈  satisfies rade Lid ≤)(  or rade Ljd ≤)( , the 
capacity cape  is assigned with 

)}(),(min{
max

jdid eeCap α×                     (3) 
 The capacities of other edges are assigned with 0. 
 The value of flow is defined by ∑

∈

=
)(

),(|),(|
GVv

vifjif , 

where i  is the source  (considering vertex). This value 
represents the amount of flow passing from the source i  
to the sink j .   

Then, we define the similarity metric ),( jisLFM =  
equals the maximum flow from i  to j . We denote the 
value of the maximum flow by ),(max jiF = . An 
illustration example is given as follows: 

 
Figure 1.  An example shows the capacities of edges when computing 

the similarity between vertex 20 and vertex 8.  
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The graph at the top of Fig. 1 shows the capacities 
when the vertex 20 is considered. The bottom graph 
illustrates the situation that the vertex 8 is also taken into 

account. The denotation 
b
a  of capacity points out that a  

is the capacity with respect to vertex 20 while b  is that 
for vertex 8. We have the result that max (20,8)F  is 12.5. 
The flows of related edges are given in Table I. 

The computation of our metric is symmetric. It is 
guaranteed by the following proposition. 

Proposition 1. The value of the maximum flow from 
vertex i  to vertex j  is the same as the value of the 
maximum flow from  vertex j  to vertex i . Equivalently, 

),(),( maxmax ijFjiF = . 

Proof ： Without loss of generality, suppose 
>),(max jiF . ),(max ijF . Let flow f  be the maximum 

flow outputs ),(max jiF . We construct a new flow f ′  as 
follows: ),( vuf ′  ),( uvf=  for any )(, GVvu ∈ . Then, 

we have =′∑
∈ )(

),(
GVv

ivf  ∑
∈

=′−
)(

max ),(),(
GVv

jiFvif . 

Based on the property of network flow, we have 
=′∑

∈ )(
),(

GVv
ujf ∑

∈

=′−
)(

max ),(),(
GVv

jiFivf  where j  is the 

source and i  is the sink of flow f ′ . According to the 
determination of edge capacity, the capacities of all the 
edge of graph G  are the same when computing 

),(max jiF  and ),(max ijF . Thus, the flow in any edge is 
below the capacity with respect to flow f ′ . Therefore, 
flow f ′  is a flow with bigger value ),(max jiF  than the 
maximum flow with value ),(max ijF . A contradiction!  

We give the necessary theorem for next proposition, 
first. 

Theorem 1 (Max-flow min-cut theorem) If f  is a 
flow in given graph ),( EVG  with source s  and sink t , 
then the following conditions are equivalent: 

1. ),( tsf  is a maximum flow in G ; 

2. |),(| tsf ∑
∈∈=

=
TbSabae

cap TSe
,),,(

),(  

where ),( TS  is a cut of G  such that Ss ∈  and Tt ∈ . 
 

Let |)(| ),( dP ji  be the number of the paths between 
vertices i  and j  in which the length of each path is d . 
Then we have the following proposition which indicates 
the relationship between local edge density and 

),(max jiF . 

 Proposition 2. Let radL  be the chosen threshold,  

maxCap  be the max capacity, and α  be the constant of 
decreasing factor when computing the ),(max jiF  in 
graph G where )(, GVji ∈ .  Then, we have  

 ∑
×≤

≥××
radLd

d
ji jiFCapdP

2
max

2/
max),( ),()|)((| α       (4

) 
and    

∑
×≤

≥≤∨≤∈

radLd
djiPradLjedradLiedGEe

2
|)(),(||})()(|)({|

 (5) 

Proof: By Theorem 1, we can conclude that there is an  
),( TS cut satisfying ),(max jiF  ∑

∈∈=

=
TbSabae

cap TSe
,),,(

),(  

where Si ∈  and Tj ∈ .  
Since for any edge ),( bae =  such that Sa ∈  and Tb ∈ , 

the edge e  lies in a path between i  and j , and the 
length of the path is less than radL×2 . Then, Formula (4) 
holds. 

