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Abstract—The Differential Evolution (DE) population-based 
algorithm is an optimal algorithm with powerful global 
searching capability, but it is usually in low convergence 
speed and presents bad searching capability in the later 
evolution stage. A new Chaos Differential Evolution 
algorithm (CDE) based on the cat map is proposed which 
combines DE and chaotic searching algorithm. Firstly, the 
chaotic distributed superiority of the cat map is analyzed in 
this paper. Secondly, the detailed implementation of CDE is 
introduced. Finally, the effectiveness of CDE is verified in 
the numerical tests. The Support Vector Regression 
machine (SVR) is an effective tool to solve the problem of 
nonlinear prediction, but its prediction accuracy and 
generalization performances depend on the selection of 
parameters greatly. So, the CDE is applied to SVR to build 
an optimized prediction model called CDE-SVR. Then the 
new prediction model is applied to the short-time regression 
prediction of the chaotic time series and the boundary 
extension of the mechanical vibration signals. The results of 
the two experiments demonstrate the effectiveness of the 
CDE-SVR. 

Index Terms—differential evolution, chaotic cat map, 
support vector regression machine, parameters optimization, 
boundary extension 

I.  INTRODUCTION 
Differential evolution algorithm introduced by Stron 

and Price for the real parameter optimization problems is 
a new kind of global optimization algorithm [1]. With the 
advantage of faster convergence speed, less adjustable 
parameters, better robustness and simpler algorithm, the 
DE algorithm has been achieved fine application effects in 
neural network training, filter design, cluster analysis[2,3]. 

Although the convergence of DE is fast, some 
problems of DE need to be solved yet, such as: in the later 
stage of DE, the convergence speed is slow, even to the 
extent that falling into the local optimum and presenting 
the premature. In order to overcome these problems, the 
chaotic searching that with the property of randomness, 
ergodicity and initial sensitivity is used to improve the DE 
algorithm, which is called Chaos Differential Evolution 
(CDE). 

The Support Vector Machine (SVM) [4] that based on 
the statistical learning theory and structural risk 
minimization principle has been successfully applied in 
solving the problems of classification and regression. 
Since the performances of SVM greatly depend on the 

kernel function type and especially the nuclear parameters 
as well as the punishment parameters, the parameter 
selection has always been a hot issue in the SVM theory 
and application. 

The mainly methods of SVM parameter selection are 
grid searching and gradient descent algorithm in the early 
stage and the optimal methods recently. For example: the 
approach based on the Genetic Algorithm (GA), the 
Simulated Annealing algorithm and the Partical Swarm 
Optimization (PSO) algorithm [5,6,7].While these 
parameters selection approaches based on the 
optimization algorithm has cut the searching time and 
reduced the dependence on the initial values, the GA and 
SA were difficult to be implemented and the PSO was 
easy to fall into local optimum, which would bring a low 
optimization efficiency. 

This paper proposed a hybrid model based on the CDE 
algorithm and the Support Vector Regression machine 
(SVR) model, which is called CDE-SVR. The proposed 
model is then applied to the short-time regression 
prediction of the chaotic time series of Chens and the 
boundary extension of the mechanical vibration signals. 
The application results verify the effectiveness of CDE-
SVR. 

II. CONVENTIONAL DE ALGORITHM AND FITNESS 
VARIANCE OF THE POPULATION 

A. Conventional DE algorithm 
The differential evolution method based on population 

algorithm is used to approximate the global optimal 
solution. Generally speaking, the problem of global 
optimization can be transformed into solving the 
following minimization problem: Mi n : ( )

x D
f P

∈
, where

1 2( , , , ) n
np p p D= ∈ ⊂P R is a vector of n -dimension, 

:f D → R is the objective function. The generation k
could be: 1{ , , }k k k

NPp p=P , with that the number of 
individuals is NP . As in other evolutionary algorithms the 
main operators in DE are: mutation, recombination and 
selection. 

