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Abstract—Document categorization has become one of the 
most important research areas of pattern recognition and 
data mining due to the exponential growth of documents in 
the Internet and the emergent need to organize them. The 
document space is always of very high dimensionality and 
learning in such a high dimensional space is often impossible 
due to the curse of dimensionality. To cope with 
performance and accuracy problems with high 
dimensionality, a novel dimensionality reduction algorithm 
called IKDA is proposed in this paper. The proposed IKDA 
algorithm combines kernel-based learning techniques and 
direct iterative optimization procedure to deal with the 
nonlinearity of the document distribution. The proposed 
algorithm also effectively solves the so-called “small sample 
size” problem in document classification task. Extensive 
experimental results on two real world data sets 
demonstrate the effectiveness and efficiency of the proposed 
algorithm.  
 
Index Terms—document classification, kernel discriminant 
analysis, dimensionality reduction, data mining 
 

I.  INTRODUCTION 

With the rapid advances of computer technology and 
the advent of the World Wide Web, there has been an 
explosive increase in the amount of document on the 
Internet. Hence, it is of great importance to develop 
methods for the automatic processing of large collections 
of Web documents. One of the main tasks in this 
processing is that of assigning the documents of a corpus 
to a set of previously fixed categories, what is known as 
document classification. Within the last few decades, 
Document classification (DC) has found a wide range of 
applications, such as information retrieval, personalized 
recommendation system, and business intelligence 
solutions. As a result, numerous DC algorithms have 
been proposed, and surveys in this area can be found in 
[1,2].The typical data classification algorithms are 
directly performed in the data space. However, the 
document  space is  always of  very  high  dimensionality,  

 

ranging from several hundreds to thousands. Learning in 
such a high dimensionality in many cases is almost 
infeasible. Therefore, it is often essential to conduct 
dimensionality reduction to acquire an efficient and 
discriminative representation before formally conducting 
classification. Dimensionality reduction could effectively 
avoid the “curse of dimensionality”, improve 
performance and computational efficiency of document 
classification, suppress noise, and alleviate storage 
requirement. Once the high-dimensional data is mapped 
into lower-dimensional space, conventional classification 
algorithms can then be applied. 

The most well-known dimensionality reduction 
methods may be principal component analysis (PCA)[3] 
and linear discriminant analysis (LDA)[4,5]. Both of 
them are eigenvector methods aim at modeling linear 
variability in the multidimensional space. PCA also 
known as Karhunen–Loéve transformation, aims to find a 
set of mutually orthogonal bases that capture the global 
information of the data points in terms of variance. PCA 
performs dimensionality reduction by projecting the 
original d-dimensional data onto the r (<< d)-dimensional 
linear subspace spanned by the leading eigenvectors of 
the data’s covariance matrix. By contrast with the 
unsupervised method of PCA, LDA is a supervised 
learning approach. LDA seeks a subspace projected onto 
which the data points of different classes are far away 
while the data points of the same class are close to each 
other. LDA aims to find the optimal discriminant vectors 
by maximizing the ratio of the between-class distance to 
the within-class distance, thus achieving the maximum 
class discrimination. It is generally believed that 
algorithms based on LDA are superior to those based on 
PCA. The interested reader may refer to [4-6] for detailed 
analysis about the relationship between PCA and 
LDA.LDA has been applied successfully in many 
applications including information retrieval[7], face 
recognition[8], and microarray data analysis[9]. 

However, one major drawback of LDA is that it suffers 
from the small sample size (SSS) or undersampled 
problem[5]. The small sample size problem arises 
whenever the number of samples is smaller than the 
dimensionality of samples. The small sample size 
problem occurs frequently in practice. For example, in 
handling document data in information retrieval, it is 
often the case that the number of terms in the document 
collection is larger than the total number of documents 
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and, therefore, the within-class scatter matrix wS is 

singular. To overcome this limitation, many extensions 
have been proposed to deal with such high-dimensional, 
undersampled problem, including two-stage 
PCA+LDA[10], Regularized LDA[11], Penalized 
LDA[12], Pseudo-inverse LDA[13], Direct LDA[14] , 
Null space LDA[15,16], Orthogonal LDA[17], 
Uncorrelated LDA[18], LDA/QR[19] and 
LDA/GSVD[20] were proposed in the past to deal with 
the singularity problems. They have been applied 
successfully in various applications. More details on 
these methods, as well as their relationship, can be found 
in [4,17,21]. 

