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Abstract—The accessibility and abundance of data today 
makes knowledge discovery a matter of considerable 
importance and necessity. The process to discover 
continuously knowledge in evolving business domain is a 
challenge issue. A continuous knowledge discovery process 
is introduced for inducing the local first-order rules and 
global evolutional rules, to trace dynamic evolution patterns 
firstly. The definitions of main notions (event, sequence 
pattern, temporal rule) are proposed in a formal way, based 
on first-order linear temporal logic and temporal 
granularity. The measures of support and confidence about 
ranged degree of truth of a formula are established. The 
formalism defines the valuation on a linear state structure 
with time granules. By defining transition operation 
between temporal types, it is proved that only the 
independent information for unspanned-granule may be 
transferred without loss among different granularities. 
Otherwise, an aggregation mechanism was proposed to state 
sequence. 
 
Index Terms—continuous discovery process, temporal 
granularity, formal theory, first-order linear temporal logic  
 

I.  INTRODUCTION 

Today many organizations have more than large 
databases that change and grow continuously. The 
knowledge discovery (KDD) in such evolving data is an 
important challenge to the scientific and industrial 
communities. Before any attempt can be made to extract 
the useful knowledge, an overall approach that describes 
how to extract knowledge needs to be established. 
Moreover, time granulation can be regarded as an 
important step forward when dealing with complex 
problem. 

Agrawal et al. showed an active data mining process, 
where the mining algorithm was applied to each of the 
partitioned data set and rules were induced [1]. Many 
different algorithms for incremental mining have been 
proposed in evolving database environment [2-4]. Gupta 
et al. presented a user-centric KDD process model [5]. 
Several researches have concentrated on fusion of domain 
knowledge with data mining system [6]. However, little 
attention has been paid to establishment of a general 
mechanism for supporting share of domain knowledge, 

intermediate results, and dynamically setting mining goal, 
data sources, and model selection. 

The general framework researches of data mining 
focus more on mining algorithmic aspect, and less on the 
mining theoretical frameworks of knowledge discovery 
[7]. Cotofrei et al. investigated the form of temporal rules 
of time series, and presented a formalism of main terms 
and notions, based on the first-order temporal logic [8]. 
Bettini et al. presented a general framework to define 
time granularity systems [9]. 

In this paper we attempt to explore theoretical 
frameworks to make continuous knowledge discovery for 
evolving database environments. The formal theory is 
built upon a continuous model of the KDD process (C-
KDD model), using session model. We attempt to expand 
the formalism theory of [8], apply the definition of 
primary concepts to C-KDD model in a formal way, and 
discuss the valuation of first-order formula and measure 
definition. This formalism is then extended to include the 
notion of temporal granularity and a discussion is made to 
investigate the formal relationships between the support 
measures of the same event with different granularities. 

This paper is organized as follows: Section 2 
introduces the C-KDD process model. Section 3 presents 
main notions of discovery process in a formal way. 
Section 4 introduces the general framework to define 
time granularity model. Section 5 discusses the 
definitions and theorems concerning the extension of the 
formalism towards a temporal granular logic. Finally, 
Section 6 concludes the paper. 

II.  C-KDD PROCESS MODEL 

We present a process model for the KDD process, 
which is based on the concept of active, continuous 
discovery and designed to integrate known knowledge 
and granules in order to support automatic discovery 
process [10].  

To make use of data granules mechanism (or groups, 
classes, clusters of a universe) to support discovery 
process, it need create various levels of data, as well as 
inherent data structure, by partitioning data attributes into 
intervals. The different levels of granularities form data 
granule ontologies. 

The model, called C-KDD (Cohesive KDD) model, is 
shown as Fig. 1 [9]. It consists of four stages: planning, 
session mining, merge mining, and post-processing.  
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During planning stage, the KDD process begins with 
business understanding, including business-aims and 
business-logic. Through interactive exploration and 
experimentation, discovery goals, business data, and 
subsequent processes are identified and the specification 
of discovery task schedule (TS) is generated. 

The session mining stage performs select-transfer-
premining and achieves partial data mining. It places 
emphasis on local and static rules induction, and executes 
induction on incremental data at regular intervals, e.g. 
month. As the functions are already specified in the TS, 
they are periodically repeated on incremental data as per 
the frequency or trigger condition, and whose outcome 
forms a rule bin (RB). Therefore, several session minings 
will generate the measure sequence of the inferred rule. 

The merge mining is initiated by mining queries or a 
trigger event. The query contents are listed in 
consultation with the TS; user can commit them, 
according to his requests. A trigger event is occurred as 
the causes of time or rule rising. It places emphasis on 
overall and dynamic rules discovery, in the interaction 
paradigm, the rules are merged and refined from several 
RBs.  