1) Mutation 
This operator in DE is rather different than in other 

evolutionary algorithms. In this step, three individuals, 
1

k
rp 、 2

k
rp and 3

k
rp , are randomly chosen from the 
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current generation- k . The first individual 1
k

rp is the base 
of the mutated vector and we could get the mutant iv by 
the following formula: 

 1 2 3( )k k k
i r r rv p F p p= + −  (1) 

Where, 1, ,i NP= ; 1, 2, 3 {1, , }r r r NP∈ ; 
1 2 3i r r r≠ ≠ ≠ . The parameter [0,2]F ∈ is a scaling 

factor that controls the amplification of the differential 
variation. 

2) Recombination (crossover) 
The crossover operator increases the diversity of the 

mutated individual by means of the combination of two 
solutions, mutant ( iv ) and target ( k

ip ) individuals. And 
we can get the trial individual iu by the following formula: 

 
,

,
,

, if (0,1)

, else
i j j r

i j k
i j

v rand C
u

p

≤⎧⎪= ⎨
⎪⎩

 (2) 

Where: ,1 ,( , , )i i i nu u u= , (0,1) [0,1]jrand ∈ is a 
random number, and [0,1]rC ∈ is a crossover factor, which 
is used to control the probability of the replacement. 

3) Selection 
The ( )k

if p and ( )if u  are calculated and the new 
individual 1k

ip + is selected by the following formula: 

 1 , if ( ) ( )

, else

k
i i ik

i k
i

u f u f p
p

p
+

⎧ ≤⎪= ⎨
⎪⎩

 (3) 

B. Fitness variance of the population 
With the evolution of population, the individual 

differences become smaller, and the individual position 
determines the individual fitness. Therefore, the fitness of 
all individuals could be used to determine the state of the 
populations. 

Supposing the number of individuals is NP , if is the 
fitness of the thi  individual, avgf is the average fitness, 2σ

is the fitness variance of the population (PFV), 2σ could 
be defined as follows: 

 
2

2

1

NP
i avg

i

f f
f

σ
=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  (4) 

Where, f is a normalized scaling factor which is used 
to limit 2σ , its value could be get by the following 
formula: 

 
max | | if :max | | 1

1 else
i avg i avgf f f f

f
− − >⎧

= ⎨
⎩

 (5) 

As known from the formula above, 2σ reflects the 
aggregation of individuals. 2σ is smaller, the population 
tends to converge, conversely, population is in the random 
searching stage. With the increasing of iteration, 2σ
become smaller. So, given a threshold T , if 2 Tσ < , the 
DE algorithm could be considered in the stage of later 
search, which means the DE has been fallen into a local 
optimum. 

III. RESEARCH ON CHAOTIC CHARACTERISTICS OF CAT 
MAP 

A. Introduction of the chaotic cat map 
The classic Arnold cat map is a two-dimensional 

invertible chaotic map [8] described by: 

 1

1

( ) (mod 1)
( 2 ) (mod 1)

n n n

n n n

x x y
y x y

+

+

= +⎧
⎨ = +⎩

 (6) 

Its matrix form is: 

1

1

1 1
(mod 1) (mod 1)

1 2
n n n

n n n

x x x
S

y y y
+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

Where,
1 1
1 2

S ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
and (mod 1)x  is used for the 

fractional parts of a real number x by subtracting or 
adding an appropriate integer. 

The Lyapunov characteristic exponents of the map are 
the eigenvalues 1σ and 2σ of the matrix S , given by 

1
(3 5) 1

2
σ +

= >
,      

2
(3 5) 1

2
σ −

= <
 

So, the map is known to be chaotic. 