In addition, although LDA is an efficient linear 
dimensionality reduction method, it is still a linear 
technique in nature. So it often fails to find the underlying 
nonlinear structure of document data sets. Motivated by 
the kernel trick[22] successfully used in pattern 
recognition, the classification efficiency induced by LDA 
may be further improved when the data in the original 
space are highly nonlinearly distributed. Kernel based 
nonlinear discriminant analysis algorithms have recently 
attracted a great deal of attention, these methods are 
usually called kernel discriminant analysis (KDA) [23]. 
Their main idea is to transform the input data into a 
higher dimensional space by a nonlinear mapping 
function and then apply LDA techniques in that space. 
These methods are formulated in terms of dot products of 
the mapped samples, and kernel functions are used to 
compute these dot products. Therefore, the nonlinear 
mapping function and the mapped samples are not used 
explicitly, which makes the methods computationally 
feasible. KDA performs much better than LDA. Just like 
LDA, KDA also lead to the small sample size (SSS) 
problem because the number of the sample is much 
smaller than the dimension of the representative features 
of documents. Since SSS problems are common, it is 
necessary to develop more effective KDA algorithms to 
deal with them. 

Motivated by the kernel trick successfully used in 
support vector machine (SVM)[22,24], we propose an 
iterative kernel discriminant analysis (IKDA) method to 
overcome both the matrix singularity problem and the 
nonlinear problem for document classification. The 
IKDA method combines the strengths of both direct 
iterative optimization procedure and kernel-based 
learning techniques to improve the performance of LDA. 
Besides, the proposed IKDA algorithm can effectively 
solve the so-called small sample size (SSS) problem. We 
will give detailed derivation of the formulations of IKDA 
and also make comparison to other conventional kernel-
based subspace learning algorithms on a real-world 
document collection. Experimental results demonstrate 
the effectiveness and efficiency of our proposed 
algorithm. 

The rest of this paper is organized as follows. The 
conventional methods for linear and nonlinear 
discriminant analysis are briefly reviewed in Section II. 
IKDA algorithm is described in Section III. Experimental 

results are reported in Section IV. Conclusions are 
summarized in Section V. 

II.  BRIEF REVIEW OF LDA AND KDA 

A.  Linear Discriminant Analysis(LDA) 
LDA is one of the most popular linear dimensionality 

reduction algorithms. Let { }( )nixX i ,,2,1 …==  be d-

dimensional sample sets.  Each data sample belongs to 

exactly one of c object classes { }cLLL ,,, 21 … . in  

denotes the number of samples in class iL .Thus, 

nn
c

i
i =∑

=1

. LDA seeks a linear transformation matrix 

( ) rd
m RwwwW ×∈= ,,, 21 …  mapping the original d-

dimensional sample space into an r-dimensional feature 
space, where dr << .Then the transformed new feature 

vectors r
i Ry ∈ are defined as follows: 

nixWy i
T

i ,,2,1, …==                  (1) 

LDA seeks directions on which the data samples of 
different classes are far from each other while requiring 
data samples of the same class to be close to each other 
thus achieving the maximum class discrimination. The 
objective function of LDA is defined as follows: 
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where the between-class scatter matrix bS and the within-

class scatter matrix wS  are defined as follows: 
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where Tx represents the transpose of x , iu  the mean of 

samples in the ith class sample set and u  the mean of all 
samples. 
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The optimization problem in (2) is equivalent to 
finding generalized eigenvectors that correspond to the 
largest eigenvalues in 

WSWS wb λ=                                (6) 

The solution can be obtained by solving an eigenvalue 

problem on the matrix bw SS 1−  if wS  is nonsingular. 

When the SSS problem takes place, wS  will be typically 

singular and LDA cannot be applied directly. To 
overcome this limitation, several extensions, including 
two-stage PCA+LDA, null space LDA, direct LDA, 
LDA/QR, LDA/GSVD were proposed in the past to deal 
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with such singularity problem. A recent overview of LDA 
on undersampled problems can be found in [17,21]. 

