
A Graph-based Approach for Deploying
Component-based Applications into

Channel-based Distributed Environments
Abbas Heydarnoori and Walter Binder

Faculty of Informatics, University of Lugano, Lugano, Switzerland
Email: firstname.lastname@usi.ch

Abstract— With significant advances in software develop-
ment technologies, it is now possible to have complex soft-
ware applications, which include a large number of heteroge-
neous software components distributed over a large network
of computers with different computational capabilities. To
run such applications, their components must be instantiated
on proper hardware resources in their target environments
so that user requirements and constraints are also met. This
process is called software deployment. However, this process
is often challenging for large, distributed, component-based
applications with many constraints and requirements. This
article presents a graph-based deployment approach that
does the deployment with respect to the communication
resources required by application components and commu-
nication resources available on the hosts in the target en-
vironment. In our approach, component-based applications
and distributed environments are modeled with the help of
graphs. Deployment of an application is then defined as the
mapping of the application graph to the target environment
graph. This article further discusses how this mapping could
be done to minimize the cost and to maximize the reliability
of deployments.

Index Terms— Component-based applications, software de-
ployment, distributed environments, communication chan-
nels, reliability.

I. INTRODUCTION

In the past, software applications were stand-alone
systems, without any connections to other software ap-
plications. In recent years, software applications have
become more and more complex. They may consist of
a large number of different components distributed over
many computers, and large networks have moved to the
center of software applications. In these applications,
since different components provide their functionality
only when their constraints and requirements are met,
they should be installed on proper hardware resources in
the distributed environment in order for them to provide
the expected quality of service (QoS). In addition, dif-
ferent resources have different computational capabilities,
making it impossible to install any kind of software
components on them. The goal of the software deploy-
ment process [3], [4] is to place an already developed
application into its target environment and bring it into an

This article is based on the articles “Deploying Loosely Coupled,
Component-based Applications into Distributed Environments” pre-
sented in ECBS’06 [1], and “Reliable Deployment of Component-based
Applications into Distributed Environments” presented in ITNG’06 [2].

executing state. For simple stand-alone software systems
that should be deployed only to a single computer, deploy-
ment activities can be easily done. However, suppose a
complex component-based application is being deployed
into a large distributed environment so that some QoS
parameters, such as performance or reliability, are also
maximized. In this situation, the deployment process is
not so straightforward and automated tools and techniques
are required.

This article presents a graph-based approach that does
the deployment with respect to the communication re-
sources required by application components and commu-
nication resources available on the hosts in the target envi-
ronment. For this purpose, the concept of channel is used
to model the intercommunications among components. A
channel is a point-to-point communication medium with
well-defined behavior. A component-based application is
then modeled as a graph of components connected by
a number of channels, possibly with different character-
istics. A distributed environment is also modeled as a
graph of hosts connected by different channel types that
can exist between every two hosts. Deployment planning
is then defined as the mapping of the application graph
to the target environment graph so that the desired QoS
parameter is maximized. As examples of this approach,
we show how this mapping can be effectively done for
minimum cost and maximum reliability of deployments.

This article is organized as follows: Section II presents
the Reo coordination model as an example of channel-
based coordination models and provides a running exam-
ple which is used throughout this article. The required
inputs for our deployment planning process are discussed
in Section III. These inputs are then modeled as graphs
in Section IV. Next, Section V introduces the problem
of software deployment as a graph mapping problem.
Section VI presents algorithms for solving this mapping
problem for the QoS parameters cost and reliability.
Finally, Section VII provides an overview of related work
and Section VIII concludes.

II. REO COORDINATION MODEL

Reo is a channel-based coordination model that exoge-
nously coordinates the cooperative behavior of component
instances in a component-based application [5]. From

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1381

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.8.1381-1394

the point of view of Reo, an application consists of a
number of component instances communicating through
connectors that coordinate their activities. The emphasis
of Reo is on connectors, their composition and their
behavior. Reo does not say much about the components
whose activities it coordinates. In Reo, connectors are
compositionally constructed out of a set of simple chan-
nels. Thus, channels represent atomic connectors. A chan-
nel is a communication medium which has exactly two
channel ends. A channel end is either a source channel
end or a sink channel end. A source channel end accepts
data into its channel. A sink channel end dispenses data
out of its channel. Although every channel has exactly
two ends, these ends can be of the same or different
types (two sources, two sinks, or one source and one
sink). Reo assumes the availability of an arbitrary set of
channel types, each with well-defined behavior provided
by the user. However, a set of examples in [5] show that
exogenous coordination protocols that can be expressed
as regular expressions over I/O operations correspond to
Reo connectors which are composed out of a small set of
only five primitive channel types:

• Sync: It has a source and a sink. Writing a value
succeeds on the source of a Sync channel if and
only if taking of that value succeeds at the same
time on its sink.

• LossySync: It has a source and a sink. The source
always accepts all data items. If the sink does not
have a pending read or take operation, the LossySync
loses the data item; otherwise the channel behaves
as a Sync channel.

• SyncDrain: It has two sources. Writing a value
succeeds on one of the sources of a SyncDrain
channel if and only if writing a value succeeds on the
other source. All data items written to this channel
are lost.

• AsyncDrain: This channel type is analogous to
SyncDrain except that the two operations on its
two source ends never succeed simultaneously. All
data items written to this channel are lost.

• FIFO1: It has a source and a sink and a channel
buffer capacity of one data item. If the buffer is
empty, the source channel end accepts a data item
and its write operation succeeds. The accepted data
item is kept in the internal buffer. The appropriate
operation on the sink channel end (read or take)
obtains the content of the buffer.

In Reo, a connector is represented as a graph of nodes
and edges such that: zero or more channel ends coincide
on every node; every channel end coincides on exactly
one node; and an edge exists between two (not necessarily
distinct) nodes if and only if there exists a channel whose
channel ends coincide on those nodes. As an example of
Reo connectors, Figure 1 shows a barrier synchronization
connector in Reo. In this connector, a data item passes
from A to C only simultaneously with the passing of a
data item from B to D and vice versa. This is because of
the “replication on write” property in Reo, and different

D

C

B

N1

N2

A

Sync channel Source channel end

Sink channel end SyncDrain channel

Figure 1. Barrier synchronization connector in Reo

Domestic Flight
Reservation Service (DFRS) D

International Flight
Reservation Service (IFRS)

Flight

Reservation
Service
(FRS)

B

A C

N1

N2

Figure 2. Modeling a flight reservation system with Reo

characteristics of different channel types. In Reo, it is
easily possible to construct different connectors by a set
of simple composition rules out of a very small set of
primitive channel types [6].

A. Example: Modeling a Flight Reservation System with
Reo

In this section, we provide a simple example of a flight
reservation system which is used as the running exam-
ple throughout this article. In this example, the barrier
synchronization connector in Reo is used to compose a
number of Web services. Web services refer to accessing
services over the Web [7]. In this example, they are treated
as black-box software components.

Suppose a travel agency wants to offer a Flight Reser-
vation Service (FRS). For some destinations, a connection
flight might be required. Suppose some other agencies
offer services for International Flight Reservation (IFRS)
and Domestic Flight Reservation (DFRS). Thus, FRS
commits successfully whenever both IFRS and DFRS
services commit successfully. This behavior can be easily
modeled by a barrier synchronization connector in Reo
(Figure 2). The FRS service makes commit requests on
channel ends A and B. These commits will succeed if and
only if the reservations at the IFRS and DFRS services
succeed at the same time. This behavior is because of the
semantic of the barrier synchronization connector in Reo.

III. DEPLOYMENT PLANNER INPUTS

To generate deployment plans, the following inputs
should be specified: (1) the component-based application
being deployed, (2) the distributed environment in which
the application will be deployed, and (3) the user-defined
constraints regarding this deployment. In the following,
these inputs are described in more detail.

1382 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

A. Specification of the Application being Deployed

Any loosely coupled, component-based application
consists of a number of components and interconnections
that connect them. The nature of these components and
interconnections are irrelevant to this specification. For
example, components could be threads, processes, ser-
vices, Java beans, CORBA components, and so on. In our
model, a software component is viewed as a black-box
software entity which reads data from its input port and
writes data to its output port. How it manipulates the data,
or its internal details are not important. The communica-
tion among these black-box entities is done via their in-
terconnections. Again, these component interconnections
could be anything connecting them; for example, glue
code, middleware, connectors, and so on. Regardless of
the type of these interconnections, different components
send data/messages to other components and receive
data/messages from other components of the application.
Thus, it is possible to assume that the communication
among the application components is done via a number
of channels with different characteristics. Specially, it is
proved that the primitives of other communication models
(such as message passing, shared spaces, or remote pro-
cedure calls) can be easily modeled by the channel-based
communication model [5].