B. Chaos optimization and chaotic characteristics of the 
cat map 
Chaos optimization method is one global optimization 

technology by using of the chaotic characteristics. It 
requires the chaotic sequence which with nice 
characteristics of ergodicity and distribution. There are 
many chaos optimizations using logistic map as the 
chaotic sequence generator [9], but the distribution of this 
sequence is uneven, which affect the global searching 
performance and efficiency seriously. Another chaotic 
sequence generator of tent map is proposed in reference 
[10]. While the tent map itself is easy to fall into small 
cycles or fixed points, the distribution of its chaotic 
sequence is uneven, especially when the length of this 
sequence is short. 

The cat map is applied to DE optimization in this 
paper and its chaotic characteristics: ergodicity and 
distribution are examined. 

The ergodicity of chaos map ( )f x is that: for each 
integrable function ( )xψ and initial value 0x , the following 
formula should be satisfied. 
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 0
0

1lim [ ( )] ( ) ( )d
N

n

n n

f x x x x
N

ψ ρ ψ
→∞

=

=∑ ∫  (7) 

Where, ( )xρ is the orbit distribution density with the 

definition of 
1

( ) lim(1/ ) ( )
N

nn n

x N x xρ δ
→∞

=

= −∑ . nf is n-

compound of ( )f x . 

In reference [11], the ergodicity of the cat map is 
supplied. And the chaotic distribution characteristic of cat 
map is examined below. 

The distribution maps of logistic map, tent map and 
cat map that in the range of [0,1] with two different 
iteration times are shown below. 

 
Figure 1.  Distribution of maps iterations (iteration 50000 times) 

 
Figure 2.  Distribution of maps iterations (iteration 5000 times) 

It can be observed form Fig.1 and Fig.2 that while the 
number of iteration is 50000, the number that in the range 
of [0.9,1]  is over 12000, so the distribution of the logistic 
map is quite uneven. The distribution of tent map is 
relatively uniform when the iteration times is high, as 
shown in Fig.1 (b), but the distribution presents double 
humps when the iteration times is low, as shown in Fig.2 
(b). So the distribution of this map is unstable. It can be 
observed from Fig.1(c) and Fig.2(c) that the distribution 
of the cat map is uniform and stable. Furthermore, the 
initial value of cat map can be 0 and 1, while the other two 
maps cannot, which is useful while the optimum value is 
in the boundary. Therefore, the chaotic characteristic of 
the cat map is better than that of logistic map and tent map. 

IV. THE IMPROVED DE ALGORIGHM THAT USING 
CHAOTIC SEARCHING 

A. The searching mechanism that based on chaotic cat 
map 
Chaos is a nonlinear phenomenon that widespread in 

nature, its movement is ergodicity, randomness and initial 
sensitive. Chaotic movement could traverse all the status 
according to its own law. So the optimization search by 
use of chaotic variable is better than that using random 
variable. The chaotic searching performs better when in a 
small searching space and is easy to jump out of the local 
optimum. Therefore, the chaotic searching is used when 
DE fall into the local optimum, to improve the DE 
performance. 

It is considered that the DE has fallen into the local 
optimum, when the PFV is less than a threshold T . At this 
time, supposing the best population is: 

* * * *
1 2( , , , )DP p p p=  

Generating two random vectors
0 0,1 0,2 0,( , , , )DX x x x=  and 0 0,1 0,2 0,( , , , )DY y y y= , 

where 0, 0,, [0,1]i ix y ∈ and taking them into formula (6). 
The two-dimensional cat map chaotic sequence ix and iy  
are calculated by iteration. Supposing

0,1 0,2 0,( , , , )i i DC X x x x= = , { , 1, 2, , }nC n N= is the 
chaotic sequence group to use. Where, N is the limited 
maximum searching times. 

Then the chaotic variable is transformed to the 
optimization variable space in the way of formula (8) and 
the optimized variable is ' ' ' '

,1 ,2 ,( , , , )n n n n DC c c c= . 