The post-processing stage begins with matching 
discovered rules and known knowledge, filters useless 
ones, then classified and ranked automatically interesting 
results according to interestingness. When a critical point 
threshold is reached, an alert will be triggered. 
Meanwhile, the user can review and confirm these 
findings. It would also integrate new interesting insights 
with the known knowledge, to perform knowledge 
evolution and presentation.  

 
Figure 1. C-KDD process model. 

Then, it forms a close-loop solution that helps to 
maintain the continuous knowledge discovery process. 
When unable to satisfy intelligence application or rule 
review, the process flow goes back to the planning stage 
to re-explore data. 

III.  FORMALISM OF  DISCOVER PROCESS 

In the continuous knowledge discovery, there is a large 
number of data with temporal dependencies, i.e. temporal 
sequence. Temporal data mining (TDM) can provide the 
solution to satisfy these processing requests. 

We consider that a linearly ordered temporal domain is 
a structure T=(TD,<), where TD is a set of discrete time 
instants and < is a linear order relationship on TD. For 
simplicity, we assume that the elements of T are strictly 
increasing, and ti+1-ti=⊿ is a positive constant. 

Given a temporal domain T, a non-empty attribute set 
{A1,...,Ak} denotes to each attribute of finite entity set Q 
(such as customer or stock), then a temporal sequence is a 
ordered item list X={X1, X2,... Xi,...}, where Xi is a k+2-
tuple (q,t,a1,...,ak), q∈Q, t∈T, ai∈ iAD . A sequence 
space WX consists of all instances of the sequence 
category. Mined data set wX is a subset of WX. 

After the pre-processing of temporal sequence, a 
sequence X in wX has been transformed into a linear 
ordered sequence of events Xe, consisted of some basic 
shapes or strings. Given a finite symbol set De of the 
basic shapes or strings, the feature function set {f1,...,fp} 
(p≥0) and each corresponding domain

if
D , then the event 

set of wX is E={(q,e,b1,...,bp)| q∈Q, e∈De, bi= fi, bi∈

ifD }, so Xe={E1, E2,... Ej,...}, Ej is an event at tj. 
As inferring classification rule, there is a finite class 

symbol set Dg. The mapping wt→Dg, where wt ⊂ WX, 
must be specified prior to the induction process, where wt 
is called as train set, eventually it infers wX→Dg for 
supervised learning, while the induction process 
generates directly wX→Dg for unsupervised learning. 

Example 1. Given a database containing daily price 
variations of the stocks, specified basic symbol set De= 
{peak, valley, flat}. Each event has form (q, e, b1, b2), 
where q is entity name, e is one of the strings {peak, 
valley, flat}, and b1, b2 represent the means respectively, 
the standard error. We assume that the price sequence of 
IBM stock is transformed into the event sequence ((IBM, 
flat, 3, 1.5), (IBM, peak, 10, 2.4), ..., (IBM, peak, 8, 1.4)). 
For classification task, there is class symbol set 
Dg={grow, stabile, wave, risk}. 

For presenting definition and formalism of primary 
concepts used in discovery process, we begin by defining 
the various tasks that occupy the attention of researches.  

• Search: Given a query sequence S, and some 
similarity/dissimilarity measure D(S,C), find the nearest 
matching sequences C in data set wX.  

• Temporal association rule mining:  Find the 
complete set of association rule and temporal features in 
data set wX under measures such as a support and a 
confidence. 
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• Sequence mining: Find the complete set of 
frequently occurring ordered events or subsequences as 
patterns in data set wX under a support measure. 

• Clustering: Find natural groupings of the sequences 
in data set wX under some similarity/dissimilarity measure 
D(S,C).  

• Classification: Given an unlabeled sequence S, 
assign it to one of two or more predefined classes.  

A.  Syntax 
A first-order logic language contains usually constant, 

function, predicate, and general symbols like connectives, 
etc. For the requirement of formalism we consider a 
restricted first-order temporal logic language L, which 
contains constant symbols, variable symbol, function 
symbols, predicate symbols, relational symbol set 
{=,<,≤,>,≥},  quantifiers { ∃∀, }, temporal operators 
{□,◊}, logical connectives {¬,˄} and a temporal 
connective ⊿k, k∈Z, where k>0 denotes next k time 
instants, k<0 denotes last k time instants, k=0 denotes 
now. 

The syntax of L defines the set of terms, atomic 
formulae (or atom) and formulae denoted respectively by 
Term(L), Atom(L) and Form(L).  

Definition 1. (Term(L)) t∈Term(L), if and only if t is 
defined inductively (finite times) by the following rules: 

(1) a, y∈Term(L), where a is a constant symbol, y is a 
variable symbol. 