If edge e  is an edge of a path from i  to j , then we 
have rade Lid ≤)(  or rade Ljd ≤)( . Since one path has at 
least one edge different from other paths, Formula (5) can 
be concluded.  

B. Comparison with Existing Vertex Similarity Metrics 
In this subsection, we compare our metric with the 

existing ones on several pairs of the graph modeled by 
Zachary's karate club illustrated in Fig. 2. 

Denote the metric of the number of independent paths 
by NIPs , and the weighted sum of the number of paths 
by WSs . Choose the weight factor to be 0.5 when 
computing the weighted sum. For our local flow model, 

radL  is set to 4,  maxCap  is 100 and decreasing factor 
2.0=α . We select a couple of pairs to vertices, and the 

values are given in Table II. 
 

 
Figure 2.  Zachary’s karate club.  

TABLE I.   
THE MAXIMUM  LOCAL FLOW 

Edge (20,16) (16,11) (16,12) (11,1) (12,4) 
Flow 5 2.5 2.5 2.5 2.5 

      
Edge (4,1) (1,5) (5,8) (20,18) (18,13) 
Flow 2.5 5 5 7.5 5 

      
Edge (18,3) (13,1) (13,3) (3,1) (1,8) 
Flow 2.5 2.5 2.5 5 7.5 
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Discussion: The metric of neighbor ratio NRs  cannot 

distinguish the similarity of pairs (6,2) and (6,30), since 
they have no common neighbors. In addition, it cannot 
describe the topology distance of a pair of vertices. The 
metric NIPs  cannot evaluate the topology distance either, 
concluded by the values of )2,6(NIPs  and )30,6(NIPs . 
The metric WSs  outputs wrong evaluation of  pairs (1,12) 
and (2,12). The reason is that there are more paths from 
vertex 2 to vertex 12 than that from vertex 1 to vertex 12. 
The values indicate that our local flow metric is better in 
describing the similarity compared with the existing ones. 

V. ALGORITHM DESCRIPTION 
Community Discovery Algorithm Based on Local Flow 
Model 
Input: a simple, undirected and unweighted graph G  
Output: a community structure 

1. Choose the diameter radL , the maximum capacity 

maxCap  and the decreasing factor α  to be a small 
positive integer. 
2. For each vertex pair ),( ji  where ji ≠  and ≤),( jidis  

radL×2  Do 
3. Begin  

set the capacities with respect to vertex i  and 
vertex j , respectively 

4.  Compute LFMs  by means of maximum flow 
5.  Clear the capacities set in Step 2 
6. End //foreach 

7. For each vertex pair ),( ji  where ji ≠  and >),( jidis  

radL×2  Do 
8.  Set 0:=LFMs ; 
9. Let Max  be the maximum value of  ),( jisLFM , for all 

ji,  )(GV∈  and ji ≠  
10. For each vertex pair ),( ji  where ji ≠  and ≤),( jidis  

radL×2  Do 

11.  Set 
Max

jisMaxs LFM
LFM

),(: −
= ; 

12. Use the classical average linkage methods to find the 
community structure and output it. 

 
Complexity analysis: Steps 2-6 employ the algorithm 

to search a maximum flow. Thus, the computing time is 
bounded by )|)((|)|)(|2( maxCapGELGV rad ××××  

|))(||)((| GEGVO∈ . Similarly, we conclude that the 

running time of steps 10-11 is )|)((| radLGVO × . Thus, 
the computation of metrics needs |))(||)((| GEGVO  time. 
It is known that the time complexity of average link 
methods is )|)((| 3GVO . Hence, the total time complexity 

of our algorithm is )|)((| 3GVO . 