 ' *
, ,i j i i i jc p r c= + ∗  (8) 

It is known from formula (8) that the chaotic variable 
is extended to the circular region where the best 
population *P is the origin and ir  is the radius. The ir is an 
adjust factor. When ir is relative large, it is benefit to 
global searching and in a low convergence speed, 
conversely, it is limited in a small region near to the best 
population which is useful to improve the searching 
precision. 

B. The improved DE that based on the chaotic searching  
The chaos differential evolution algorithm (CDE) is 

proposed and its main idea is:  

Step.1 The conventional DE is being executed until it 
is fall into the local optimum (the PFV is less than a 
threshold); 

Step.2 The chaotic sequence from cat map is 
calculated and optimized; 

Step.3 The random population is instead by the 
optimized chaotic sequence and the following operations 
of recombination and selection is executed. 

The flow chart of CDE is shown as below. 
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Figure 3.  Flow chart of CDE 

C. Numerical simulation of CDE 
Four Benchmark questions are used to compare DE 

and CDE. These functions, their optimum status and 
optimum values are shown as below.  

1) Sphere Model 

 2
1

1

( ) ,| | 10( 1,2, , )
n

i i
i

f x x x i n
=

= ≤ =∑  

 1 1min : ( ) (0,0, ,0) 0f x f= =  

2) Rosenbrock Function 
2 2

2 1
1

( ) [100( ) ( 1) ],| | 50 ( 1,2, , )
n

i i i i
i

f x x x x x i n+
=

= − + − ≤ =∑
2 2min : ( ) (1,1, ,1) 0f x f= =  

3) Greiwank Function 
2

3
1 1

1( ) cos( ) 1,| | 600 ( 1,2, , )
4000

n n
i

i i
i i

xf x x x i n
i= =

= − + ≤ =∑ ∏
 

3 3min : ( ) (0,0, ,0) 0f x f= =  
4) Rastrigrin Function 

2
4

1

( ) [ 10cos(2 ) 10],| | 5.12( 1,2, , )
n

i i i
i

f x x x x i nπ
=

= − + ≤ =∑
 

4 4min : ( ) (0,0, ,0) 0f x f= =  
Where, 1( )f x  is a single peak function, 2 ( )f x ,

3( )f x and 4 ( )f x are all multiple peaks function which is 
difficult to find their global optimum. The initial 
parameters of the experiments are shown in the following 
table. 

TABLE 1.  INITIAL PARAMETERS OF THE EXPERIMENTS 

Function NP  M  N  T  F  rC  

1( )f x  10 1000 100 0.01 0.5 0.1 

2 ( )f x  15 1500 150 0.5 0.6 0.2 

3 ( )f x  20 1000 150 0.01 0.5 0.1 

4 ( )f x  20 1000 150 0.01 0.5 0.1 

Since the initial populations and the recombination 
process contains many random values, the experiment 
results is not repetitiveness. So twenty experiments are 
tested for each algorithm, and the statistical results of 
these experiments are shown as below. 

TABLE 2.  STATISTICAL RESULTS OF THESE EXPERIMENTS 

Functio
n 

Algorith
m 

Maximu
m 

optimum 

Minimu
m 

optimum 

Mean 
optimu

m 

Times
* 

1( )f x  DE 2.34 1.15e-19 0.13 16 
CDE 1.10e-11 3.72e-20 8.35e-13 20 

2 ( )f x  DE 2.51e-6 1.53e-13 1.30e-7 19 
CDE 9.45e-19 1.38e-19 3.34e-19 20 

3 ( )f x  DE 0.01 0 0.01 17 
CDE 8.58e-14 0 4.29e-15 20 

4 ( )f x  DE 0.99 1.25e-11 0.19 18 
CDE 5.00e-10 6.23e-11 1.72e-10 20 

* The times of algorithm accessing the global optimum 
It can be observed from Table.2 that most of the 

maximum optimum, minimum optimum and mean 
optimum calculated by CDE is better than DE. The times 
of CDE accessing the global optimum is greater than that 
of DE. Therefore, both the optimization precision and the 
global searching ability are improved in CDE. 