(2) If t1,t2,...,tn∈Term(L) and f is an n-ary function 
symbol then f(t1,t2,...,tn)∈Term(L). 

Definition 2. (Atom(L)) An expression A∈Atom(L), if 
and only if A is defined by the following arbitrary rules: 

(1) P(t1,t2,...,tm), where P is an m-ary predicate symbol, 
t1,t2,...,tm∈Atom(L). 

(2) Relational atom t1 ρ t2, where t1, t2∈Atom(L), ρ∈
{=, <, ≤, >, ≥}. 

Definition 3. (Form(L)) An expression F∈Form(L), if 
and only if F is defined inductively (finite times) by the 
following rules, where F, F1, F2∈Form (L). 

(1) Atom(L)∈Form(L). 
(2) (F1˄F2)∈Form(L). 
(3) ¬F∈Form(L), ⊿kF∈Form(L). 
(4) □F∈Form(L), ◊F∈Form(L). 
(5) If F(y)∈Form(L), where y is a variable symbol, 

then ∀ yF(y)∈Form(L) and ∃ yF(y)∈Form(L). 
Based on the linear temporal logic, the formulas are 

true or false on computation paths, that is, sequences of 
states s0, s1, s2, …. The formula □F means that F is true at 
all states along the path. The formula ◊F means that F is 
true at some state on the path. A quasi-Horn clause is a 
formula of form: A1˄...˄Ak ⇒ Ak+1, if and only if it is 
syntactically equivalent with the formula A1˄...˄Ak˄Ak+1, 
where Ai is a positive atom. 

Definition 4. (Event) Given finite symbol set Q and De, 
an event is an atom formed by a p+2-ary predicate 
E(q,e,f1,...,fp)(p≥0), where q∈Q is an entity symbol, e is a 
symbol representing the name of the event, q and e are 

constant or variable symbols, and f1,...,fp∈Term(L) are 
the function symbols. 

Definition 5. A constraint formula for the event 
E(q,e,f1,...,fp) is a conjunctive formula, E(q,e)˄C1˄...˄Cm. 
E(q,e) is the event, each Ci (1≤i≤m) is a relational atom 
tρc, where t is one of variable symbols {q,e,f1,...,fp} 
representing the name of entity, event or corresponding fi 
respectively, c is a constant symbol, and ρ∈{=,<,≤,>,≥}. 
At least, it contains a relational atom E(q,e), where q and 
e are constant symbols, denoted as a short constraint 
formula. A temporal constraint formula Bk denotes 
⊿k(E(q,e)˄C1˄ C2˄...˄Cm), k∈Z. 

Definition 6. A sequence pattern (also called pattern) 
is a conjunctive formula of several ordered temporal 
constraint formula Bk, m21 iii BBB ∧∧∧ ... , i1≤i2≤... ≤im≤0. 

Definition 7. A subsequence is a sequence pattern, 

miii BBB ∧∧∧ ...
21

, i1≤i2≤...≤im≤0, where each 
kiB  is a 

temporal short constraint formula. 
Definition 8. A temporal rule is a formula of the form 

1mm21 iiii HBBB
+

⇒∧∧∧ ... , i1≤...≤im≤im+1≤0, where 
ki

B  

and 
1mi

H
+

are constraint formulas, prefixed by the 

temporal connectives
ki

∆ and 
1mi +

∆ . We denote such 

m1 ii BB ∧∧ ...  as rule body, 
1mi

H
+

as rule head. 
The definitions 4-8 have dealt with the local properties 

of sequences, and then clustering and classification rules 
involving the global properties are as follow:  

Definition 9. A class is an atom formed by a p+1-ary 
predicate G(g, f1,...,fk)(k≥0), where g∈Dg is an element of 
the class symbol, and f1,...,fk∈Term(L) are the function 
symbols about class properties. 

Definition 10. A classification rule is a formula of the 
form ),...,(... k1iii ffgGBBB

m21
⇒∧∧∧ , i1≤i2≤...≤im≤0. 

The results of clustering and classification task are 
represented in classification rules. The temporal rule, 
classification rule, subsequence and pattern are called 
first-order rule RF∈Form(L), by a joint name. |im-i1|+1 
are the time interval of RF. The temporal rule and 
classification rule are quasi-Horn clause prefixed by ⊿i. 
When only order of the event is considered, the temporal 
connective ⊿i may be omitted in RF. 