In summary, the specification of the application should
specify different components of the application and the
channel types among them (e.g., Figure 2).

B. Specification of the Target Environment

In this article, the target environment for the deploy-
ment of the application is a distributed environment
consisting of a number of hosts with computational
capabilities (e.g., PCs, laptops, servers, etc.) connected
by a network. Furthermore, the required software for
the communication among the application components
(e.g., the Reo coordination middleware) has been already
installed on them. However, since different hosts may
have different hardware properties, it might be impos-
sible to install some sorts of communication software
on them, or they may not be able to support some
features of the communication software installed on them.
It is also possible that different features/versions of the
communication software are installed on different hosts
because of some reasons (e.g., cost, security, etc.). With
respect to this discussion, available hosts in the target
environment may provide different sorts of communi-
cation resources required to interconnect applications’
components. In particular, since we are modeling the
interconnections among the application components as
a set of channels with different characteristics, different
hosts might be able to support different sets of channel
types (or implementations) with different behaviors and
QoS characteristics. Thus, in this article, communication
resources available on different hosts are different chan-
nel types (or implementations) they can support. As an
example, Figure 3 shows a sample target environment for

(T1, T2, T3,

 T4, T5)

(T1, T2, T3, T4, T5)

(T1, T2, T3, T5)

(T1, T2, T3,

T4, T5)

(T1, T2, T3, T4)

H1

H2

H3

H5

H4

Figure 3. A sample target distributed environment for the deployment
of the flight reservation system

the flight reservation system consisting of five hosts H1–
H5, connected by a network (solid lines). In this figure,
Tds represent different channel types (or implementations)
that different hosts can support. For example, in the case
of using Reo coordination model, T1–T5 could be defined
as the following channel types (or implementations):

• T1: Sync channel type implemented by shared mem-
ory;

• T2: Sync channel type implemented by encrypted
peer-to-peer connection;

• T3: Sync channel type implemented by simple peer-
to-peer connection;

• T4: SyncDrain channel type;
• T5: SyncSpout channel type.

Logically, T1–T3 are all implementations of the same
channel type (Sync). However, their hardware require-
ments and QoS characteristics differ.

C. Specification of the User-defined Constraints and Re-
quirements

Users may have special requirements and constraints
regarding the deployment of the application that should
be taken into account during the deployment planning.
For example, users may want a special component to be
run on a certain host, or they may have certain QoS
requirements such as security, cost, or reliability. The
deployment planner needs this information to generate a
plan that answers these requirements too.

For example, in the flight reservation system, suppose
users require the transfer of data between FRS and IFRS
to be encrypted. In addition, they want FRS to be run on
H1, IFRS to be run on either H2 or H3.

IV. MODELING THE DEPLOYMENT PLANNER INPUTS

The deployment planner inputs should be modeled with
well-defined structures in order to be used for effective
deployment planning purposes. In this section, we show
that it is possible to develop graph representations of these
inputs. This graph-based modeling makes it feasible to
apply graph theory algorithms in designing deployment
planning algorithms.

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1383

© 2011 ACADEMY PUBLISHER

FRS

N2 DFRS

IFRS N1
T2

T2

T1 T1

T4

Channel Types: T1=Sync, T2=Encrypted Sync, T4=SyncDrain

Figure 4. Application graph for the flight reservation system

A. Modeling the Application

In Section III-A, we mentioned that loosely coupled,
component-based applications can be viewed as a number
of components connected by a number of channels with
different characteristics through which they communicate.
With respect to this description of component-based ap-
plications, it is possible to model any loosely coupled,
component-based application as a graph whose nodes are
application components and its edges are channels among
these components.

Definition 1 (Application Graph): Suppose Cis repre-
sent different components of the application, and Tds
represent different channel types. Then, application graph
AG = (VAG, EAG) is defined as a graph on VAG =
{C1, C2, ..., Cn} in which each edge e ∈ EAG has a label
le ∈ {T1, T2, ..., Tk}.

For example, Figure 4 shows the application graph
for the flight reservation system. This graph is built
with respect to both the specifications of the application
being deployed, and user-defined constraints regarding
this deployment. For example, in the specification of the
application (Figure 2), Sync channels are used to connect
FRS and IFRS components. Nonetheless, as mentioned
in Section III-C, users want the transfer of data between
FRS and IFRS to be encrypted. Thus, in the application
graph presented in Figure 4, Encrypted Sync channel type
is used between FRS and IFRS components.

B. Modeling the Target Environment

As mentioned in Section III-B, in this article the target
environment for the deployment of the application is a
number of hosts with different computational capabilities
connected by a network in a distributed environment and
each of them can support a set of channel types. With
respect to this description of the target environment, it is
possible to model the target environment with the help of
a graph in which:

• Nodes represent available hosts in the distributed
environment;

• Edges represent different channel types that can exist
between every two hosts.

To generate such a graph, first it is required to notice
to the following definitions.

Definition 2 (Adjacent Hosts): Two distinct hosts Hx

and Hy are adjacent if there is a direct physical link
between them in the distributed environment.

As an example, hosts H1 and H4 in Figure 3 are
adjacent.

Definition 3 (Virtually Connected): Two distinct hosts
Hx and Hy are virtually connected if there is not any
direct physical link between them in the distributed
environment, but they are connected indirectly through
intermediate hosts.

As an example, hosts H1 and H2 in Figure 3 are
virtually connected.

Definition 4 (Transitive Channel Type): Suppose two
hosts Hx and Hy are virtually connected. A channel type
Td is transitive if it is possible to create a channel of
type Td between them when (1) both of them can support
channel type Td, and (2) all intermediate hosts between
them can also support channel type Td.

For example, in the Reo coordination model, channel
type Sync is a transitive channel type.

Definition 5 (Non-transitive Channel Type): A chan-
nel type Td is non-transitive if it is possible to create
a channel of type Td between two hosts Hx and Hy only
when (1) both of them can support channel type Td, and
(2) they are adjacent.

As an example, in the Reo coordination model, channel
type SyncDrain is a non-transitive channel type.

With respect to the above definitions, target environ-
ment graph is defined in the following way:

Definition 6 (Target Environment Graph): Suppose
His represent different hosts in the target environment,
Tds represent different channel types, and eHx,Hy,Td

represents an edge from node Hx to node Hy

with label Td. Then, the target environment graph
TG = (VTG, ETG) is defined as a graph on
VTG = {H1,H2, ..., Hm} in which the set of edges
ETG =

∪
{eHx,Hy,Td

} is determined in the following
way:

• If Td is a transitive channel type, then there exists
an edge eHx,Hy,Td

between two distinct nodes Hx

and Hy only if (1) both of them are adjacent or
virtually connected, (2) both of them support channel
type Td, and (3) if they are virtually connected, all
intermediate hosts support channel type Td.

• If Td is a non-transitive channel type, then there
exists an edge eHx,Hy,Td

between two distinct nodes
Hx and Hy only if (1) they are adjacent, (2) both of
them support channel type Td.

• If Td can be supported by host Hx, then there is an
edge eHx,Hx,Td

from Hx to Hx (loopback edge).
As an example, Figure 5 shows the target environ-

ment graph generated by this method for the distributed
environment presented in Figure 3. To make the figure
simpler, loopback edges are not shown. For a more
specific example, consider hosts H1 and H2 which are
virtually connected (i.e., through host H4). As mentioned
in Section III-B, in this example, T1–T3 are different
implementations of the Sync channel type which is a tran-
sitive channel type. Thus, it is possible to have channels
of types T1–T3 between H1 and H2. Furthermore, both
H1 and H2 support channel type T4 (i.e., SyncDrain)

1384 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

(T1, T2, T3,

 T4, T5) (T1, T2, T3, T4)

(T1, T2, T3, T4, T5)

(T1, T2, T3, T4, T5) (T1, T2, T3, T5)

H1

H5 H2

H4 H3

T1:

T2:

T3:

T4:

T5:

Figure 5. Target environment graph for the distributed environment
presented in Figure 3. T1–T3 are transitive channel types. T4–T5 are
non-transitive channel types. For simplicity, loopback edges are not
shown.

which is a non-transitive channel type. However, since
H1 and H2 are not adjacent, it is impossible to have a
channel of type T4 between them.

