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Abstract— Decision tree is one of the most effective and
widely used models for classification and ranking and has
received a great deal of attention from researchers in the
domain of data mining and machine learning. A critical
problem in decision tree learning is how to estimate the class-
membership probabilities from decision trees. In this paper,
we firstly survey all kinds of class probability estimation
methods, mainly include the maximum-likelihood estimate,
the Laplace estimate, the m-estimate, the similarity-weighted
estimate, the naive Bayes-based estimate, and so on. Then,
we provide an empirical study on the classification and
ranking performance of the resulting decision trees using
different class probability estimation methods. The experi-
mental results based on a large number of UCI data sets
verify our conclusions.

Index Terms— decision tree learning; probability estimation
tree; class probability estimation; classification; ranking.

I. INTRODUCTION

Due to being efficient, effective, robust to noisy data,
and capable of learning disjunctive expressions, decision
tree learning has received a great deal of attention from
researchers in the domain of data mining and machine
learning. It uses a decision tree to represent a discrete-
valued target function [1] and has been successfully
applied to a broad range of tasks such as learning to
classify medical patients by their disease and rank loan
applicants by their likelihood of defaulting on payments.

At first, let’s rewrite the basic decision tree learning
algorithm as:

Algorithm:the basic decision tree learning algorithm
Input:a training instances set D
Output:a built decision tree T

1) If all instances in D have the same class
label, or have the same attribute values
except for the class label, or D is empty,
then creates a leaf node using D.

2) Else a best attribute is selected to partition
D into several smaller subsets and a child
node is created for each subsets.

3) The algorithm is then recursively applied
to each child node till all child nodes are
leaf nodes.

4) Returns the built decision tree T.
Once a decision tree has been built, it predicts (clas-

sifies or ranks) an unseen instance by sorting it down
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Figure 1. An example of PETs

the tree from the root node to some leaf node, and
then using the training instances that fall into this leaf
node to estimate its class-membership probabilities. Such
learned trees are generally called probability estimation
trees (simply PETs).

Figure 1 shows an example of PETs. The target func-
tion represented by it only has two classes: the positive
class + and the negative class −. Estimating class-
membership probabilities from small instance sets is a
well-studied statistical problem, and a thorough study
of what are the best methods (and why) for PETs is a
useful contribution to machine-learning research [2]. In
this paper, we focus our attention to discuss how to learn
this kind of PETs, namely how to estimate the class-
membership probabilities from built decision trees.

The rest of the paper is organized as follows. Some
alternative methods for estimating the class-membership
probabilities are summarized in Section II. the experimen-
tal methodology and results are given in Section III. In
Section IV, we draw conclusions.

II. METHODS FOR CLASS PROBABILITY ESTIMATES

There exist many methods for estimating the class-
membership probabilities from probability estimation
trees. For example, the maximum-likelihood estimate,
the Laplace estimate, the m-estimate, similarity-weighted
estimate, the naive Bayes-based estimate, and so on.
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Figure 2. An example of a decision tree for class probability estimation

The maximum-likelihood estimate calculates the prob-
ability P (c|x) that an unseen instance x falling into the
leaf node L belongs to the class c as:

P (c|x) =
∑n

i=1 δ(ci, c)
n

(1)

where n is the number of instances in the leaf node L, ci

is class label of the ith training instance in the leaf node
L, and δ(ci, c) is one if ci = c and zero otherwise. For
example, in Figure 2, if an unseen instance x falls into
the leaf node A, according to the maximum-likelihood
estimate, the probability P (+|x) that x belongs to the
class + is 7

10 = 0.7.
Obviously, the maximum-likelihood estimate is a

purely frequency-based estimate. Thus, a potential prob-
lem with it is the zero-probability problem and the one-
probability problem. For example, in Figure 2, the leaf
node E comprises only 6 training instances, and all
of them are of the negative class. According to the
maximum-likelihood estimate, if x falls into the leaf node
E, then the probability that x belongs to the class + and
the class − respectively is 0 and 1. According to the
observation by Provost and Domingos [2], such extreme
probabilities maybe not reasonable, after all the estimate
only from 6 instances is not enough evidence for such a
strong statement.