Furthermore, Fig.4 is the trace of the mean best 
fitness (MBF) in the optimization iteration. It can be 
known that because of the chaotic searching in the later 
stage, the convergence speed and precious of the CDE 
are enhanced greatly. 

 
Figure 4.  Optimization map of DE and CDE 
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V. SUPPORT VECTOR REGRESSION AND PARAMETERS 
ANALYSIS 

The basic idea in SVR is to map the dataset 
{ }1 1( , ), , ( , ) n

l lx y x y ⊂ ×R R into a high dimensional 
feature space via non-linear mapping, wherein they are 
correlated linearly with the outputs [12]. The SVR 
formalism considers the following linear estimation 
function: 

 ( , ) , ( )f x w w x bφ= 〈 〉 +  (9) 

Where, nw∈ R is weight vector, b ∈ R is a constant, 
( )xφ denotes a mapping function in the feature space.  

Based on the principle of structural risk minimization, 
the SVR learning problem is recast as the optimization 
problem:  

 
2 *

1

1Min: ( )
2

l

i i
i

w C ξ ξ
=

+ +∑  (10) 

Subject to：

*

*

( )
( )

, 0; 1, ,

i i i

i i i

i i

f x y
y f x

i l

ε ξ
ε ξ

ξ ξ

⎧ − ≤ +
⎪ − ≤ +⎨
⎪ ≥ =⎩

 

Where, C is the regularization constant used to specify 
the trade-off between the empirical risk and regularization 
term. Two positive slack variables, iξ and *

iξ ,
1,2, ,i n= can be used to measure the deviation from 

the boundaries of the ε -insensitive zone. That is, they 
represent the distance from actual values to the 
corresponding boundary values of ε -insensitive zone. 
Both C and ε are user-determined parameters. And a 
schematic representation of the SVR using ε-insensitive 
loss function is illustrated in Fig.5. 

ε
*

jξ

iξε

( )f x

x

iy

jy

( )f x ε+

( )f x ε−

( )f x

 
Figure 5.  Sketch map of the SVR using ε-insensitive loss function 

By using Lagrange function and Karush-Kuhn-Tucker 
conditions to the (10), it thus yields the following dual 
optional form: 

 

* *

, 1

* *

1 1

1Max : ( )( ) ( , )
2

( ) ( )

l

i i j j i j
i j

l l

i i i i i
i i

K x x

y

α α α α

α α ε α α

=

= =

− − −

+ − − +

∑

∑ ∑
 (11) 

Subject to the constraints: 

*

1

*

( ) 0

0 , , 1, ,

k

i i
i

i i C i l

α α

α α
=

⎧
− =⎪

⎨
⎪ ≤ ≤ =⎩

∑  

Where, the Lagrange multipliers *,i iα α satisfy the 
equality * 0i iα α = . The Lagrange multipliers are 
calculated and an optimal desired weight vector of the 

regression hyper-plan is: *

1

( ) ( )
l

i i i
i

w xα α φ
=

= −∑ . Hence, 

the general form of the SVR-based regression function 
can be written as: 

 *

1

( ) ( ) ( , )
l

i i i
i

f x K x x bα α
=

= − +∑  (12) 

Where, ( , )i jK x x is called the kernel function and the 
values of it equals the inner product of two vectors, ix and

jx , in the feature space ( )ixφ  and ( )jxφ ; that is, 
( , ) ( ) ( )i j i jK x x x xφ φ= . 

Any function that meets Mercer’s condition can be 
used as the kernel function [13]. The radial basis function 
(RBF) is applied in this paper as kernel function, which is 
defined as: 

( )2 2

2
( , ) exp 2i j i jK x x x x σ= − −

 
Where, 2σ is the width of the RBF. 