A. Hierarchical Community Extraction Algorithm 
In this subsection, we describe Step 12 in our 

algorithm. That is,  given a set of vertices, once we obtain 
the quantity of the similarity between them (in the form 
of similarity matrix), a widely used method to uncover 
hierarchical organization is hierarchical clustering 
algorithm [22]. Usually, five different measures named 
‘single linkage clustering’, ‘complete linkage clustering’, 
‘average linkage clustering’, ‘centroid linkage clustering’, 
and ‘ward linkage clustering’ can be employed to define 
cluster-to-cluster similarity. We next present the 
definition of these five criteria. 

Single linkage (SL): uses the smallest distance between 
nodes in the two clusters. 

RrSsrsdSRdSL ∈∈= ,)},,(min{),(                 (6) 
Complete linkage (CL): uses the largest distance 

between nodes in the two clusters. 
RrSsrsdSRdCL ∈∈= ,)},,(max{),(                 (7) 

Average linkage (AL): uses the average distance 
between nodes in the two clusters. 

RrSsrsdSRd AL ∈∈= ,)},,(min{),(                 (8) 
Centroid linkage (CenL): uses the distance between the 

centroids of the two clusters. 

RrSss
n

r
n

dSRd
SR n

S

n

R
CenL ∈∈= ∑∑ ,),1,1(),(

11
        (9

) 
Ward linkage(WL): uses the incremental sum of 

squares; that is, the increase in the total with-in cluster 
sum of squares as a result of joining cluster R  and S . 

Our paper employs the average linkage clustering 
algorithm as it offers a compromise between the single 
linkage and complete linkage and is more robust [23]. 

VI. EXPERIMENTAL RESULTS 
We implement the algorithm in Section V and perform 

experiments in several well-known datasets including two 
computer generated networks and 4 social networks in 
real world. 

A. Computer Generated Networks 
Firstly, we focus on the computer generated networks 

with nested hierarchical structure that were proposed by 
Sales-Pardo et al. [6], which is an extension of the 
benchmark presented by Girvan and Newman [21]. This 
network is designed to have  two levels. For example, a 
network with 512 nodes has four modules at the first 
level comprising 128 nodes each. Each of these four 
modules will comprise four sub-modules with 32 nodes 
each.  

TABLE II.   
METRICS COMPARISON IN KARATE CLUB GRAPH 

Edge (20,16) (16,11) (16,12) (11,1) (12,4) 
Flow 5 2.5 2.5 2.5 2.5 

      
Edge (4,1) (1,5) (5,8) (20,18) (18,13) 
Flow 2.5 5 5 7.5 5 
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Figure 3.  Hierarchical network of 512 nodes.  

The edge set is determined as follows: an edge 
between a pair of nodes ( , )i j  with probability 2p , if 
( , )i j  are in the same module at the second level; 1p , if 
( , )i j are in the same module at the first level; and 0p , 
otherwise. In addition, we define that 2 1 0p p p> >  so that 
the resulting network will have a larger density of 
connections between nodes grouped in the same sub-
module at the second level, a smaller density of 
connections between groups of nodes grouped in the 
same module at the first level, and an even smaller 
density of connections between nodes grouped in separate 
modules at the top level. Thus, the computer generated 
network has been constructed with a nested hierarchical 
structure which is illustrated in Fig. 3. The graph is 
generated with 0 0.002p = , 1 0.03p =  and 2 0.5p = .  

 
Figure 4.  Communtiy structure of 512 nodes.  

 
Figure 5.  Similarity matrix of 512 nodes.  

For our algorithm, we set the diameter 4radL =  and the 
decreasing factor 0.2α = . The resulting structure is 
shown in Fig. 4 which consists of 16 communities, and 
these communities compose 4 bigger ones. It appears that 
our result corresponds to the hierarchical structure of the 
network. 

The modularity we obtained is 0.7449. In addition, the 
similarity matrix obtained by our LFM is given in Fig. 5, 
in which we can easily find the 16 communities. Note the 
value 0 indicates the node pair is the most similar, while 
the value 1 shows the most dissimilarity. 