In order to address the problem confronting the
maximum-likelihood estimate, Laplace correction is used
to smooth the estimated probabilities, and the resulting
estimate is the so-called Laplace estimate. The Laplace
estimate can be viewed as a combination of the maximum-
likelihood estimate and an uniform prior probability.
Thus, the Laplace estimate calculates the probability
P (c|x) that x falling into the leaf node L belongs to the
class c as:

P (c|x) =
∑n

i=1 δ(ci, c) + 1
n + nc

(2)

where nc is the number of classes. For the same example
above, according to the Laplace estimate, the probability
P (+|x) that x belongs to the class + is 7+1

10+2 = 8
12 =

0.67.
The m-estimate [1] is another method to estimate

probability, which has already been applied to improve
the class probability estimation of Bayesian classifiers
successfully [3]. In this paper, we try to investigate its
application in decision tree learning. The m-estimate can

be comprehend as augmenting the actual observations by
an additional m virtual instances distributed according to
p. Thus, the m-estimate calculates the probability P (c|x)
that x falling into the leaf node L belongs to the class c
as:

P (c|x) =
∑n

i=1 δ(ci, c) + mp

n + m
(3)

where m and p are two parameters. The parameter p is
the prior estimate of the probability we wish to determine
and the parameter m is a constant called the equivalent
instance size, which determines how heavily to weight p
relative to the observed data. Obviously, the maximum-
likelihood estimate is a special example of the m-estimate
when the parameter m is 0, and the Laplace estimate
estimate is a special example of the m-estimate when the
parameter m is nc and the parameter p is 1/nc.

In our implementation, we set the parameter p to an
uniform distribution 1/nc and set the parameter m to 1.
So, the resulting estimate is:

P (c|x) =
∑n

i=1 δ(ci, c) + 1/nc

n + 1
(4)

For the same example above, according to the m-
estimate we implemented, the probability P (+|x) that x

belongs to the class + is 7+1/2
10+1 = 7.5

11 = 0.68.
From all of above three methods, we can see that any

unseen instance falling into a particular leaf node will
receive the same class-membership probabilities because
only the class variable is used for estimating class-
membership probabilities. To address this problem, our
previous work [4] pays attention to estimating probabili-
ties from the moderate-size leaf nodes (the least number
of instances in leaf nodes is set to 30.) and presents the
similarity-weighted estimate and the naive Bayes-based
estimate, which take some attribute variables into the class
probability estimation.

The similarity-weighted estimate calculates the proba-
bility P (c|x) that x falling into the leaf node L belongs
to the class c as:

P (c|x) =
∑n

i=1 s(xi, x)δ(ci, c) + 1
n + nc

(5)

where s(xi, x) is the similarity between x and xi (the
ith training instance in the leaf node L), which can be
defined as:

s(xi, x) =
m∑

j=1

δ(aij , aj) (6)

where m is the number of attributes, aij is the jth attribute
value of xi, and aj is the jth attribute value of x. In our
previous paper [4], we assume that all attribute values
are nominal. Thus, the similarity is a function that simply
counts the number of identical attribute values of xi and
x.

Different from the similarity-weighted estimate, the
naive Bayes-based estimate deploys a naive Bayes on
the leaf node L where x falls into. So, it calculates the
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probability P (c|x) that x belongs to the class c as:

P (c|x) = P (c)
m∏

j=1

P (aj |c) (7)

where the prior probability P (c) and the conditional
probability P (aj |c) can be defined as:

P (c) =
∑n

i=1 δ(ci, c) + 1
n + nc

(8)

P (aj |c) =
∑n

i=1 δ(aij , aj)δ(ci, c) + 1∑n
i=1 δ(ci, c) + nj

(9)

where nj is the number of values of the jth attribute.
Beside, Smyth etc. [5] focus their attention to estimate

probabilities from the larger leaf nodes and present a
kernel-based method. It places a kernel-based probability
density estimator at each leaf node of the decision tree.
It estimates the probability P (c|x) that x belongs to the
class c as:

P (c|x) =
f(x|c)P (c)∑nc

c=1 f(x|c)P (c)
(10)

where P (c) is the prior probability of class c, which can
be estimated from the data in the usual fashion. f(x|c) is
the density estimate for the data from class c, which can
be estimated using the methods described in the paper by
Smyth etc. [5].