B.  Kernel Discriminant Analysis (KDA) 
Although the linearization mapping function of LDA is 

computationally efficient for classification, its 
performance may degrade in cases with nonlinearly 
distributed data. To handle nonlinearly distributed data, 
LDA is generalized to its kernel version, named as 
KDA[23]. Its main idea is to transform the input data into 
a higher dimensional feature space by a nonlinear 
mapping function and then apply the linear discriminant 
analysis techniques in the feature space. KDA is capable 
of handling high-dimensional data and extracting most 
discriminant features for classification automatically. 

To extend the LDA to the nonlinear case, consider a 
nonlinear feature mapping ϕ , the input data space 

dRX ⊂ can be mapped into a higher dimensional 
feature space F . 

FRd →:ϕ , ( )xx ϕ6                         (7) 

Without knowing the feature mapping ϕ  explicitly, 

we can compute dot-products in the feature space F  
through the following kernel functions: 

( ) ( ) ( )jiji xxxxk ϕϕ ⋅=,                             (8) 

As in (3) and (4), the between-class scatter matrix and 

the within-class bS  scatter matrix wS  in the feature 

space F  are expressed below 
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sample set and the mean of all samples in the feature 
space F , respectively. 

According to the theory of reproducing kernels, 
FW ∈ must lie in the span of all the training samples in 

the feature space F .Hence, there exist coefficients 

( )nii ,,2,1 …=α  such that 
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Using the scatter matrices, the optimal criterion of 
KDA in the feature space F  can be rewritten as 
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Substituting (11) into the numerator and denominator 
of  (12), we derive the following equations: 
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As a result, the solution to (12) can be converted into 
the following optimization problem: 

( )
αα
αα

α
α w

T
b

T

K
K
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Similar with the solution of traditional discriminant 
analysis, the optimal solution of (17) can also be obtained 
using the generalized eigenvalue decomposition(GED) 
method. 

iwiib KK αλα =                           (18) 

where 110 −≥≥ dλλλ "  are the d  largest eigenvalues, 

iλ  is the i-th largest eigenvalue corresponding to 

eigenvector iα , and iα  constitutes the i-th column 

vector of the matrix α . 
For a given test data point x , we can compute 

projections onto the eigenvector W  in the feature space 
F  according to 
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II.  ITERATIVE KERNEL DISCRIMINANT ANALYSIS 

ALGORITHM 

A.  Discriminant Feature Extraction 
Although KDA performs much better than LDA in 

many classification applications due to its ability in 
extracting nonlinear features that exhibit high class 
separability, it also leads to the small sample size (SSS) 
problem since the dimensionality of the mapped feature 
space is usually larger than the size of the training set. To 
overcome this limitation, the most popular method is to 

use a penalized term IK w µ+ instead of wK  in (18), 

where I is the identity matrix, while it is difficult to 
determine parameter µ . Lu et al. proposed the kernel 
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direct LDA (KDDA) method [25],which combined the 
idea of KDA and direct LDA. KDDA employs the 
simultaneous diagonalization for finding projection 

vectors in the range of bS .However, the range of 

bS does not necessarily include the optimal projection 

vectors for discrimination. Yang developed a two-phase 
KFD framework[26], which firstly use KPCA to reduce 
the dimension and then perform standard LDA in the 
KPCA-transformed space, a limitation of this approach is 
that the KPCA stage may lose some useful information 
for discrimination. Recently, Park presented a kernel 
nonlinear discriminant analysis method using the 
generalized singular value decomposition (GSVD)[27] to 
address the singularity problem. However, a disadvantage 
of this method is the high computational cost of GSVD, 
especially for large and high-dimensional data sets. 

In this paper, inspired from directly solving the trace 
ratio problem in [28], we propose an efficient iterative 
kernel discriminant analysis(IKDA) algorithm for directly 
solving the kernel discriminant analysis problem. Instead 
of extracting feature vectors from an eigenvalue problem 

of bw KK 1−  once and for all, the feature vectors will be 

obtained iteratively. Since no matrix inverse needs to be 
computed, this algorithm completely avoids the SSS 
problem. The detailed steps for implementing the IKDA 
algorithm are summarized as follows. 