C. Target Environment Graph for a Peer-to-Peer Dis-
tributed Environment

In a peer-to-peer (P2P) distributed environment (e.g.,
Internet), two or more computers (called nodes) can
directly communicate with each other, without the need
for any intermediary devices [8]. In this situation, it
is not required to consider the issues related to the
physical connectivity among hosts, i.e., transitive property
of channel types. In this case, the definition of the target
environment graph becomes much simpler.

Definition 7 (P2P Target Environment Graph):
The target environment graph TG = (VTG, ETG)
for a P2P distributed environment is a graph on
VTG = {H1,H2, ...,Hm} in which there exists an edge
eHx,Hy,Td

between two not necessarily distinct nodes Hx

and Hy if and only if both of them can support channel
type Td.

V. DEPLOYMENT PROBLEM

After specifying the deployment planner inputs, they
can be used to generate the actual deployment plan. Fig-
ure 6 shows a sample deployment for the flight reservation
system. As can be seen in this figure, for the purpose of
this deployment, different components of the application
and channels among them are mapped to different hosts
in the target environment and network links among them
in such a way that all requirements and constraints are
satisfied. More specifically, it could be observed that
different nodes and edges of the application graph AG
shown in Figure 4 are mapped to different nodes and
edges of the target environment graph TG presented in
Figure 5. In this way, we can define the deployment
problem as a graph mapping problem from the application
graph to the target environment graph. To this end, we
begin with defining some terms.

Definition 8 (Candidate Host): Let TCi = {Td|Td ∈
T, ∃{Ci, Cj} ∈ EAG : l{Ci,Cj} = Td} represent all
required channel types by component Ci in the application

H2

H3
H1

H4

H5

N2

N1

 Domestic Flight
 Reservation Service (DFRS)
D

 International Flight
 Reservation Service (IFRS)

Flight
Reservation
Service
(FRS)

B

A C

Figure 6. A sample deployment for the flight reservation system

graph AG = (VAG, EAG) and let THx = support(Hx)
represent the set of channel types that host Hx can sup-
port. Then, host Hx is a candidate host for the deployment
of component Ci, only if (1) TCi ⊆ THx , and (2) host Hx

satisfies user-defined constraints regarding the deployment
of component Ci.

This definition implies that a host Hx is a candidate
host for the deployment of component Ci if it supports all
required channel types by component Ci in the application
graph and also the deployment of component Ci on host
Hx meets user-defined constraints. As an example, Table I
shows the candidate hosts for the deployment of the
flight reservation system components. For a more specific
example, consider component IFRS. In the application
graph presented in Figure 4, IFRS just requires channel
type T2 and all of the hosts in the target environment
presented in Figure 3 support this channel type. However,
as mentioned in Section III-C, users want IFRS to be
deployed on either hosts H2 or H3. So, with respect
to this constraint, candidate hosts for the deployment of
component IFRS are H2 and H3.

Definition 9 (Candidate Deployment): Suppose CHCi

represents the set of candidate hosts for the deployment
of component Ci. Then, a candidate deployment Dc is a
set of pairs (Ci, Hx) in which every component Ci in the
application graph AG = (VAG, EAG) is mapped to a host
Hx in the target environment graph TG = (VTG, ETG)
so that host Hx is a candidate host for the deployment
of component Ci, i.e., Dc = {(Ci,Hx)|Ci ∈ VAG,Hx ∈
VTG,Hx ∈ CHCi}.

For example, {(FRS 7→ H1), (IFRS 7→
H2), (DFRS 7→ H3), (N1 7→ H4), (N2 7→ H5)} and
{(FRS 7→ H1), (IFRS 7→ H3), (DFRS 7→ H3), (N1 7→
H4), (N2 7→ H5)} are two candidate deployments for the

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1385

© 2011 ACADEMY PUBLISHER

flight reservation system.
Definition 10 (Valid Deployment): A candidate

deployment Dc is a valid deployment, if for all edges
eCi,Cj ,Td

in the application graph AG = (VAG, EAG) if
components Ci and Cj are mapped to two not necessarily
distinct hosts Hx and Hy in the target environment,
then it should be possible to create a channel of
type Td between hosts Hx and Hy , i.e., there should
be an edge eHx,Hy,Td

in the target environment
graph TG = (VTG, ETG). Formally speaking,
∀eCi,Cj ,Td

∈ EAG ⇒ ∃eDc(Ci),Dc(Cj),Td
∈ ETG.

As an example, Dc = {(FRS 7→ H1), (IFRS 7→
H2), (DFRS 7→ H1), (N1 7→ H1), (N2 7→ H2)} is
an invalid deployment for the flight reservation system.
Because, there is an edge eN1,N2,T4 in the application
graph presented in Figure 4. Nonetheless, there is not
an edge eDc(N1),Dc(N2),T4

= eH1,H2,T4 in the target
environment graph presented in Figure 5. In other words,
with respect to the specification of the target environment
presented in Figure 3, it is impossible to create a channel
of type T4 between hosts H1 and H2.

With respect to above definitions, it is typically possible
to deploy a complex component-based application into
a large distributed environment in many different ways.
As an example, consider again the candidate hosts for
deploying each of the components of the flight reservation
system shown in Table I. As can be understood from
this table, it is possible to deploy this application into
the target environment in at most 160 = 1 × 2 ×
5 × 4 × 4 different ways (because some of them are
invalid deployments). Obviously, this number is much
bigger for complex applications deployments. However,
when some QoS parameters, such as cost, performance,
reliability, etc., are considered, some of these candidate
deployments are equivalent, some are better than others
and only a few of them may accommodate the constraints
and requirements of the application. Thus, when QoS
of the application is important, it should be tried to
deploy the application so that its desired QoS parameter
is maximized.

One naive solution to this problem is to generate all
candidate deployments by permuting the sets of candi-
date hosts for different components of the application.
Then, the desired QoS parameter of all valid candidate
deployments is measured and the best one is selected. The
complexity of this algorithm is O(mn+mn) = O(mn),
where m is the number of available hosts in the target
environment and n is the number of components of the
application. As we see, this is an exponentially complex
solution to the deployment problem. Thus, when the
number of candidate deployments is large, it is impractical
to generate all of them and then select the best one. So,
a set of algorithms and heuristics should be designed
and applied to effectively solve such an exponentially
complex problem. The following definition, provides a
formal definition of the deployment problem we intend
to solve.

Definition 11 (Deployment Problem): Suppose

Component Name Candidate Hosts
FRS H1

IFRS H2, H3

DFRS H1, H2, H3, H4, H5

N1 H1, H2, H4, H5

N2 H1, H2, H4, H5

TABLE I.
CANDIDATE HOSTS FOR THE DEPLOYMENT OF THE FLIGHT

RESERVATION SYSTEM COMPONENTS

deployment planner inputs are used to build the
application graph and the target environment graph
according to the methods presented in Section IV.
CHCi also represents the set of candidate hosts for
the deployment of component Ci. Then, for the given
application graph AG = (VAG, EAG), target environment
graph TG = (VTG, ETG), and QoS parameter Q,
the problem is to find a polynomial time function
D : VAG → VTG such that the following three conditions
are satisfied:

1) Application’s Q parameter is maximized;
2) D(Ci) = Hx ⇒ Hx ∈ CH(Ci). This means that

all components of the application must be mapped
to one of their respective candidate hosts for the
deployment;

3) ∀eCi,Cj ,Td
∈ EAG ⇒ ∃eD(Ci),D(Cj),Td

∈ ETG.
This means that the deployment D must be a valid
deployment.

This definition implies that during the deployment, it is
possible to map several application components to a single
host if that host is a candidate host for the deployment of
those components. Furthermore, if there exists a channel
of type Td between two components in the application
graph, then those components can be mapped to two
different hosts only if there exists a channel of type Td

between them in the target environment graph.

VI. DEPLOYMENT ALGORITHMS

Section V introduced the problem of component de-
ployment as a graph mapping problem in which the
application graph is mapped to the target environment
graph. This section presents polynomial time algorithms
for solving this mapping problem when the target envi-
ronment is a P2P distributed environment and the desired
QoS parameters are minimum cost [1] and maximum
reliability [2] of deployments.