B.  Semantics 
The semantics of terms and formulae of L is provided 

by an interpretation. Generally, for structure U=(D,{ai}, 
{fi},{Ri}), where D is domain, ai, fi and Ri represent 
constant, total function and predicate respectively on D, 
the constant, function and predicate symbols of L must be 
mapped to U, respectively. Moreover, the individuals in 
D are assigned to interpreted freedom variables. The 
other symbols have common semantics or have been 
explained above. The interpretation and assignation are 
called valuation jointly. The valuation V: (i)V(a),V(u)∈D. 
(ii)V(f):Dn→D. (iii)V(R):Dm→{ture,flase}. The valuation 
V may be extended to arbitrary expression. For a formula 
p, the meaning of truth under valuation V is denoted for 
V|=p. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 7, JULY 2011 1219

© 2011 ACADEMY PUBLISHER



Given D=wX∪De∪Df∪Dg, the feature function set 
{f1,...,fp} is defined on D. To determine meaning based on 
a first-order linear temporal logic, we create a structure 
having a temporal dimension and capable of valuating the 
relationship between a specific moment and the valuation 
V, according to Kripke structure. 

Definition 11. Given L and a domain D, a linear state 
structure is a triple K=(S, σ, V), where S is a finite non-
empty set of states, σ={σi|σi=(si,si+1,...,sj,...), sj∈S, j∈N} 
is a non-empty set of infinite sequence of states and V: 
Form(L)×σ→{true, false} is a function that associates 
with the sequence σi a valuation 

i
Vσ  of all formulae of L. 

The sequence set wX forms the set of the event 
sequence Ω={S1,...,Sk,...,Sn}, after the pre-processing. To 
define a linear state structure K=(S, σ, V), we specify a 
state si as an event, the S as the set all event and σi as the 
event sequence. For simplicity, we assume the state si 
means the sequence σi beginning with si, viz. 

ii sVV =σ , 
hereinafter. 

Given a linear state structure K and Ω, we denote the 
V|=p of a sequence Sk at a state si by (K,Sk,i)|=p. For a 
temporal rule, we denote the rule body in Sj and the rule 
head in Sk by (K,Sj,k,i1)|= 

121
...

+
⇒∧∧∧

mm iiii HBBB  or 
simply i1|=p, if there is no confusion for K and Sj,k. We 
assume the rule body and head in the same sequence, 
hereinafter. 

Using this definition, we can also define: i|=p∧q if 
and only if i|=p and i|=q; i|=⊿kp if and only if i+k|=p. So, 
i|=E(q,e,f1,...,fp) denotes that for entity q an event with the 
name e and the features V(f1),..., V(fp) occurs at state si. 
Analogously, a temporal constraint formula Bk is true at 
state si if and only if i|=E(q,e) and all i|=Cj; a subsequence 
is true at state si if and only if all i=

ki
B ; a pattern is true 

at state si if and only if all i|=
ki

B ; a temporal rule is true 

at state si if and only if i|=
1mm21 iiii HBBB

+
∧∧∧∧ ... . 

Moreover, if a classification rule is true, then there is 
i|=

miii BBB ∧∧∧ ...
21

 and the predicate G(g, f1,...,fk). It 
means that the sequence having the features 

miii BBB ∧∧∧ ...
21

belonged to class g. 
We can establish some measures about ranged degree 

of truth of a formula V|=p on the Ω. Now assuming that 
for each formula p in L, there is an algorithm that 
calculates the value of V(p) for every state on mined 
dataset, in a finite number of steps. 

Definition 12. Given L and a linear state structure K, 
for every formula p, on the set of state sequence Ω, a real 
set function P(p)=|A|/n, where n=|Ω| and A={k∈{1,...,n} 
|(K,Sk,i)|=p}. 

Theorem 1. Given L and a linear state structure K, for 
a formula p, the real set function P(p) is a probability of 
V|=p on the Ω. 

Proof. By applying K, suppose Ω={S1,...,Sk,...,Sn} as 
sample space. Let F=2Ω, then Ω∈F and Q∈F, where Q 
is an arbitrary subset of Ω. Therefore, F is an σ-algebra. 

For a formula p, let Q={Sk |(K,Sk,i)|=p}, A={k|Sk∈Q}, 
then |A|≥0, P(p)≥0. When Q=Ω, |A|=n, then P(p)=1. 

Again let |Aj|=kj (≤n), then corresponding P(pj)= kj/n 
(j=1,2,...,m). If the Ajs are not intersectant, then for the 
corresponding pj: 

∑∑∑∑
====

===
m

1j
j

m

1j

j
m

1j
j

m

1j
j pP

n
k

nkpP )(/)()(    

Therefore, (Ω, F, P) is a probability space. 
Definition 13. Given language L and a linear state 

structure K, a measure for the V|=p of a formula p is a 
function Supp(p)=P(p). The measure is usually called the 
support of the p. 

For a temporal rule, there is another useful measure 
about the degree of truth of the implication between the 
rule body and head. 