Ling [6] single out another new method for estimating
class-membership probabilities. Instead of estimating the
probabilities at the single leaf node where an unseen
instance falls into, it averages probability estimates from
all leaf nodes of the tree. The contribution of each leaf
node in the average is determined by the deviation in
attribute values from the root node to the leaf node. The
detailed Equation for estimation is:

P (c|x) =
∑

Pi(c) · sj

∑
sj

(11)

where Pi(c) is the probability of class c in the ith leaf
node, j is the number of split attribute values in the path
from the ith leaf node to the root node that are different
from the attribute values of x, s is the parameter called
confusion factor, which is set to 0.2 in Ling and Yan’s
paper [6].

For example, in Figure 1, a test instance x with attribute
values A1 = 0, A2 = 1, and A3 = 0, will fall into
the rightmost leaf node. According to Ling and Yan’s
conclusion, the probability that x belongs to class + is:

P (+|x) =
0.8·0.22+0.4·0.21+0.7·0.23+0.1·0.22+0.7·0.21+0.1·0.20

0.22+0.21+0.23+0.22+0.21+0.20 = 0.243
(12)

So far, we only discuss the methods of estimating class-
membership probabilities from a single tree. Recently, av-
eraging multiple decision trees to produce probability esti-
mates has received a great deal of attention. For example,
a bagging [7], [8] of C4.4, simply bagged C4.4 [2], has
been shown to significantly outperform single decision
tree with surprising consistency. Moreover, according to

the conclusions drawn by Provost and Domingos [2], once
bagging is used, whether or not pruning and the Laplace
correction are used makes little difference. Despite its
effectiveness, bagging incurs the high time complexity.
Besides, when it is used, the comprehensibility of a single
tree is lost. Thus, when high-accuracy prediction is solely
required, bagging should be used clearly. When compre-
hensibility and/or computational cost are also important,
a single tree should be firstly considered.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

We run our experiments under the framework of Weka
[9] to study the effectiveness of all kinds of class
probability estimation methods. In our experiments, we
implemented the unpruned decision trees with different
class probability estimation methods. Besides, the heuris-
tic measure is adopted [10], which firstly calculates the
information gain of each attribute, and then applies the
gain ratio measure only to those attributes with informa-
tion gain value above the average. Now, we introduce
established class probability estimation methods and their
abbreviations used in our implements and experiments.

1) LE: the Laplace estimate defined by Equation 2.
The resulting decision tree algorithm actually is
C4.4 [2].

2) ME: the m-estimate defined by Equation 4. The
resulting decision tree algorithm actually is C4.4
[2] but with the m-estimate.

3) SWE: the similarity-weighted estimate defined by
Equation 5. The resulting decision tree algorithm
actually is SWC4.4 [4].

4) NBE: the naive Bayes-based estimate defined by
Equation 7. The resulting decision tree algorithm
actually is NBC4.4 [4].

5) LE-Bagging: a bagging of the Laplace estimate
defined by Equation 2. We use the implementation
of Bagging in Weka software with C4.4 as the ba-
sic classifier. The resulting decision tree algorithm
actually is bagged C4.4 [2].

We run our experiments on 36 UCI datasets published
on the main web site of Weka platform [9], which repre-
sent a wide range of domains and data characteristics. We
downloaded these data sets in the format of arff from the
main web site of Weka. The description of the 36 data sets
is shown in Table I. In our experiments, numeric values
are discretized using ten-bin discretization implemented
in Weka, and missing values are also processed using the
mechanism in Weka, which replaces all missing values
with the modes and means from the training instances.
Besides, three useless attributes: the attribute “Hospital
Number” in the data set “colic.ORIG”, the attribute “in-
stance name” in the data set “splice” and the attribute
“animal” in the data set “zoo” are removed by using the
unsupervised filter named Remove in Weka.

We conducted empirical experiments to compare de-
cision trees resulted from all kinds of class probability
estimation methods in terms of classification (measured
by classification accuracy) and ranking (measured by
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TABLE I.
DESCRIPTIONS OF UCI DATA SETS USED IN THE EXPERIMENTS.