A. Cost-Effective Deployment

Suppose different hosts in the target environment have
different costs and whenever they are being used, their
costs should be paid to their administrator(s). In this
situation, one QoS parameter of a deployment is its cost
and should be minimized in the deployment plan. To this
end, two different cases can be considered:
Case 1: The cost should be paid for each component. In
this case, for every component to be run on each host,
its cost should be paid separately. For example, for each

1386 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

for each component Ci in the application do
Find the set of candidate hosts, CHCi

if CHCi == null then
return “No Answer!”

end
else

Hx = cheapest host in the set CHCi

Output: Ci 7→ Hx

end
end

Figure 7. Cost-effective deployment algorithm when the cost
should be paid for each component

component to be run on host H1, $1000 should be paid
to its administrator(s). Thus, if five components to be run
on host H1, 5 × $1000 = $5000 should be paid. The
required algorithm of this case is simple. In this case, in
the set of candidate hosts for the deployment of each of
the application components, the cheapest one is selected
and that component is deployed on it. The pseudocode of
this algorithm is shown in Figure 7. This algorithm has
the polynomial complexity O(mn).
Case 2: The cost should be paid for each host, no matter
how many components will be run on it. In this case,
the number of components will be run on each host
is not important; if the cost of one host is paid, it is
possible to run as many components as you want on
it. The complexity of this case is much more than the
previous one. In this case, it should be tried to select a
subset of available hosts in the target environment so that
the total cost of the deployment is minimized and all the
components of the application are also assigned to a host.
It is easily possible to see that this problem is equivalent
to the Minimum Set Cover [9] problem in graph theory.

Definition 12 (Minimum Set Cover Problem): Given a
finite set U of n elements, a collection of subsets of U ,
S = {s1, s2, ..., sk} such that every element of U belongs
to at least one si, and a cost function c : S −→ R, the
problem is to find a minimum cost subset of S that covers
all elements of U .

This case of the cost-effective deployment problem can
be converted to a minimum set cover problem in the
following way:

• Set U = {C1, C2, ..., Cn}, i.e., the components
of the application are set as the elements of the
universe;

• Set S = {CSH1 , CSH2 , ..., CSHm} in which each
CSHx corresponds to host Hx and it represents the
subset of application components that can be run on
host Hx. In other words, each CSHx is a subset of
application components which Hx is in their lists of
candidate hosts for the deployment.

• Define c : S −→ R so that c(CSHx) = c′(Hx).
Function c′ : H −→ R returns the cost of each host.

Theorem 1: If we define the elements of the minimum
set cover problem as mentioned earlier, then the solution
of the minimum set cover problem satisfies all conditions
of the deployment problem defined in Definition 11.

X = Ø, τ = Ø
while X ̸= U do

Find the set ω ∈ S that minimizes c(ω)/|ω\X|
X = X ∪ ω, τ = τ ∪ {ω}

end
Output: τ

Figure 8. Greedy approximation algorithm for the minimum set
cover problem

It is proved that minimum set cover problem is a NP-
hard problem and it can not be solved in polynomial
time [10]. Nevertheless, there exist some greedy approxi-
mation algorithms that can find reasonably good answers
in polynomial time. One of the key algorithms for solving
this problem is provided in Figure 8 [10]. The main idea
in this algorithm is to iteratively select the most cost-
effective si ∈ S and remove the covered elements until
all elements are covered. The complexity of this algorithm
is O(log(|U |)) [10].

To solve this case of the cost-effective deployment
problem, first it should be converted to the minimum
set cover problem as mentioned earlier. Then, it is easily
possible to use the greedy approximation algorithm pre-
sented in Figure 8 to find a reasonably good solution for
the problem. In other words, by using this algorithm, all
components of the application will be assigned to at least
one host and total cost of the deployment will be close
to minimum too. As an example of using this greedy
approximation algorithm, consider the flight reservation
system example. With respect to Table I, the elements
of the minimum set cover problem are defined in the
following way:

• U = {FRS, IFRS,DFRS,N1,N2};
• S = {{FRS,DFRS,N1,N2}, {IFRS,DFRS,N1,N2},

{IFRS,DFRS}, {DFRS,N1,N2}, {DFRS,N1,N2}};
• c′(H1) = $1000, c′(H2) = $2500, c′(H3) = $2000,

c′(H4) = $1500, c′(H5) = $1000.
By applying the greedy approximation algorithm, we

will have the following results and the minimum cost will
be $3000:

• {(FRS 7→ H1), (DFRS 7→ H1), (IFRS 7→
H3), (N1 7→ H1), (N2 7→ H1)};

• {(FRS 7→ H1), (DFRS 7→ H3), (IFRS 7→
H3), (N1 7→ H1), (N2 7→ H1)}.

Note that it is possible to use the algorithm presented
here more generally for some other QoS parameters too,
when you want to minimize the total usage of some
resources of available hosts in the target environment. In
this situation, it is possible to define the cost function c
to return the amount of that resource for each host and
then use the greedy approximation algorithm presented in
Figure 8 to find the solution.

B. Reliable Deployment

One of the most important QoS parameters of a soft-
ware system is its reliability, defined as the probability of
failure-free software operation for a specified period of

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1387

© 2011 ACADEMY PUBLISHER

time in a specified environment [11]. In the context of dis-
tributed environments, one potential problem is network
failures. In these environments, connectivity losses can
lead to disastrous effects on the system’s reliability, and
the software application may not provide its desired func-
tionality. To reduce the risks of this problem, one solution
is to make the communications among the application
components as local as possible. In this way, components
located in the same host can communicate regardless of
the network’s status. Thus, from this perspective, the most
reliable deployment configuration can be defined as one
with the least amount of communications among the hosts
in the distributed environment. From another point of
view, this can be also seen as the increased performance.
This is due to the fact that in distributed environments,
network communications have some overheads on soft-
ware applications. Consequently, reduced communication
among hosts can result in a higher performance.

One impractical way for finding the most reliable de-
ployment configuration is to generate all possible deploy-
ment configurations by permuting the sets of candidate
hosts for different components of the application. Then,
the deployment configuration with the greatest number
of local channels among the application components
(or the least number of channels among the hosts) is
selected. However, when the number of possible deploy-
ment configurations is large, this approach will not work
effectively. To solve this problem in polynomial time, we
show that the reliable deployment problem corresponds
to the multiway cut problem in graph theory [12].

Definition 13 (Multiway Cut Problem): Let G =
(V,E) be an undirected graph on V = {v1, v2, ..., vn} in
which each edge e ∈ E has a non-negative weight w(e),
and let T = {t1, t2, ..., tm} ⊆ V be a set of terminals.
Multiway cut is the problem of finding a set of edges
E′ ⊆ E such that the removal of E′ from E disconnects
each terminal from all other terminals, and solution cost
MC =

∑
e∈E′ w(e) is also minimized.

Suppose AG = (VAG, EAG) is the application graph
of the software application being deployed, VTG =
{H1,H2, ..., Hm} represents the set of available hosts
in the target environment, and CHCi represents the set
of candidate hosts for the deployment of component Ci.
To solve the reliable deployment problem, a graph G =
(V,E) is made in the following way:

• V = VAG ∪ VTG.
• E = EAG ∪ EH , where EH = {{Ci,Hx}|Ci ∈

VAG,Hx ∈ CHCi}.

• w(e) =

{
1 e ∈ EAG

n2 e ∈ EH
. Here n2 shows a large

number.
Figure 9 shows an example of a graph developed in

this way for the application graph presented in Figure 4,
and the target environment presented in Figure 3. In this
graph, if we set hosts as the terminals of the multiway
cut problem, we prove in the following theorem that the
solution of the multiway cut problem is the solution of
the reliable deployment problem we intend to solve.

n
2
 n

2
 n

2

n
2
 n

2

n
2
 n

2

n
2

n
2

n
2

n
2
 n

2

n
2
 n

2

n
2

n
2

FRS

N2 DFRS

IFRS N1

1

1

H1

H5

H2

H3

H4

1

1

1

Figure 9. A graph built for finding the most reliable deployment
configuration of the application presented in Figure 4 into the target
environment shown in Figure 3.

Theorem 2: Suppose graph G = (V,E) is built in the
way mentioned earlier, and hosts of the target environment
are set as the terminals. Then, the multiway cut solution
of this graph is the solution of the reliable deployment
problem we are looking for. This means that the appli-
cation components that lie in the same subgraph with a
host should be deployed on that host, and this deployment
configuration has the least number of channels among
hosts.