As just mentioned, when to designan effective model, 
the values of the two essential model parameters ( C ,ε ) 
and one kernel function parameter ( 2σ ) in SVR have to 
be chosen carefully in advance. The regularization 
parameter C determines the tradeoff cost between 
minimizing the training error and minimizing model 
complexity, which will reduce the generalization 
capability when it was set too small or excessive. The 
parameter ε defines the non-linear mapping from the input 
space to some high-dimensional feature space which 
determines the number of support vectors. And 2σ reflect 
correlation of the support vector, which also determines 
both the generalization capability and the prediction 
accuracy. 

VI. SVR PREDICTION MODEL BASED ON CDE 
ALGORITHM 

The schematic diagram of SVR parameters selection 
based on the CDE algorithm(CDE-SVR) is presented in 
Fig.6. One SVR model with kernel function of RBF has 
three parameters: σ , C and ε . The fitness function is 
mean square deviation (MSE) which is treated as a direct 
response to the performance of SVR. 
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Figure 6.  Flowchart of SVR parameters selection using CDE 

algorithm 

The concrete steps of CDE-SVR parameters selection 
are as follows: 

Step 1: Set the number of individuals, crossover factor
rC , and the parameters of individuals. Set the termination 

conditions: maximum allowable number of iterations and 
the fitness error limitation (maximum MSE). 

Step 2: Generate the mutant iv with (9). 

Step 3: Get the trial individual iu by the recombination 
of iv and k

ip by (10). 

Step 4: Get the MSE with the new parameters iu and 
execute selection operation using (11). 

Step 5: Select the smallest MSE and record this 
individual. 

Step 6: Check whether termination criterion is met. If 
yes, stop and output the optimum parameters; otherwise, 
calculate the next generation individual 1k

ip + and go to 
step 2. 

After that, the SVR model with these optimum 
parameters is applied to the test datasets, and the common 
flowchart of one time series prediction based on the DE-
SVR is as follows. 

 
Figure 7.  Flowchartof time series prediction based on CDE-SVR 

VII. ITS APPLICATION IN CHAOTIC SERIES PREDICTION 

A. Chaotic Chens time series and state-space 
reconstruction 
Chaotic systems are deterministic systems which are 

capable of generating irregular and complex behavior, 
depending on system parameters. Since chaotic systems 
are deterministic, the current state of the system is 
sufficient for determining the entire future evolution of the 

system. However, as chaotic systems possess positive 
Lyapunov exponent(s), only short-term predictability is 
possible, due to exponential divergence [14]. The chaotic 
signal of Chens dynamical system is researched in this 
paper which is described by the following differential 
equations: 

 
( )

( )
x a y x
y c a x xz cy
z xy bz

= −⎧
⎪ = − − +⎨
⎪ = −⎩

 (13) 

Where x , y and z are the state variables, the a , b and
c  are three positive real constants. This system has a 
chaotic solution when 35, 3, 28a b c= = = .By using the 
fourth-order Runge-Kutta method with time step 0.01, the 
time series for X-component ( totalN =1600) is carried out 
and shown in Fig.4. Here, the first 200 points are 
discarded to remove transients, and 1000 points (from 201 
to 1200) are selected as training datasets and 200 points 
(1201-1400) for test datasets. 

 
Figure 8.  The X-component of Chens chaotic time series 

State-space reconstruction is fundamental to both 
system characterization and forecasting, and the 
expression of reconstruction matrix X is as follows: 

(1) (1 ) (1 ( 1) )
(2) (2 ) (2 ( 1) )

( ) ( ) ( ( 1) )

x x x m
x x x m

x n x n x n m

τ τ
τ τ

τ τ

+ + −⎡ ⎤
⎢ ⎥+ + −⎢ ⎥=
⎢ ⎥
⎢ ⎥+ + −⎣ ⎦

X

 

Where, m is the embedding dimension and is the 
embedding delay. The embedding dimension is found 
using the method of Global False Nearest Neighbors 
(GFNN) , whilst the embedding time delay is found from 
the first minimum in the mutual information.  