No. Dataset Instance number Attribute number Class number Missing value Numeric value
1 anneal 898 39 6 Y Y
2 anneal.ORIG 898 39 6 Y Y
3 audiology 226 70 24 Y N
4 autos 205 26 7 Y Y
5 balance-scale 625 5 3 N Y
6 breast-cancer 286 10 2 Y N
7 breast-w 699 10 2 Y N
8 colic 368 23 2 Y Y
9 colic.ORIG 368 28 2 Y Y

10 credit-a 690 16 2 Y Y
11 credit-g 1000 21 2 N Y
12 diabetes 768 9 2 N Y
13 Glass 214 10 7 N Y
14 heart-c 303 14 5 Y Y
15 heart-h 294 14 5 Y Y
16 heart-statlog 270 14 2 N Y
17 hepatitis 155 20 2 Y Y
18 hypothyroid 3772 30 4 Y Y
19 ionosphere 351 35 2 N Y
20 iris 150 5 3 N Y
21 kr-vs-kp 3196 37 2 N N
22 labor 57 17 2 Y Y
23 letter 20000 17 26 N Y
24 lymph 148 19 4 N Y
25 mushroom 8124 23 2 Y N
26 primary-tumor 339 18 21 Y N
27 segment 2310 20 7 N Y
28 sick 3772 30 2 Y Y
29 sonar 208 61 2 N Y
30 soybean 683 36 19 Y N
31 splice 3190 62 3 N N
32 vehicle 846 19 4 N Y
33 vote 435 17 2 Y N
34 vowel 990 14 11 N Y
35 waveform-5000 5000 41 3 N Y
36 zoo 101 18 7 N Y

AUC [11]–[13]). The classification accuracy and AUC
of each tree on each data set is obtained via 10 runs
of 10-fold cross-validation. Runs with the various tree
algorithms are carried out on the same training sets and
evaluated on the same test sets. In particular, the cross-
validation folds are the same for all the experiments on
each data set. Finally, we conducted a two-tailed t-test
with 95% confidence level [14] to compare the Laplace
estimate with the other estimates.

Table II - Table III respectively shows the classification
accuracy and AUC scores of each tree on each data
set, and the symbols v and * in the tables respectively
denote statistically significant upgradation or degradation
over the Laplace estimate with a 95% confidence level.
Besides, The averages and w/t/l values are summarized
at the bottom of the tables. Each entry w/t/l in the table
means that the other estimates win on w data sets, tie on t
data sets, and lose on l data sets, compared to the Laplace
estimate. Now, we summarize some highlights briefly as
follows:

1) There is no significant difference between the
Laplace estimate and the m-estimate in terms of
accuracy and AUC. The w/t/l values respectively
is 0/36/0 and 1/34/1. This fact proves that the
classification and ranking performance of decision
trees with different class probability estimation

methods are no significant difference if only the
class variable is used.

2) In terms of accuracy and AUC, the similarity-
weighted estimate and the naive Bayes-based esti-
mate significantly outperform the Laplace estimate.
The w/t/l values respectively is 15/15/6, 16/18/2,
19/17/0, and 17/19/0. This fact proves that taking
some attribute variables into the class probability
estimation, instead of only using the class variable,
can scale up the classification and ranking perfor-
mance of decision trees.

3) In terms of accuracy and AUC, a bagging of
the Laplace estimate significantly outperform the
Laplace estimate. The w/t/l values respectively is
22/14/0 and 23/13/0. This fact proves that apply-
ing bagging etc. ensemble learning methods and
averaging the class-membership probabilities from
multiple decision trees, instead of estimating the
class-membership probabilities from a single tree,
can also scale up the classification and ranking
performance of decision trees.

Besides, in our another experiments, we compare the
classification and ranking performance of C4.4 [2] with
boosted C4.4 [8], [15] and Random Forest [16], and
surprisedly found that Random Forest almost ties C4.4
in terms of ranking (9 wins and 6 losses). Due to the
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TABLE II.
EXPERIMENTAL RESULTS ON CLASSIFICATION ACCURACY AND STANDARD DEVIATION.

Dataset LE ME SWE NBE LE-Bagging
anneal 99.57±0.67 99.57±0.67 98.9±1.28 99.4±0.73 99.12±0.8

anneal.ORIG 90.88±2.59 90.88±2.59 90.43±2.56 91.06±2.55 92.51±2.18 v
audiology 83.28±7.56 83.28±7.56 73.86±8.75 * 79.04±8.12 * 82.31±7.54

autos 80.66±8.12 80.66±8.12 71.74±10.21 * 79.59±8.35 83.23±7.95
balance-scale 63.62±3.65 63.62±3.65 67.17±4.54 v 71.23±4.43 v 76.37±4.29 v
breast-cancer 65.39±7.76 65.39±7.76 72.95±6.38 v 71.41±6.98 v 68.77±7.76