Proof: Suppose n represents the number of com-
ponents of the application, and k represents the size of
the EH , i.e., k = |EH |. In the multiway cut solution
we are looking for, each component must be assigned
to exactly one host. Thus, (k − n) edges whose total
weight is n2(k − n) will be removed from the EH in
the cut. Also, suppose LOPT represents the solution of
the reliable deployment problem, i.e., the least number
of channels among hosts after the deployment of the
application. Actually, these channels are those application
graph edges that lie in the cut, and their total weight
is LOPT × 1 = LOPT. Thus, our goal is to prove that
MC = n2(k − n) + LOPT.

Case A: MC ≤ n2(k− n) + LOPT. Suppose a deploy-
ment D : VAG −→ VTG whose cost is optimum is
done, i.e., it has LOPT number of channels among hosts.
Now, assume that C is its corresponding cut in the graph
G = (V,E):

C = {{Ci,Hx}|D(Ci) ̸= Hx, {Ci,Hx} ∈ EH}︸ ︷︷ ︸
M

∪
{{Ci, Cj}|D(Ci) ̸= D(Cj), {Ci, Cj} ∈ EAG}︸ ︷︷ ︸

N

M represents the set of edges of EH that lie in the
cut, and N represents the set of edges of EAG that lie in
the cut. The size of M is (k − n) and the size of N is
LOPT. Furthermore, the weight of the edges in M is n2

1388 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

and the weight of the edges in N is 1. With respect to
this description:

w(C) =
w({{Ci,Hx}|D(Ci) ̸= Hx, {Ci, Hx} ∈ EH})+
w({{Ci, Cj}|D(Ci) ̸= D(Cj), {Ci, Cj} ∈ EAG}) =
n2 × |{{Ci,Hx}|D(Ci) ̸= Hx, {Ci,Hx} ∈ EH}|+
1× |{{Ci, Cj}|D(Ci) ̸= D(Cj), {Ci, Cj} ∈ EAG}| =
n2(k − n) + LOPT

Since MC is the cost of the optimum multiway cut, for
sure, MC ≤ w(C). Therefore, MC ≤ n2(k−n) +LOPT.

Case B: MC ≥ n2(k− n) + LOPT. Suppose C is the
optimum multiway cut for graph G = (V,E) whose cost
is MC. Now, we want to use this cut to generate its
corresponding deployment D. For this purpose, we prove
the following subcases:

B.1: Cut C includes at most (k− n) edges of
EH. Suppose we want to find a cut whose cost is
the heaviest. In the deployment configuration we are
looking for, each component should be assigned to
exactly one host. For this purpose, for each component
Ci in graph G, we keep an arbitrary edge connecting
that component to an arbitrary host, and we cut the
rest of the edges in EH and EAG. Since the maximum
number of edges in the application graph is (n2), the
cost of this cut is at most (n2) + n2(k − n). Thus,
the cost of the multiway cut C can not be more than
n2

2 +n2(k−n). This means that the cut C includes at
most (k − n) edges of EH . Because, for example, if
it includes (k− n+ 1) edges of EH , then the cost of
the cut would be (n2) + n2(k − n+ 1) which is more
than the maximum cost we found here.

B.2: Each component Ci is connected to at most
one host in the cut C. Suppose a component Ci is
connected to two different hosts Hx and Hy in the cut.
This means that Hx and Hy are connected together
in the cut. However, since Hx and Hy belong to the
set of terminals, this is impossible. Therefore, Ci is
connected to at most one host in the cut.

B.3: Each component Ci is connected to exactly one
host in the cut C. From subcases B.1 and B.2 together,
it can be easily understood that each component Ci

is connected to exactly one host in the cut C. D(Ci)
represents the host on which component Ci is mapped.

By using the subcase B.3, cut C’s corresponding de-
ployment configuration D can be made. Suppose LD =
|{{Ci, Cj}|D(Ci) ̸= D(Cj), {Ci, Cj} ∈ EAG}| repre-
sents the cost of the deployment configuration D, i.e., the
number of channels among the hosts in the deployment
configuration D. In the following, we prove the correct-
ness of case B:

1) For each terminal ti ∈ T , find a minimum-cost set
of edges Cti whose removal disconnects ti from
the rest of the terminals

2) Discard cut Ctx whose cost w(Ctx) is the
heaviest

3) Output the union of the rest, call it C.

Figure 10. Approximation algorithm for solving the multiway cut
problem.

MC = n2(k − n)+
|{{Ci, Cj}|{Ci, Cj} ∈ C, {Ci, Cj} ∈ EAG}|

≥ n2(k − n)+
|{{Ci, Cj}|D(Ci) ̸= D(Cj), {Ci, Cj} ∈ EAG}|
= n2(k − n) + LD

=⇒ MC ≥ n2(k − n) + LD ≥ n2(k − n) + LOPT

Cases A and B together imply that MC = n2(k−n)+
LOPT. Therefore, the correctness of Theorem 2 is proved.

In Theorem 2, we showed that the solution of the
reliable deployment problem can be found by solving
the multiway cut problem in graph theory. However,
it is proved that the multiway cut problem is an NP-
hard problem when the number of terminals is greater
than two. Thus, unless P=NP, it does not have a poly-
nomial time solution [12]. However, it is possible to
find many approximation algorithms for the multiway cut
problem in literature [12], [13], [14]. One of the well-
known and simple approximation algorithms developed
by Dahlhaus et al. is provided in Figure 10 [12]. As
an example, Figure 11 shows an example of applying
this algorithm on the graph presented in Figure 9. As
we see in this figure, one of the main problems of these
approximation algorithms is that some components may
not be assigned to any hosts (e.g., FRS). To solve this
problem, after applying the multiway cut approximation
algorithm on the graph, we check whether or not all
components are assigned to a host. If there are some com-
ponents which are not assigned to any hosts, we connect
those components to one of their candidate hosts for the
deployment, and we cut all the application graph edges
that are connected to those components. Since, we are
actually removing from the multiway cut approximation
some heavy edges that connect the components to the
hosts, this approach not only will solve the problem, but
also will improve the approximation of the multiway cut.
Consequently, the result is closer to the optimum solution
we are looking for. After applying this improvement on
the multiway cut approximation presented in Figure 9,
one possible solution for the reliable deployment prob-
lem is {(FRS 7→ H1), (IFRS 7→ H2), (DFRS 7→
H2), (N1 7→ H2), (N2 7→ H2)}.

VII. RELATED WORK

An application can provide its expected functionality
only when it is deployed and configured correctly in its

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1389

© 2011 ACADEMY PUBLISHER

n
2
 n

2
 n

2

n
2
 n

2

n
2
 n

2

n
2

n
2

n
2

n
2
 n

2

n
2
 n

2

n
2

n
2

FRS

N2 DFRS

IFRS N1

1

1

H1

H5

H2

H3

H4

1

1

1

Figure 11. An approximation for the multiway cut of the graph
presented in Figure 9.

operational environment. Consequently, The process of
software deployment has been the subject of extensive re-
search in recent years and a variety of commercial as well
as research-based tools and techniques for the purpose of
software deployment have been introduced. This section
provides an overview of these tools and techniques and
characterizes them in terms of their support for different
activities of the deployment process as introduced in [3]:
(i) Release: packages, prepares, and advertises a system
for deployment into operating environments; (ii) Acquire:
acquires the components of the application from the
software producer and puts them in a repository; (iii)
Plan: given the specifications of the component-based
application, the target environment, and user-defined con-
straints regarding this deployment, this activity determines
where and how different components of the application
will be executed in the target environment, resulting in a
deployment plan; (iv) Install: uses the deployment plan
generated in the previous activity to install the application
into its operating environment; (v) Configure: changes the
configuration of an already installed software system; (vi)
Activate: actually launches the application; (vii) Update:
modifies a previously installed system and deploys a
new, previously unavailable configuration of that system
or updates the components of the system with newer
releases of those components; (viii) Deactivate: shuts
down executing components of an activated system; (ix)
Uninstall: completely removes the software system from
its operating environment; and (x) Retire: makes a system
release unavailable.

A. Commercial Software Deployment Technologies

A variety of commercial technologies support different
activities of the software deployment process. We classify
these technologies into six main categories as shown in
Table II and characterize them in terms of their support for
the activities of the software deployment process. A ‘•’
in Table II illustrates full support, a ‘◦’ indicates partial

support, and no circle means no support.
User-driven installers are used to install and uninstall

software systems from a single machine. Many installers
may also support some sort of configuration by which
users can add or remove some functionalities from the
installed software systems. The limitations of these tools
include: they are targeted to a single machine and it is
typically impossible to use them for distributed platforms.
Also, users themselves have to administer their software
systems.