Another hierarchical network we used is proposed by 
Ravasz et al. [24]. As Ravasz et al. pointed out [25], 
conventional network clustering methods are hard to 
uncover in the hierarchical community structure of such a 
network. However, our method performs well. We can 
see that the basic hierarchical organizations of the 
network are clear, which is illustrated in Fig. 6. The 
modularity we obtained is 0.5271. In addition, we can 
distinguish the communities clearly from our metric 
shown in Fig. 7. 

 

 
Figure 6.  Community structure of Ravasz-Barabasi network.  
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Figure 7.  Similarity matrix of Ravasz-Barabasi network.  
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Figure 8.  Dendrogram of Ravasz-Barabasi network.  

In addition, the merge sequence is proposed by the 
dendrogram in Fig. 8.  

B. Social Networks in Real World 
At first, we test the classical social network of 

Zachary's karate club shown in Fig. 2. The famous karate 
club network analyzed by Zachary is widely used as a test 
benchmark for the methods of detecting communities in 
complex networks [20].  

The network consists of 34 members of a karate club 
as nodes and 78 edges representing friendship between 
members. Due to a disagreement between the club’s 
administrator and the club’s instructor, the club split into 
two smaller ones. The challenge is whether we can 
extract the potential hierarchical structures of the network 
and detect the correct communities. 

 
Figure 9.  Community structure of karate network.  
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Figure 10.  Community structure of karate network.  

 
Figure 11.  Similarity matrix of karate network.  

Figure 9 shows that our result contains two 
communities. The similarity matrix is given in Fig. 11, in 
which the bottom-left corner is one community, and the 
top-right is the other. Thus, our metric works well in 
karate network. In addition, the modularity we obtained is 
0.3542.  

 
The second social network we test is the college 

football network which represents the game schedule of 
the 2000 season of Division I of the US college football 
league.  

The nodes in the network represent the 115 teams, 
while the edges represent 613 games played in the course 
of the year. The teams are divided into conferences of 8-
12 teams each and generally games are more frequent 
between teams of the same conference than between 
teams of different conferences. What we concern is to 
extract the potential hierarchical structures of the network, 
to detect the correct conferences. 

From the matrix in Fig. 13, we can accurately 
distinguish that the number of conferences in colleague 
football league is about 11. Furthermore, the sizes of 
conferences output by our algorithm are in the range of 8-
12, which corresponds to the actual situation. 
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Figure 12.  Community structure of colleage football network.  

 
Figure 13.  Similarity matrix of colleage football network.  

Next, we will investigate the dolphin social network, 
representing the social interactions of bottlenose dolphins 
living in Doubtful Sound, New Zealand.  

 
Figure 14.  Community structure of dolphins social network (LFM).  

 
Figure 15.  Similarity matrix of dolphins social network (LFM).  

The network was studied by the biologist David 
Lusseau [26], who divided the dolphins into two groups 
according to their age. This network was constructed 
from observations of a community of 62 bottle-nose 
dolphins over a period of 7 years from 1994 to 2001. 

Figure 14 shows that the structure of our result divides 
the network into three communities: two big communities 
and one isolated node (the leftmost node). Since the 
isolated node is adjacent (similar) with just one other 
node, it can be considered as one community. Thus, our 
result is nearly optimal.  

The modularity of our result is 0.3742 which is much 
less than 0.5042 which is outputted by the metric of 
neighbor ratio NRs  defined by Formula (2).  

However, Newman and Girvan [21] stated that the split 
into two groups appears to correspond to a known 
division of the dolphin community and its modularity is 
0.38 ± 0.08.  

Our result achieves this optimum expect one node (the 
leftmost one in Fig. 14). The community structure 
outputted by the metric NRs  is given in Fig. 16. 

It is clear that the result obtained by the metric NRs  
does not have significant community. The similarity 
matrix of NRs  also supports this conclusion which is 
given in Fig. 17. 

 

 
Figure 16.  Community structure of dolphins social network ( NRs ).  
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Figure 17.  Similarity matrix of dolphins social network ( NRs ).  