Definition 14. Given language L and a linear state 
structure K, for the V|=p of a temporal rule p, a measure 
of p is a function Conf(p)=P(p)/P(pb), where pb is the rule 
body. The Conf(p)=0 if P(pb)=0. The measure is usually 
called the confidence of the temporal rule p. 

Those measures of pattern and temporal rule describe 
the local characteristic. In the other hand, the support 
measure of classification rule describes the degree of 
truth about a class. When a sequence belongs to several 
classes, the priority of the rules determines the class of 
the sequence. Analogously, we can define the accuracy 
measure of classification rule. 

Now supposing classification rule set, C={Cg|g∈Dg}, 
classifies uniquely the sequences in the Ω, where Cg is 
the set of classification rule about g. 

Given language L, a linear state structure K and 
Ω={S1,...,Sk,...,Sn}, the accuracy measure of Cg is 
accu(Cg)=|{k∈A|(M,Sk,i)|=p, p∈Cg}|/|A|, where A={k∈ 
{1,...,n}|(Sk,g)}, (Sk,g) represents that the Sk belongs 
actually to class g. 

For supervised classification, the set of the event 
sequence Ω should be independent of the train set. While 
on the contrary, for unsupervised classification, the 
judgment of the (Sk,g) usually depends on the practical 
application. 

Theorem 2. Given language L and a linear state 
structure K, the accuracy of classification rule set C is as 
follow: 

accu(C)= ∑
∈

×
gj

j
Dg

jg gPCaccu )()(  

where P(gj) is the probability of (Sk,g) in the Ω. 
Proof. According to the definition, accu(

jgC )=|TAj|/|Aj|, 

where TAj={k∈Aj|(K,Sk,i)|=p, p∈
jgC }, Aj={k∈{ 1,...,n}| 

(Sk,gj)}. 

accu(C) = ∑∑
∈∈

×=
gjgj Dg

j

j

j

Dg
j n

A
A

TA
TA

n
)

||
||
||

(||1
 

= ∑
∈

×
gj

j
Dg

jg gPCaccu ))()(( . 

C.  Session Model 
In practical application, the user has no access to the 

entire sequence, or the sequences mined have only finite 
time intervals. Therefore, the measures should be 
calculated in a finite linear state structure, i.e. a session. 
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Definition 15. Given L and a linear state structure K, a 
session for K is a structure ),~(~ slK σ= , where sl is length 
of the session, the sequence ),...,,(~

sl21 iii sss=σ  and 

the )( slj1s
ji ≤≤ is a accessible state. 

For a formula p and a sequence Sk∈Ω, we have the 
meaning of truth under valuation 

iKV ~  on ),~(~ slK ii σ= . 

Moreover, for a formula p and Ω, we can estimate some 
measures about ranged degree of truth on K~ as follow, 
where |),...,,(~{~ k

i
k
i

k
i

k
sl21

sssS ==Ω }~ kk SS ⊆ , 1≤k≤n. 

Definition 16. Given L and a session K~  for K, an 
estimator of Supp(p) of a formula p is ES(p, K~ )= |Ae|/n, 
where |~| Ω = n, Ae={k∈{1,...,n}| ( K~ ,Sk,i)|=p}. 

Definition 17. Given L and a session K~  for K, an 
estimation of the Conf(p) of temporal rule p is EC(p, 
K~ )=ES(p, K~ )/ES(pb, K~ ), where pb is a rule body, if 
ES(pb, K~ )=0, then EC(p, K~ )=0. 

So, a session mining SMF for K~  is a sextuple (Task, 
Tst, wX, Stat, DK, R), where Task is a task of mining, Tst is 
a start time of mining, wX is a mined data set, Stat is a 
threshold of the measure, DK is domain knowledge, R={r
∈RF|Stat(r)˄DK(r)} is induced rule set. According to the 
definition, the estimator sequence of the measures, called 
measure sequence, is generated across various sessions, 
for the formula p. For example, the support sequence, 
ES1,ES2,...,ESr,..., and the confidence sequence, EC1,..., 
ECr,.... 

Definition 18. Given L and a linear state structure K, a 
sequence S is consistent for a formula p, if the 

limit
m
B

m

||lim
∞→

 exists, where B={i∈{1,...,m}|(K,S,i)|=p}. 

The set of the event sequence Ω is a p consistent set if 
every sequence in Ω is consistent for the p. 