Package managers often come with modern operating
systems to assist in installing, uninstalling, and updating
software systems. The main goal of all package managers
is to install software packages in such a way that the cor-
rect dependencies among them are preserved. However,
they are also targeted to a single machine and do not
support distributed systems or large scale deployments.
Additionally, they are also user-driven.

Systems management tools provide a set of capabil-
ities (e.g., tools, procedures, policies, etc.) that enable
organizations to more easily support their hardware and
software resources. Systems management tools often have
a centralized architecture in which the IT administra-
tor performs operations from a centralized location and
they are automatically applied to many systems in the
organization. Systems management tools support many
of the software deployment activities in a distributed
environment. However, the issues associated with them
are that they are often heavy and complicated systems,
they all require reliable networks, they are all based
on complete administration control, and they are more
suitable for medium to large organizations.

In remote sessions, software systems are deployed to a
single server machine. Then, each client initiates a session
on that server and invokes desired software systems on it.
Therefore, these tools only support the execution activity
of the deployment process. The advantages of these tools
are that they reduce the inconsistencies in deployed clients
when the functionality is extended and it is not required to
deploy the same application to several machines. The dis-
advantages are server load, under-utilized client resources,
and consumption of network bandwidth.

In publish/subscribe tools, users express their interests
(“subscribe”) in certain kinds of events on a server,
such as installing a new application or updating installed
applications. Then, whenever these events happen on that
server, they will be applied (“publish”) automatically to
the subscribed machines. This method is an efficient
approach for the distribution of a software system from
a source machine to a large number of target machines
over a network. Nevertheless, the limitation is that the
users themselves have to subscribe for the deployment
of applications. Furthermore, these tools might not be
efficient in costly and low-bandwidth networks.

Web-based deployment tools try to use the connectivity
and popularity characteristics of the Internet during the
process of software deployment. In these tools, it is not
required to install or update the software system on every

1390 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

TABLE II.
COMPARISON OF DIFFERENT COMMERCIAL DEPLOYMENT TECHNOLOGIES IN TERMS OF THEIR SUPPORT FOR THE ACTIVITIES OF THE

SOFTWARE DEPLOYMENT PROCESS

Deployment Technology Representative Tools
Software Deployment Process

R
el

ea
se

A
cq

ui
re

Pl
an

In
st

al
l

C
on

fig
ur

e

A
ct

iv
at

e

U
pd

at
e

D
ea

ct
iv

at
e

U
ni

ns
ta

ll

R
et

ir
e

User-Driven Installers InstallShield [15], InstallAnywhere [16],
Setup Factory [17], Setup Builder [18] • • ◦ ◦ •

Package Managers
Linux RPM [19], Fedora yum [20],
Debian Dpkg [21], Solaris pkg [22],
Gentoo Portage [23]

• ◦ • ◦ • •

Systems Management Tools

Microsoft Systems Management
Server [24], IBM Tivoli Management
Environment [25], Altiris Deployment
Solution [26], HP Open-View [27]

• • • • • • •

Remote Sessions Citrix [28], PowerTCP [29], SSh [30] •

Publish/Subscribe Tools
TIBCO Rendezvous [31], IBM
Gryphon [32], Oracle Java Message
Service [33]

• • • •

Web-based Deployment Tools Java Web Start [34], Microsoft Windows
Update [35], Microsoft ClickOnce [36] • • • ◦ • •

single host separately. Instead, the software application
is deployed only to a single Web server. Then, client
machines (users) connect to this server to download the
application files or updates automatically. However, one
of the major limitations of these tools is that they are
useless when there is no Internet connectivity.

B. Research-based Software Deployment Techniques
The process of software deployment has been the sub-

ject of extensive research in the past few years. This sec-
tion provides an overview of research-based deployment
techniques and classifies them into eight major categories
as illustrated in Table III. This table also compares these
techniques in terms of their support for the activities of the
software deployment process. Note that this categorization
represents different directions of interest in research-based
deployment techniques and the same technique may fall
in two or more deployment categories.

As mentioned earlier in this article, it is often possible
to deploy a component-based application into its oper-
ational environment in various ways, specifically when
its operational environment is a distributed environment.
Nevertheless, it is clear that some of these deployment
configurations are better than others in terms of some QoS
attributes such as efficiency, availability, reliability, and
fault tolerance. QoS-aware deployment approaches [37],
[54], [38], [4] aim to address this aspect of software
deployment. This article also presented a QoS-aware
deployment approach for improving the reliability and the
cost of the deployments.

The software architecture research community has
also addressed configuration and deployment issues for
component-based applications [39], [40], [55], [56], [57].
A software architecture represents high-level abstractions
for structure, behavior, and key properties of a software
system. Software architectures are usually specified in
terms of components that define computational units,
connectors that define types of interactions among compo-
nents, and the configuration that describes the topologies

of components and connectors. For this purpose, Architec-
ture Description Languages or ADLs have been developed
to describe software systems in terms of their architectural
elements. In deployment techniques that employ the con-
cepts of software architecture, ADLs are used to specify
valid deployment configurations. Then, during the process
of deployment, candidate deployment configurations are
checked against those valid deployment configurations.

Model-driven architecture (MDA) [58] is an approach
for software development based on models in which
systems are built via transformations of models. MDA de-
fines two levels of models: Platform-Independent Model
(PIM) and Platform-Specific Model (PSM). Developers
begin with creating a PIM which is then transformed
step by step to a more platform-specific model until the
desired level of specificity is approached. In the case
of software deployment, the MDA approach starts with
a platform-independent model of the target environment
and the transformations finish with specific deployment
configurations for the considered component-based appli-
cations [42].

Agent-based deployment approaches, like software
dock [44] and TACOMA [45], use mobile agents for
the purpose of software deployment. A mobile agent is
defined as an object that migrates through many hosts in a
heterogeneous network, under its own control, to perform
tasks using resources of those hosts [59].

Deployment of component-based applications into
computational grids has been the subject of extensive
research [46], [60], [47], [61], [62], [63], [63]. A com-
putational grid is defined as a set of efficient computing
resources that are managed by a middleware that gives
transparent access to resources wherever they are located
on the network [46]. A computational grid can include
many heterogeneous resources (e.g., computational nodes
with various architectures and operating systems), net-
works with different performance properties, storage re-
sources of different sizes, and so on. To take advantage
of the computational power of grids, the application

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1391

© 2011 ACADEMY PUBLISHER

TABLE III.
COMPARISON OF DIFFERENT RESEARCH-BASED DEPLOYMENT TECHNIQUES IN TERMS OF THEIR SUPPORT FOR THE ACTIVITIES OF THE

SOFTWARE DEPLOYMENT PROCESS

Deployment Approach
Representative

Techniques

Software Deployment Process

R
el

ea
se

A
cq

ui
re

Pl
an

In
st

al
l

C
on

fig
ur

e

A
ct

iv
at

e

U
pd

at
e

D
ea

ct
iv

at
e

U
ni

ns
ta

ll

R
et

ir
e

QoS-Aware Deployment
DeSi [37] •
MAL [38] • ◦ ◦ ◦
Caspian [4] •

Architecture-Driven Deployment
Prism-DE [39] ◦ • • • •

Olan [40] • • • • •

Model-Driven Deployment
OMG D&C [41] • • • • • ◦

Deployment Factory [42] • • • • • ◦
DAnCE [43] • • • • • ◦ • ◦

Agent-based Deployment
Software Dock [44] • • • • •

TACOMA [45] • • • •

Grid Deployment
Globus Toolkit [46] • • • •

ORYA [47] • ◦ • •

Hot Deployment
OpenRec [48] • ◦ • • • • • •

MagicBeans [49] • ◦ • • • • • •

AI Planning-based Deployment
Sekitei [50] •
CANS [51] • • • ◦ ◦ ◦

Formal Frameworks
LTS [52] • • ◦ • ◦ • • •

Conceptual [53] •

deployment must be as automated as possible while taking
into account application constraints (e.g., CPU, Memory,
etc.) and/or user constraints to prevent the user from
directly dealing with a large number of hosts and their
heterogeneity within a grid.