Step1: Compute kernel matrix K in terms of  (8). 

Step2: Compute the scatter matrixes bK  and wK  

from (15) and (16), respectively. 

Step3: Initialize 0α  with a random vector, and 

normalize it. 

Step4: For max,,2,1 tt …=  Repeat 

Step4.1: Compute the trace ratio value tλ from the 

projection vector 1−tα : 

( )
( )11

11

−−

−−=
tw

T
t
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T
t

t Ktr
Ktr

αα
αα

λ                         (20) 

Step4.2: Construct the trace difference problem using 
the following equation: 

( )( )αλαα
αα

wtb
T

t KKtr
T

−=
=1

maxarg             (21) 

Step4.3: Compute the trace difference problem with 
the eigenvalue decomposition: 

( ) ( ) ( ) ( )iiiKK tttwtb αταλ =−                  (22) 

where ( )itτ  is the i-th largest eigenvalue of 

( )wtb KK λ− with the corresponding eigenvector ( )itα , 

and ( ) ( ) ( )110 −≥≥ dttt τττ "  are the d largest 

eigenvalues. 

Step4.4.: If εαα <− −1tt , then break. 

Step4.5: 1+= tt . 

Step5: Output  tαα = . 

Note that, due to our proposed IKDA algorithm for 
direct solving KDA is a simplied iterative trace ratio 
algorithm, it has proofed that the original  iterative  
algorithm  converge to a global optimum in [28].As a 
results, our proposed iterative algorithm IKDA will 
converge to a global optimum. 

B.  Classification Method 
After the discriminant features are extracted by the 

IKDA algorithm, a feature matrix is obtained for each 
document. A remaining key element of document 
classification is to design a robust classifier. SVM has a 
very good performance for pattern classification 
problems by minimizing the Vapnik-Chervonenkis 
dimensions and achieving a minimal structural risk[22]. 
Then, the SVM classifier is used for document 
classification. 

Given a set of training document data belonging to two 

separate classes, ( ) ( )1 1, , , ,n nx y x y… ,where ix  

denotes the lower-dimensional document feature obtained 

from the above IKDA algorithm, and { }1, 1iy ∈ − + is 

the class label, SVM aims to find a hyperplane  
0wx b+ =                                 (23) 

 to separate the data, where w  is the normal vector to the 

hyperplane and b is the corresponding bias term of the 
hyperplane. SVM finds the parameters w and b for the 
optimal hyperplane to maximize the geometric margin 

2 w  subject to 

( ) 1T
i iy w x b+ ≥ +                            (24) 

The above optimization problem can be posed as a 
constrained quadratic programming (QP) problem, and 
the solution can be obtained using the Wolfe dual 

problem with a Lagrangian-multiplier iα : 

( ) ( )
1 , 1

1
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2

n n

i i j i j i j
i i j

Q y y x x
α

α α α α
= =

= − ⋅∑ ∑    (25) 

subject to 0iα ≥ and 
1

0
m

i i
i

yα
=

=∑ . 

When ix  has a non-zero iα  Lagrange multiplier value, 

this ix is called support vector. Only vectors 

corresponding to nonzero iα  contribute to decision 

function, and are called support vectors. Thus, the SVM 
classification function can be derived as: 

( ) ( )
1

sgn
m

i i i
i

f x y x x bα
=

⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠
∑             (26) 

where m  is the number of support vectors, and b is 
determined according to the below equation: 

[ ]1
2 r sb w x x= − ⋅ +                            (27) 

1

n

i i i
i

w x yα
=

=∑                                   (28) 

1268 JOURNAL OF SOFTWARE, VOL. 6, NO. 7, JULY 2011

© 2011 ACADEMY PUBLISHER



where rx and sx  are any support vector satisfied : 

0, 0r sα α≥ ≥ , 1rx = + , 1sx = − . 

Although the above linear hyperplane is a natural 
choice as a boundary to separate different classes, it has 
limitations for nonlinearly document data. One way to 
handle nonlinear data can be provided by using kernel 
trick[22]. The intuition of the kernel trick is to map non-
separable data from the original feature space to a higher 
dimensional Hilbert space 

: X Fϕ →                                (29) 

in which the data may be linearly separable. 
The map ϕ , rather than being given in an explicit 

form, is presented implicitly by specifying a kernel 
function as the inner product between each pair of points 
in the feature space. 