Theorem 3. Given L and a session K~ , if a formula p 
exists the consistent set Ω, then for the p, when sl of the 
K~  is long enough, rr

ES
→∞

lim =P(p)=|A|/n, where |Ω|=n, 

A={k∈ {1,...,n}|(K,Sk,i)|=p}. 
Proof. Let Ω={S1,...,Sn} is a p consistent set, then for a 

Sk∈Ω, the limit 
m
B

m

||lim
∞→

=αk exists, where B={i∈ 

{1,...,m}|(K,i)|=p}. Therefore, there is α(p)={α1,...,αn} in 
the Ω. Let α=min({αj∈α(p)|αj>0}), sl=max(1/α, the time 
interval of p).  

Let ),~(~ slK σ= , the estimator sequence of support is 

ES1,ES2,...,ESr,.... Obviously, AAe
r ⊆ . If j∈A={k∈ 

{1,...,n}|(K,Sk,i)|=p} for arbitrary Sj, then αj>0. When r is 
large enough, |{i∈{ r1,...,rsl}|( jSK ~,~ ,i)|=p}|>0 for the 
subsequence ),...,,(~ j

i
j

i
j

i
j

sl21
sssS = , so j∈ e

rA , viz. 
e
rAA ⊆ . Therefore,  

n
AA

nn
AES e

rr

e
r

rrr

||||lim1||limlim ===
∞→∞→∞→

=P(p). 

Generally, there are three categories of basic trend for 
the measure sequence of: ascend, descend and fluctuation. 
High order rule is used to describe the dynamic 
characteristic of the first-order rule [4]. Its syntax is the 
same as the definition of the first-order rule above. 

IV. THE TIME GRANULARITY MODEL 

The concept of a temporal type to formalize the notion 
of time granularities, as described in [9]. It is a 
generalization of most definitions of linear time 
granularities. 

Definition 19. Let (I, <) (index) be a discrete linearly 
ordered temporal set isomorphic to a subset of the 
integers with the usual order relation, and let (T, <) 
(absolute time) be a linearly ordered set. Then, a temporal 
type on (I, T) is a mapping μ: I→2T, for i < j, such that 

1) μ(i) ≠ Ø and μ(j) ≠ Ø, imply that each element in 
μ(i) is less than all the elements in μ(j),  

2) for all μ(i) ≠ Ø and μ(j) ≠ Ø, then all k, i < k < j 
implies μ(k) ≠ Ø. 

The μ(i) is called the ith granule of μ. Property 1) 
reveals that granules do not overlap and that the mapping 
must be monotonic. Property 2) disallows an empty set to 
be the value of a mapping for a certain index value if a 
lower index and a higher index are mapped to non-empty 
sets.  

Definition 20. Let μ and ν be temporal types on (I, T), 
then there are some relationships as follow: 

Finer-than: μ is said to be finer than ν, denoted μ  ν, 
if for each i∈I, there exists  j∈I such that μ(i)⊆ ν(j). 

Groups-into: μ is said to group into ν, denoted μ ν, if 
for each non-empty granule ν(j), there is a subset J of I 
such that ν(j) = Ji∈ μ(i). 

Shifting: μ and ν are said to be shifting equivalent, 
denoted μ ≈ ν, if for each i∈I, there exists  j∈I such that 
μ(i)⊆ ν(j) and ν(i)⊆ μ(j). 

For shifting equivalent, we have a bijection function g: 
I→I such that μ(i) =ν(g(i)), for all i∈I. We disallow 
multiple types that are equivalent with respect to shifting 
of their indices, hereinafter. 

When a temporal type μ is finer than a temporal type ν, 
we also say that ν is coarser than μ. The finer-than 
relationship formalizes the notion of finer partitions of 
the absolute time. By definition, this relation is obviously 
reflexive, transitive and antisymmetric, if it is not shifting 
equivalent, hence, it is a partial order. Therefore, there 
exists a unique least upper bound, denoted by μ┬, and a 
unique greatest lower bound, denoted by μ┴.  

Moreover, a temporal type system having an infinite 
index is a lattice with respect to the finer-than 
relationship. Concerning the groups-into relationship, it 
also satisfies the properties of a partial order. 

Consider now the positive natural numbers is used as 
the index set and the absolute time set, namely the 
temporal type on (N, N). We impose to any temporal type 
μ the restrictions on Definition 19:  

a) μ(i) = Ø implies μ(j) = Ø 
b) For each j∈N, exists j∈μ(i) 
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The set of granules which satisfy these conditions are 
denoted by G. The condition a) enforces that the first 
non-empty granule must start with index 1. The condition 
b) reveals the granules cover all the absolute time. For G, 
the relationships finer-than and groups-into is the 
equivalence and μ┴(i)={i} [9]. 