B. The prediction of chaotic sequence using CDE-SVR 
In the experiment the parameters of CDE algorithm is 

set to: 0.5rC = ， 0.5α = , 25NP = , and 3pn = is the 
number of SVR parameters, the initial training parameters 
are: 2 1.4σ = , 2C = and 0.1ε = . The optimization 
termination rule: maximum number of iterations is 200. 
After training, the prediction of test datasets was carried 
out by SVR with the optimum parameters. 

In order to verify the effectiveness and superiority of 
the SVR parameters selection based on the CDE 
algorithm, the Grid-search SVR and PSO-SVR were also 
implemented. The optimal parameters and other 
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implementation results obtained are presented in Table.3. 
And the prediction results with CDE-SVR are shown in 
Fig.9. Where, the RMSE is the mean of MSE. 

TABLE 3.  IMPLEMENTATION RESULTS USING DIFFERENT 
METHODS 

Model Grid-SVR PSO-SVR CDE-SVR 

RMSE 0.112 0.082 0.074 

 

 
Figure 9.  Predicted and actual series using proposed CDE-SVR 

Table 3 clearly demonstrated the effectiveness of the 
proposed CDE-SVR for the prediction of the Chens time 
series. Compared with the conventional grid searching 
approach and PSO-SVR, the prediction accuracy of CDE-
SVR is higher. 

As well known, the chaotic series is difficult to predict. 
If we set a threshold of RMSE=0.8, which is the 
maximum error could be accepted; only 128 points ahead 
is meaningful. 

VIII. ITS APPLICATION IN BOUNDARY EXTENTION OF 
MECHANICAL VIBRATION SIGNALS 

Oil pump is the key equipment in the process of oil 
transportation, its structure are shown in Fig.10. Most of 
its faults could be reflected in its body vibration signals. 
At present, the approach of EMD could be used to extract 
its fault features effectively [15]. But there exists strong 
end effects in EMD [16], so the boundary of signal 
should be extended firstly, and the SVR is an appropriate 
approach to achieve this work. 

 
Figure 10.  Device structure and the measurement points 

The vibration signal shown in Fig.11 was measured 
in position 1#. The sampling rate is 4096Hz and the 
instantaneous rotational speed is about 2310rpm (38.5Hz). 

 
Figure 11.  Oil pump vibration signal in 1# 

The total length of the signal is 1024 points. In order 
to examine the extension results, the points of 1~700 are 
selected as train dataset, and points of 701~900 are set as 
test dataset. The extension results (prediction results) and 
the RMSE are shown in Fig.12. 

 
Figure 12.  Predicted and actual series using proposed CDE-SVR 

As can be seen from Fig.12 that the RMSE between 
the original signal and predicted signal is small and the 
period features of the signal is well preserved, which 
could meet the requirements of the boundary extension. 
Therefore, the effectiveness of the CDE-SVR is verified 
and this approach could be applied to the boundary 
extension of the mechanical vibration signals. 
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IX. CONCLUSION 
A chaos differential evolution optimization algorithm 

(CDE) that based on the chaotic characteristics analysis of 
the cat map is proposed in this paper. When the DE fall 
into the local optimum, the chaotic sequence generated by 
cat map is used to update the population. The numerical 
simulation verifies that the optimization speed and 
precision of the CDE algorithm is better than that of 
convectional DE algorithm. 

Then the CDE is used to SVR and a new optimal 
prediction model of CDE-SVR is proposed in this paper. 
The model is applied to the short time prediction of 
chaotic time series. The results verify that, compared with 
the prediction model optimized by other method, the 
prediction accuracy of CDE-SVR is higher than others. 
The model is also applied to the boundary extension of the 
mechanical vibration signals. The application results also 
verify the effectiveness of this new prediction model. 
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