( ) ( ) ( , )i j i j i jx x x x K x xϕ ϕ⋅ → ⋅ =             (30) 

where ( ),K  is a kernel function satisfying Mercer’s 

condition. 
Thus, the optimization objective in (25) can be 

rewritten as follows by using kernel trick: 

( ) ( )
1 , 1

1
max ,

2

n n

i i j i j i j
i i j

Q y y K x x
α

α α α α
= =

= −∑ ∑    (31) 

Finally, the decision function of SVM classifier is 
given by 

( ) ( )
1

sgn ,
m

i i i
i

f x y K x x bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑              (32) 

where m is the number of support vectors, each 

ix denotes a support vector and iα  is the corresponding 

Lagrange multiplier. 
In this experiment, we adopt the normalized Gaussian 

kernel as kernel function due to its better performance in 
many pattern classification applications: 

( ) ( )
( ) ( )

,
,

, ,

i j
i j

i i j j

k x x
K x x

k x x k x x
=

⋅
           (33) 

where ( ),i jk x x is Gaussian kernel function 

( )
2

, ix x
ik x x e ρ− −= , the parameter ρ  is set to 

( )10 2.52 nρ σ−= , where σ  is the standard deviation of 

the data set. In addition, the LIBSVM[29] software was 
used in our experiment to solve the SVM optimization 
problem. 

Note that, document classification is practically a task 
of multiclass classification while SVM was designed for 
the binary classification. While one-against-one(OAO) 
and one-against-ALL(OAA) schemes are two popular 
ways to realize the SVM-based multiclass classification 
task. In this study, we employ the decision-directed 
acyclic graph (DDAG)[30] learning architecture proposed 
by Platt et al. to cope with the multiclass classification for 
his better performance. 

In short, the document classification process has three 
steps. First, we calculate the document subspace from the 
training set of document data; then the new document to 
be classified is projected into lower-dimensional feature 
subspace by using our proposed IKDA algorithm; finally, 
the new document is classified by the SVM classifier. 

III.  EXPERIMENTAL RESULTS 

In this section, several experiments are carried out to 
show the efficiency and effectiveness of our proposed 
IKDA algorithm for document classification. Two 
standard document collections were used in our 
experiment: Reuters-21578[31] and 20 Newsgroups[32]. 
The proposed algorithm is compared with the commonly 
used kernel-based learning algorithms: KPCA[33], 
KNDA[34], and KDDA[25]. The Gaussian kernel 

( )
2

, yxeyxK −−= ρ
 is used to compute the elements of 

the matrix  ( )jiij xxkkK ,: = , where parameter ρ  is 

selected with leave one out cross validation. Two 
parameters which control the termination condition of the 
IKDA algorithm need to be set beforehand: The threshold 

value ε  is simply set to 410−  as in [28]. The maximal 

iteration number maxt  in the IKDA algorithm is 

experimentally set to 10. All of our experiments have 
been performed on an Intel P4 3.20GHz PC with 1GB 
memory. 

The Reuters-21578 data set contains 21578 documents 
in 135 categories from the Reuters newswire[31].Each 
document belongs to one or more categories. In this 
experiment, we discarded those documents with multiple 
category labels, and selected 10 most populated 
categories (top 10), which are the 10 categories having 
highest number of documents. 

The 20 Newsgroups corpus contains almost 20,000 
documents taken from the Usenet newsgroups [32], these 
documents are evenly distributed on 20 categories. 

We simply removed the stop words and no further 
preprocessing was done. Each document is represented as 
a term-frequency vector and normalized one. The 
Euclidean metric is used as the distance measure between 
document vectors. In addition, in order to remove the 
uninformative word features, feature selection is 
conducted using the Information Gain criterion. In 
particular, top 500 most informative features are selected 
for each category in each of the two text collections 
described above. A random subset with k( = 5%, 10%, 
20%, 30%, 40%, 50%) samples per category are selected 
for training and the rest are used for testing. 