V. FORMALISM WITH LINEAR GRANULAR STRUCTURE 

If K=(S, σ, V) is a first-order linear time structure, then 
the σ1 is a complete state sequence, denoted σ .The σ  
forms the absolute time A, by identifying the time 
moment i with the state si (on the ith position in the 
sequence). If μ is a temporal type from G, then the 
temporal granule μ(i) consists of the set {sj∈S, j∈μ(i)}. 
Therefore, the temporal type μ induces a new state 
sequence µσ , defined as )(iµσ =μ(i). We assume the set 
μ(i) will be considered either as a set of natural numbers, 
or as a set of states, hereinafter. 

Consider now the linear time structure derived from K, 
Kμ=(S, σμ, Vμ), where σμ={ µσi | ),...)(),(( 1iii +µµ=σµ , μ(i) 
⊆ S, i∈N }. To be well defined, we must give the 
valuation µ

µ )(iV  for each i∈N. Because the set μ(i) is a 

finite sequence of states, it defines a session )(
~

iKµ  for Kμ. 
Therefore the meaning of truth of a formula p for a 
sequence S is defined as follow; here formula p is a 
temporal free formula, the 1 means true, the 0 means 
false. 

)()(
)(

~)( pVpV
iKi µ

=µ
µ  = 











 =

=
else0

piSK1pV i
Ki ,

|),,~(,)(~      (1) 

where ),~(~ slK ii σ= . 
According to the semantics of formula on the state 

sequence iσ
~ , this valuation is extended to multi-formula, 

if each formula pi is independent. 

∏
=

µ
+µ

µ
µ =∆∧∧∆

n

1j
jkink1ki pVppV

jn1
)()...( )()(                   (2)  

where pi are temporal free formulae and ki∈Z, i=1 ... n. 
Definition 21. If K=(S, σ, V) is a first-order linear time 

structure and it is a temporal type from G, then the linear 
temporal structure induced by it on K is the triple Kμ=(S, 
σμ, Vμ), where σμ={ µσi | ),...)(),(( 1iii +µµ=σµ , μ(i) ⊆ S, 
i∈N } and Vμ: Form(L)×σμ→{true, false} is a function 
that associates with the sequence µσi  a valuation µ

σi
V  of 

all formulae of L, according to the rules (1) and (2). 
For simplicity, we assume the state set μ(i) means the 

sequence µσi beginning with μ(i), viz. µ
µ

µ
σ = )(iVV

i
. 

For G and any accessible states, as μ┴(i)={i}, we have 
)1},({~ iKi = , )()()()( ~~)( )(

pVpVpVpV
iii sKKi ===

µ

⊥µ
µ , 

namely the Vμ┴(p) is equivalent to the V(p). Hence, in this 
case, Kμ┴=(S, σμ┴, Vμ┴) is same as the initial linear 
structure K at the valuation level. 

Furthermore, we may establish the relation linking the 
measure supports, from two linear temporal structures 

induced by μ and ν, when exists a relationship finer-than 
between these two temporal types. When μ, ν are from G, 
for ∀ j∈N, there is a subset Ni ⊂ N such that ν(j) = 

iNi ∈ μ(i). If p is a temporal free formula in L, then the 
measure supp(p) for p at ν(j) is the maximum value 
within the set of supp(p) for p at μ(i), where i∈Ni. We 
formalize this result in the following theorem: 

Theorem 4. If μ, ν are temporal types from G, such 
that μ  ν, and Suppμ(p), Suppν(p) are the supports of the p 
from the induced linear temporal structures Kμ and Kν on 
K, then for each j∈N, 

))(()( )()( pSuppMaxpSupp iNij
j

µ
µ∈

ν
ν =                                 (3) 

where Nj is the subset of N which satisfies ν(j) = 
jNi ∈ μ(i) and p is a temporal free formula in L. 

The theorem 4 is only applied to temporal free 
formulae. For the unspanned-granule case, we can prove 
that the measure support, in the coarser world, of a 
temporal formula with a given temporal types ν is linked 
with the support, in the finer world, of a similar formula 
but having a temporal types μ. 

Lemma 1. If μ, ν are temporal types from G such that 
μ  ν and Suppμ(p), Suppν(p) are the supports of the p 
from the induced linear temporal structures Kμ and Kν on 
K, then for each i, j∈N, 

))(())((

)(

)()(

)(

pSuppMaxpSuppMax

qpSupp

iNiiNi

1j

1jj

µ
µ∈

µ
µ∈

ν
ν

+
×

=∆∧
              (4) 

where )()( ij
jNi µ=ν ∈ , )()( i1j

1jNi µ=+ν
+∈  and p,q are 

temporal free formulae in L. 
Given the set of temporal types G1={μ∈G | i∈N, |μ(i)| 