Hot deployment approaches [64], [48], [49], [65], [66],
[67], [68], [69], [70], [71], [72] address the ability of
dynamically deploying software components during the
program runtime in autonomic environments. In auto-
nomic environments, a software system can automatically
adapt its runtime behavior with respect to the configu-
ration of the drastically changing execution environment
and user requirements [73]. In this context, it is required
to dynamically install, update, configure, uninstall, and re-
place software components without affecting the reliable
behavior of the system or other constituent components.

Planning the deployment of component-based applica-
tions into network resources has also gained attention in
the artificial intelligence research community [50], [51],
[74], [75], [76]. Two reasons have been mentioned for
this [77]: (1) the requirement to satisfy the qualitative
(e.g., reliability) and quantitative (e.g., disk quota) con-
straints; and (2) the fact that software deployment may
involve selecting among compatible components as well
as insertion of auxiliary components.

Finally, there are also some work that provide platform-
independent formal frameworks for the deployment of
component-based applications [52], [53]. In these frame-
works, different activities of the software deployment
process are defined formally in a platform-independent
manner that are suitable for derivation of theoretical
results. For example, they can give deployment tool
developers a theoretical basis to implement systems with
well-defined behavior.

VIII. CONCLUSIONS

The software deployment process is defined as a se-
quence of related activities for placing a developed ap-
plication into its target environment and making it avail-
able for use. However, this process is often challenging
for complex component-based applications that should
be deployed into a large distributed environment and
some QoS parameters should also be maximized. This
article presented a graph-based approach for deploying
the component-based applications into distributed envi-
ronments. This approach uses the concept of channels to
capture the properties of interconnections among the com-
ponents of the application. In this approach, component-
based applications and distributed environments are mod-
eled with the help of graphs. Deployment of an appli-
cation is then defined as the mapping of the application
graph to the target environment graph. This article also
presented the required algorithms for minimizing the cost
and maximizing the reliability of a deployment.

REFERENCES

[1] A. Heydarnoori, F. Mavaddat, and F. Arbab, “Deploying
loosely coupled, component-based applications into dis-
tributed environments,” in Proceedings of the 13th IEEE
International Symposium and Workshop on Engineering of
Computer Based Systems. IEEE Computer Society, 2006.

[2] A. Heydarnoori and F. Mavaddat, “Reliable deployment
of component-based applications into distributed environ-
ments,” in Proceedings of the 3rd International Conference
on Information Technology: New Generations. IEEE
Computer Society, 2006, pp. 52–57.

[3] A. Heydarnoori, Deploying Component-based Applica-
tions: Tools and Techniques, ser. Studies in Computational
Intelligence. Springer, 2008, vol. 253, pp. 29–42.

1392 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

[4] ——, “Caspian: A QoS-aware deployment approach for
channel-based component-based applications,” David R.
Cheriton School of Computer Science, University of Wa-
terloo, Tech. Rep. CS-2006-39, 2006.

[5] F. Arbab, “Reo: A channel-based coordination model
for component composition,” Mathematical Structures in
Computer Science, vol. 14, no. 3, pp. 329–366, 2004.

[6] F. Arbab and F. Mavaddat, “Coordination through channel
composition,” in Coordination Models and Languages, ser.
Lecture Notes in Computer Science. Springer, 2002, vol.
2315, pp. 275–297.

[7] C.-a. Sun, R. Rossing, M. Sinnema, P. Bulanov, and
M. Aiello, “Modeling and managing the variability of Web
service-based systems,” Journal of Systems and Software,
vol. 83, no. 3, pp. 502–516, 2010.

[8] R. Schollmeier, “A definition of peer-to-peer networking
for the classification of peer-to-peer architectures and
applications,” in Proceedings of the First International
Conference on Peer-to-Peer Computing, Aug. 2001, pp.
101–102.

[9] R. Hassin and A. Levin, “A better-than-greedy approxima-
tion algorithm for the minimum set cover problem,” SIAM
Journalon on Computing, vol. 35, pp. 189–200, July 2005.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. MIT Press, 2001.

[11] M. R. Lyu, Handbook of Software Reliability Engineering.
IEEE Computer Society Press and McGraw-Hill, 1996.

[12] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D.
Seymour, and M. Yannakakis, “The complexity of mul-
titerminal cuts,” SIAM Journalon on Computing, vol. 23,
pp. 864–894, August 1994.

[13] G. Călinescu, H. Karloff, and Y. Rabani, “An improved
approximation algorithm for multiway cut,” in Proceedings
of the thirtieth annual ACM symposium on Theory of
computing. ACM, 1998, pp. 48–52.

[14] V. V. Vazirani, Approximation Algorithms, 2nd ed.
Springer, 2002.

[15] “InstallShield Developer,” http://www.installshield.com/
isd/.

[16] “Zero G software deployment and lifecycle management
solutions,” http://www.zerog.com/.

[17] “Setup factory,” http://www.indigorose.com/suf/.
[18] “Setup builder,” http://www.gppsoftware.com/setupb/.
[19] “RPM package manager,” http://www.rpm.org/.
[20] “Yum: Yellow dog updater,” http://linux.duke.edu/projects/

yum/.
[21] “Package maintenance system for Debian,”

http://packages.debian.org/dpkg/.
[22] “Oracle solaris specification,” http://www.oracle.com/us/

products/servers-storage/solaris/.
[23] “Portage,” http://www.gentoo.org/.
[24] “Systems management server home,” http://www.

microsoft.com/smserver/.
[25] “IBM Tivoli software,” http://www.tivoli.com/.
[26] “Altiris deployment solution,” http://www.altiris.com/.
[27] “HP OpenView,” http://www.hp.com/openview/.
[28] “Citrix,” http://www.citrix.com/.
[29] “PowerTCP,” http://www.dart.com/powertcp/.
[30] “Secure shell (SSH),” http://www.ssh.com/.
[31] “TIBCO Rendezvous,” http://www.tibco.com/software/

messaging/.
[32] “IBM Gryphon,” http://www.research.ibm.com/

distributedmessaging/.
[33] “Java message service (JMS),” http://java.sun.com/

products/jms/.
[34] “Java web start technology,” http://java.sun.com/products/

javawebstart.
[35] “Microsoft windows update,” http://update.microsoft.com.

[36] “ClickOnce: Deploy and update your smart client
projects using a central server,” http://msdn.microsoft.com/
msdnmag/issues/04/05/clickonce/.

[37] M. Mikic-Rakic, S. Malek, N. Beckman, and N. Medvi-
dovic, “A tailorable environment for assessing the quality
of deployment architectures in highly distributed settings,”
in Proceedings of the 2nd IFIP/ACM Working Conference
on Component Deployment, ser. Lecture Notes in Com-
puter Science, vol. 3083, 2004, pp. 1–17.

[38] D. Wichadakul and K. Nahrstedt, “A translation system for
enabling flexible and efficient deployment of QoS-aware
applications in ubiquitous environments,” in Proceedings
of the 1st IFIP/ACM Working Conference on Component
Deployment, ser. Lecture Notes in Computer Science, vol.
2370. Springer, 2002, pp. 287–310.

[39] M. Mikic-Rakic and N. Medvidovic, “Architecture-level
support for software component deployment in resource
constrained environments,” in Proceedings of the 1st
IFIP/ACM Working Conference on Component Deploy-
ment, ser. Lecture Notes in Computer Science, vol. 2370.
Springer, 2002, pp. 31–50.

[40] R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J.-
Y. Vion-Dury, “Architecturing and configuring distributed
application with Olan,” in Proceedings of the 1st Interna-
tional Conference on Distributed Systems Platforms and
Open Distributed Processing. Springer, 1998, pp. 241–
256.

[41] “Deployment and configuration of component-based dis-
tributed applications specification,” http://www.omg.org/.

[42] P. Hnetynka, “A model-driven environment for component
deployment,” in Proceedings of the 3rd ACIS/IEEE Inter-
national Conference on Software Engineering Research,
Management and Applications. IEEE Computer Society,
2005, pp. 6–13.

[43] G. Deng, J. Balasubramanian, W. Otte, D. C. Schmidt,
and A. Gokhale, “DAnCE: A QoS-enabled component
deployment and configuration engine,” in Proceedings of
the 3rd IFIP/ACM Working Conference on Component
Deployment, 2005, pp. 67–82.

[44] R. S. Hall, D. Heimbigner, and A. L. Wolf, “A cooper-
ative approach to support software deployment using the
software dock,” in Proceedings of the 21st International
Conference on Software Engineering. ACM Press, 1999,
pp. 174–183.