Next, we discuss the parameter setting of the diameter 
radL  and the decreasing factor α  of our LFM model. 

Table III shows that the choice of the parameter radL  
affects the results more slightly than the choice of  the 
decreasing factor α . Furthermore, the discovery quality 
is the best when 0.2α = . This property also holds with 
respect to the two datasets of computer generated 
network. The statistic data is omitted, here. 

 
karate club dataset 

radL  
α  Modularity Number of Communities 

4 

0.1 0.2003 17 
0.2 0.3542 2 
0.4 0.0664 15 
0.6 0.0621 14 
0.8 0 34 
1 0 34 

3 

0.1 0.2003 17 
0.2 0.3542 2 
0.4 0.0664 15 
0.6 0.0621 14 
0.8 0 34 
1 0 34 

2 

0.1 0.2003 17 
0.2 0.3542 2 
0.4 0.0664 15 
0.6 0.0621 14 
0.8 0 34 
1 0 34 

1 

0.1 0.2003 17 
0.2 0.3542 2 
0.4 0.0664 15 
0.6 0.0664 15 
0.8 0 34 
1 0 34 

 
colleage football dataset 

radL  
α  Modularity Number of Communities 

4 

0.1 0.6057 9 
0.2 0.6021 9 
0.4 0.411 11 
0.6 0.0945 59 
0.8 0.043 87 
1 0.0390 86 

3 

0.1 0.6057 9 
0.2 0.6021 9 
0.4 0.411 11 
0.6 0.0945 59 
0.8 0.043 87 
1 0.0389 88 

2 

0.1 0.6057 9 
0.2 0.6021 9 
0.4 0.411 11 
0.6 0.0945 59 
0.8 0.043 87 
1 0.0389 88 

1 

0.1 0.6057 9 
0.2 0.6017 8 
0.4 0.5683 10 
0.6 0.515 13 
0.8 0.274 11 
1 0.1013 55 

 
dolphins dataset 

radL α  Modularity Number of Communities 

4 
0.1 0.3973 19 
0.2 0.3742 3 
0.8 0.242 28 

3 
0.1 0.3973 19 
0.2 0.3742 3 
0.8 0.242 28 

2 
0.1 0.6057 9 
0.2 0.6021 9 
0.8 0.411 11 

1 
0.1 0.3973 19 
0.2 0.3742 3 
0.8 0.242 28 

TABLE IV. 
COMPARISON RESULTS 

algortihm karate 
club 

football 
colleage 

dolphins 
society 

NIPs  0 0.203 0.130 

NRs  0.34 0.602 0.5042 

WSs  0.213 0.323 0.332 

LFMs  0.3542 0.6021 0.3742 
Girvan-
Newman 0.406 0.572 0.52 

CNM 0.302 0.402 0.353 
 
Finally, we also show the comparison results of the-

state-of-the-art algorithms Girvan-Newman algorithm 
[18][21] and CNM algorithm  presented by Clauset, 
Newman and Girvan [19], which is given in Table IV. 

 

VII. CONCLUSIONS 
In this paper, we have proposed a new vertex similarity 

metric for community discovery. This metric employs a 
local flow in a small subgraph near the considered 
vertices. Thus, it considers both topological distance and 
local edge density. The experimental result shows that 
our metric is better than the existing ones. In addition, it 
appears that our algorithm based on this metric has 
several advantages to the Girvan-Newman algorithm and 
CNM algorithm in some aspects. 

Since the computation of our metric is in a local part, 
distributed or parallel computation is available. It enables 
that our algorithm can tackle large scale graph. In 

TABLE III.   
PARAMETERS SETTING OF LOCAL FLOW MODEL 
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addition, in the light of Clauset’s local algorithm [22], our 
algorithm can be extended to an incremental algorithm of 
which the running time is reduced dramatically. 
Furthermore, an online algorithm based on our model can 
be developed. 
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