breast-w 91.7±3.09 91.7±3.09 93.99±2.96 v 94.16±2.97 v 95.44±2.75 v
colic 78.42±6.21 78.42±6.21 83.23±5.62 v 83.23±6.18 v 83.17±5.88 v

colic.ORIG 75.62±6.44 75.62±6.44 79.59±6.49 v 80.65±6.37 v 79.59±5.58
credit-a 77.8±4.11 77.8±4.11 83.86±3.74 v 83.57±3.94 v 83.81±4.29 v
credit-g 67.75±3.91 67.75±3.91 70.86±3.9 v 70.58±3.77 72.12±3.81 v
diabetes 68.57±3.5 68.57±3.5 72.93±4.99 v 71.98±5.09 v 72.6±4.71 v

glass 56.38±9.15 56.38±9.15 58.04±9.11 58.4±9.29 59.34±9.16
heart-c 73.36±8.67 73.36±8.67 75.65±7.73 75.06±7.19 78.45±6.85 v
heart-h 74.31±6.93 74.31±6.93 76.23±7.45 75.56±7.33 79±7.01 v

heart-statlog 74.11±8.03 74.11±8.03 73.56±7.63 76.3±6.64 77.52±7.22
hepatitis 77.1±10.63 77.1±10.63 82.6±8.64 80.54±10.24 81.75±9.42

hypothyroid 91.51±0.83 91.51±0.83 92.73±0.73 v 92.81±0.74 v 92.27±0.78 v
ionosphere 83.85±5.57 83.85±5.57 90.25±4.9 v 87.49±5.25 v 90.22±4.66 v

iris 90±7 90±7 96±4.64 v 95.87±4.72 v 94.87±5.51 v
kr-vs-kp 99.62±0.33 99.62±0.33 99.06±0.44 * 99.29±0.45 * 99.53±0.41

labor 82.23±15.51 82.23±15.51 89.77±11.68 89.4±10.89 87.97±12.72
letter 79.98±0.88 79.98±0.88 78.38±0.86 * 81.95±0.77 v 84.09±0.83 v

lymph 71.22±10.64 71.22±10.64 76.04±9.46 80.1±9.17 v 80.77±9.59 v
mushroom 100±0 100±0 100±0 100±0 100±0

primary-tumor 36.11±7.04 36.11±7.04 41.8±6.59 v 43.81±6.17 v 41.12±6.32 v
segment 92.74±1.63 92.74±1.63 92.16±1.78 93.03±1.71 94.44±1.57 v

sick 98.02±0.75 98.02±0.75 98.1±0.69 98.1±0.67 97.93±0.72
sonar 66.55±9.64 66.55±9.64 71.48±9.7 71.28±10.9 75.03±8.75 v

soybean 92.62±3.01 92.62±3.01 92.02±2.77 94.09±2.58 93±2.87
splice 90.03±1.63 90.03±1.63 93.35±1.27 v 93.12±1.25 v 94.65±1.16 v

vehicle 67.58±4.24 67.58±4.24 69±3.88 69.87±3.75 71.73±3.73 v
vote 93.05±3.26 93.05±3.26 95.61±2.75 v 94.18±3.46 95.52±2.94 v

vowel 76.91±4.19 76.91±4.19 68.72±4.47 * 82.98±3.91 v 81.71±3.92 v
waveform-5000 64.91±2.02 64.91±2.02 71.8±1.92 v 71.88±1.93 v 75.19±1.83 v

zoo 96.85±5.51 96.85±5.51 87.16±6.54 * 94.97±6.36 94.79±6.57
Mean 79.79±5.13 79.79±5.13 81.36±4.918 82.67±4.86 83.61±4.78
w/t/l - 0/36/0 15/15/6 16/18/2 22/14/0

space limit, we don’t provide the detailed experimental
results here. So, how to improve the ranking performance
of Random Forest is our main work in the future.

IV. CONCLUSIONS

A critical problem in decision tree learning is the class
probability estimation problem at each leaf node of the
tree. In this paper, we provide an empirical study on the
classification and ranking performance of the resulting
decision tree using different class probability estimation
methods.

From our experiments, we can draw conclusions: 1)
The classification and ranking performance of decision
trees with different class probability estimation meth-
ods are no significant difference if only the class vari-
able is used. 2) Taking some attribute variables into
the class probability estimation and averaging the class-
membership probabilities from multiple decision trees can
scale up the classification and ranking performance of the
built decision trees.
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