[45] N. P. Sudmann and D. Johansen, “Software deployment
using mobile agents,” in Proceedings of the 1st IFIP/ACM
Working Conference on Component Deployment, ser. Lec-
ture Notes in Computer Science, vol. 2370. Springer,
2002, pp. 217–237.

[46] S. Lacour, C. Pérez, and T. Priol, “A software architecture
for automatic deployment of CORBA components using
grid technologies,” in Proceedings of the 1st Conference
On Software Deployment and (Re)Configuration, 2004, pp.
187–192.

[47] V. Lestideau and N. Belkhatir, “Providing highly auto-
mated and generic means for software deployment pro-
cess,” in Proceedings of the 9th European Workshop on
Software Process Technology, ser. Lecture Notes in Com-
puter Science, vol. 2786. Springer, 2003, pp. 128–142.

[48] J. Hillman and I. Warren, “An open framework for dynamic
reconfiguration,” in Proceedings of the 26th International
Conference on Software Engineering. IEEE Computer
Society, 2004, pp. 594–603.

[49] R. Chatley, S. Eisenbach, and J. Magee, “MagicBeans:
A platform for deploying plugin components,” in Pro-
ceedings of the 2nd IFIP/ACM Working Conference on
Component Deployment, ser. Lecture Notes in Computer
Science, vol. 3083, 2004, pp. 97–112.

[50] T. Kichkaylo, A. Ivan, and V. Karamcheti, “Constrained
component deployment in wide-area networks using AI

JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011 1393

© 2011 ACADEMY PUBLISHER

planning techniques,” in Proceedings of the 17th IEEE
International Symposium on Parallel and Distributed Pro-
cessing. IEEE Computer Society, 2003, pp. 1–10.

[51] X. Fu and V. Karamcheti, “Planning for network-aware
paths,” in Proceedings of the 4th International Conference
on Distributed Applications and Interoperable Systems, ser.
Lecture Notes in Computer Science, vol. 2893. Springer,
2003, pp. 187–199.

[52] Y. D. Liu and S. F. Smith, “A formal framework for
component deployment,” in Proceedings of the 21st ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications. ACM Press, 2006,
pp. 325–344.

[53] A. Parrish, B. Dixon, and D. Cordes, “A conceptual foun-
dation for component-based software deployment,” The
Journal of Systems and Software, vol. 57, no. 3, pp. 193–
200, 2001.

[54] M. Mikic-rakic, S. Malek, and N. Medvidovic, “Improving
availability in large, distributed component-based systems
via redeployment,” in Proceedings of the 3rd IFIP/ACM
Working Conference on Component Deployment, 2005, pp.
83–98.

[55] V. Quéma and E. Cecchet, “The role of software archi-
tecture in configuring middleware: The ScalAgent experi-
ence,” in Proceedings of the 7th International Conference
on Principles of Distributed Systems, ser. Lecture Notes in
Computer Science, vol. 3144, 2003, pp. 120–131.

[56] J. Matevska-Meyer, W. Hasselbring, and R. H. Reussner,
“Software architecture description supporting component
deployment and system runtime reconfiguration,” in Pro-
ceedings of the 9th Workshop on Component-Oriented
Programming, 2004.

[57] D. Hoareau and Y. Mahéo, “Middleware support for the
deployment of ubiquitous software components,” Personal
and Ubiquitous Computing, vol. 12, no. 2, pp. 167–178,
2008.

[58] “OMG model driven architecture,” http://www.omg.org/
mda/.

[59] D. Rus, R. Gray, and D. Kotz, “Transportable information
agents,” Journal of Intelligent Information Systems, vol. 9,
no. 3, pp. 215–238, 1997.

[60] S. Lacour, C. Pérez, and T. Priol, “Deploying CORBA
components on a computational grid: General principles
and early experiments using the Globus Toolkit,” in Pro-
ceedings of the 2nd IFIP/ACM Working Conference on
Component Deployment, ser. Lecture Notes in Computer
Science, vol. 3083, 2004, pp. 35–49.

[61] P. Brebner and W. Emmerich, “Deployment of infrastruc-
ture and services in the open grid services architecture
(OGSA),” in Proceedings of the 3rd IFIP/ACM Working
Conference on Component Deployment, 2005, pp. 181–
195.

[62] H. L. Bouziane, C. Pérez, and T. Priol, “Extend-
ing software component models with the master-worker
paradigm,” Parallel Computing, vol. 36, no. 2-3, pp. 86–
103, 2010.

[63] E. Mathias, V. Cavé, S. Lanteri, and F. Baude, “Grid-
enabling SPMD applications through hierarchical parti-
tioning and a component-based runtime,” in Proceedings
of the 15th International Euro-Par Conference on Parallel
Processing. Springer, 2009, pp. 691–703.

[64] E. Patouni and N. Alonistioti, “A framework for the
deployment of self-managing and self-configuring compo-
nents in autonomic environments,” in Proceedings of the
7th International Symposium on World of Wireless, Mobile
and Multimedia Networks. IEEE Computer Society, 2006,
pp. 480–484.

[65] A. Akkerman, A. Totok, and V. Karamcheti, “Infrastructure
for automatic dynamic deployment of J2EE applications
in distributed environments,” in Proceedings of the 3rd

IFIP/ACM Working Conference on Component Deploy-
ment, 2005, pp. 17–32.

[66] H. Cervantes and R. S. Hall, “Autonomous adaptation to
dynamic availability using a service-oriented component
model,” in Proceedings of the 26th International Confer-
ence on Software Engineering. IEEE Computer Society,
2004, pp. 614–623.

[67] M. Hicks and S. Nettles, “Dynamic software updating,”
ACM Transactions on Programming Languages and Sys-
tems, vol. 27, no. 6, pp. 1049–1096, 2005.

[68] H. Liu, “A component-based programming model for
autonomic applications,” in Proceedings of the 1st Inter-
national Conference on Autonomic Computing. IEEE
Computer Society, 2004, pp. 10–17.

[69] S. R. Mitchell, “Dynamic configuration of distributed
multimedia components,” Ph.D. dissertation, University of
London, 2000.

[70] J. a. P. A. Almeida, M. Van Sinderen, and L. Nieuwen-
huis, “Transparent dynamic reconfiguration for CORBA,”
in Proceedings of the 3rd International Symposium on
Distributed Objects and Applications. IEEE Computer
Society, 2001, pp. 197–207.

[71] D. Hagimont, P. Stolf, L. Broto, and N. Palma,
“Component-based autonomic management for legacy
software,” Y. Zhang, L. T. Yang, and M. K. Denko, Eds.
Springer, 2009, pp. 83–104.

[72] Y. Li, M. Zhou, C. You, G. Yang, and H. Mei, “En-
abling on demand deployment of middleware services in
componentized middleware,” in Proceedings of the 13th
International Symposium on Component-Based Software
Engineering, ser. Lecture Notes in Computer Science, vol.
6092. Springer, 2010, pp. 113–129.

[73] R. Murch, Autonomic Computing. Prentice Hall, 2004.
[74] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agar-

wal, G. Mehta, and K. Vahi, “The role of planning in
grid computing,” in Proceedings of the 13th International
Conference on Automated Planning and Scheduling, 2003,
pp. 9–13.

[75] S. Gribble, “The Ninja architecture for robust internet-scale
systems and services,” Computer Networks, vol. 35, no. 4,
pp. 473–497, 2001.

[76] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko, “Automated
planning for open architectures,” in Proceedings of the 3rd
IEEE International Conference on Open Architectures and
Network Programming. IEEE Computer Society, 2000,
pp. 17–20.

[77] T. Kichkaylo and V. Karamcheti, “Optimal resource-aware
deployment planning for component-based distributed ap-
plications,” in Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing.
IEEE Computer Society, 2004, pp. 150–159.

Abbas Heydarnoori is a post-doctoral fellow at the
University of Lugano, Switzerland. His research interests
include software deployment, dynamic program analysis,
and program comprehension. Abbas received his PhD
from the University of Waterloo, Canada. Contact him at
abbas.heydarnoori@usi.ch.

Walter Binder is an assistant professor at the University
of Lugano, Switzerland. His research interests focus on
dynamic program analysis, virtual execution environ-
ments, and aspect-oriented programming. Walter holds a
PhD from the Vienna University of Technology, Austria.
Contact him at walter.binder@usi.ch.

1394 JOURNAL OF SOFTWARE, VOL. 6, NO. 8, AUGUST 2011

© 2011 ACADEMY PUBLISHER