=cμ}, then the following lemma and theorem hold.  
We define the operator Zd over the formulae in L as 

mkd1kdmk1kd ppppZ
m1m1 .. ...)...( ∆∧∧∆=∆∧∧∆         (5) 

where |μ(i)|=cμ, |ν(j)|= cν, d=cν/cμ and ki∈Z, i=1 ... n. 
The operator Zd changes temporal type from the 

coarser world to the finer world. For 
ik∆ time instant, we 

have Nj = },...,1{ dkdkd ii +×+× , after Zd transformation. 
Theorem 5. If μ, ν are temporal types from G1 such 

that μ  ν and Suppμ(p), Suppν(p) are the supports of the p 
from the induced linear temporal structures Kμ and Kν on 
K, then for each i, j∈N, 

∏
=

µ
µ∈

µ
µ

ν
ν

=

∆∧∧∆=
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m

1l
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mkd1kdi
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                     (6) 

where |μ(i)|=cμ, |ν(j)|=cν, d=cν/cμ, )()( ij
jNi µ=ν ∈ , Nj 

= },...,1{ dkdkd ii +×+×  and p,q are temporal free 
formulae in L. 

Consequently, if we have three world, W1, W2 and W3 
corresponding to three temporal type, and defined in turn 
  relationship, then the support information in each 
granule is transferred from W1 to W2. When W1 is “lost”, 
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it is possible to transfer the support information from W2 
to W3 and to obtain the same result as the transfer from 
W1 to W3, according to the theorem 4 and 5. From above 
definitions and theorems, if we know the degree of 
support of a temporal rule in the W1, then we can expect 
larger degree of support of the same rule in the world W2, 
coarser than W1. 

For a spanned-granule case, a formula may span 
several temporal granules. The transition between 
temporal types may produce that some kinds of rules 
disappear or new kinds of rules appear. We need transfer 
the state sequence µσi  into νσi , and |Nj|=1 for (5), namely 
state aggregation firstly, using some fitting methods, as 
we want to know the meaning of truth of the formula in 
coarser world. 

As a state sequence, σ has three types of basic state 
event, viz. fluctuant, ascend and descend. We can solve 
the parameter estimation problem of the sequence, based 
on the principle of information diffusion, in [11]. 

The principle of information diffusion: Let S={s1, 
s2,...,sm} be a sample, U be the universe of discourse, and 
uj be an observation of sj. Let x=φ(u-uj), if S is incomplete, 
there is a reasonable information diffusion function θ(x) 
which can lead to the information obtained from uj, value 
as 1, diffuse to u according to θ(x), and the diffusion 
estimate is nearer to the real distribution than non-
diffusion estimate, as diffused primary distribution 

Q(x)=∑
=

−ϕθ
n

j
juu

1
))(( . 

For fluctuant, let C be a time instant subset, used to 
take information diffusion of iσ

~  on F. So, 
S = {s1, s2,...,sm} 

},...,,{~
m21 iiii sss=σ  

U = [0,1], 
C={c1,c2,…,ck},  
The ci is called a control point. It receives total 

information diffused from each state
jis , deduces the 

expectation estimation of state aggregation, using a Borel 
measurable function θ, as follow: 

Q(ci)= ∑
=

−
θ=

n

1j

ii
in d

sc

nd
1cf j ][)(ˆ  

    = ∑
=

−
−

π

n

1j
2

2
ii

h2

sc

nh2
1 j )

)(
exp(                         (7) 

where h=σd, σ is standard error, d is the diffusion 
window width. Generally, h=α(Smax-Smin)/(n-1). If n≥10, 
α=1.4208. 
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= ==

==
m

i

m

i
iii

m

i
ii cQcQcPcE

1 11
))(/)((                         (8) 

For ascend and descend, the expectation E(
jis ) may be 

regarded as the local excursion along with state sequence. 
Hence, we find the center points of states using clustering 
method firstly, and then fit these center points using 
linear equation. 
 

VI. CONCLUSION 

Implementation of a continuous KDD process has been 
attracting more and more interests from various industries. 
We have proposed a formalism of continuous knowledge 
discovery process and temporal granularity operation, 
based on first-order linear temporal logic. The process 
model endeavors to separate autonomous discovery 
process, and forms session mining and merge mining, 
based on a session model, and then it is extended to 
include the concept of temporal granularity. We defined 
the main notions of event, sequence pattern, temporal rule, 
etc. in a formal way. We established also the measures of 
support and confidence about ranged degree of truth of a 
formula on whole data set, considering some data are 
inaccessible or missing. By defining transition operation 
between temporal types satisfied finer-than relationship, 
we proved that only the independent information for 
unspanned-granule may be transferred without loss 
among different temporal granularities. Otherwise, a state 
aggregation method was proposed based on the principle 
of information diffusion. 
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