To evaluate the effectiveness of the document 
classification algorithm, the average classification 
accuracies and the running time (second) of computing 
each dimensionality reduction algorithm on two data sets 
are listed on the Table (I-IV). To reduce the variability, 
for given the percent of training samples in each class, we 
average the resulting accuracies of 10 random splits and 
report the mean value. From the experimental results, we 
can make the following observations. 
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1) The proposed IKDA algorithm consistently 
outperforms KPCA, KNDA, and KDDA in terms of 
classification accuracy. It implies that the numerical 
computation problem does affect the performance of 
kernel-based discriminant analysis algorithm. IKDA 
successfully avoids the numerical computation problem 
since it does not calculate any inverse matrix for 
delivering discriminant features. 

2) The proposed IKDA algorithm is more efficient 
than KPCA, KNDA, and KDDA in terms of running time. 
The reason it that the discriminant feature vectors of 
IKDA algorithm are obtained through iterative trace ratio 
calculation, instead of direct computing matrix inverse 
which is computationally expensive. 

3) These kernel-based LDA algorithms(such as: 
KNDA, KDDA, and IKDA) give a relatively  better 
performance compared with kernel-based PCA(KPCA) 
algorithm. One possible explanation is as follows: As the 
same as PCA, KPCA captures the overall variance of all 
features which is optimal for pattern representation, not 
necessarily for classification. In addition, the higher 
computational complexity of KPCA is due to the used 
significantly larger feature number. 

4) Although KNDA, KDDA, and IKDA algorithm 
belong to kernel-based discriminant analysis algorithm, 
the proposed IKDA algorithm performs much better than 
KNDA and KDDA. The reasons are listed the following: 
(a) The discarded null space by the KNDA algorithm may 
contain the most significant discriminant information.(b) 
KDDA computes the discriminant vectors in the 
orthogonal complement of the null space of the between-
class scatter matrix. However, neither in the null space of 
the between-class scatter matrix nor in its orthogonal 
complement includes the most discriminant vectors in the 
null space of the within-class scatter matrix. Hence, the 
KDDA algorithm may fail to find these important 
discriminant vectors. 

In addition, in order to test the significance of the 
improvement obtained by our proposed IKDA algorithm, 
we did a t-test at the significance level (i.e., 0.05) on the 
classification accuracy among different algorithms given 
percent of training samples in each class. The test results 
are shown in Table VI and Table VII. For the Reuters-
21578 and 20 Newsgroups data sets, all of these tests 
demonstrate that the performance of our proposed IKDA 
algorithm outperforms KPCA significantly (p<0.05). 
Although the classification accuracy rate of IKDA is still 
better than that of KNDA and KDDA, the performance 
difference between them is not statistically significant. 

IV.  CONCLUSIONS 

A new document classification algorithm called IKDA 
has been introduced in this paper. The proposed IKDA 
algorithm combines kernel-based learning techniques and 
direct iterative optimization procedure to provide an 
efficient and effective approach for improving the 
performance of LDA. In addition, this algorithm 
completely avoids the SSS problem since no matrix 
inverse needs to be computed. Extensive experiments on 
Reuters-21578 and 20 Newsgroups data sets demonstrate 

that IKDA is superior to related algorithms in terms of 
effectiveness and efficiency. An open problem in IKDA 
is the selection of kernel function and its parameters, 
which is also an unsolved problem in kernel-based 
learning algorithm. We are currently studying this 
problem in theory and practice. 

 

 

 
 

TABLE II.   
CLASSIFICATION ACCURACY ON REUTERS-21578 

Size IKDA KPCA KDDA KNDA 

1% 80.23% 67.14% 79.32% 80.21% 

5% 85.98% 70.25% 83.28% 83.98% 

10% 89.37% 75.63% 85.42% 85.42% 

20% 91.69% 81.28% 85.51% 86.35% 

30% 95.45% 83.31% 90.38% 91.41% 

40% 96.68% 86.27% 93.65% 93.64% 

50% 98.53% 88.38% 94.89% 95.28% 

TABLE III.   
RUNNING TIME ON REUTERS-21578(S) 

Size IKDA KPCA KDDA KNDA 

1% 12.53 15.78 13.67 13.74 

5% 14.78 18.85 15.52 15.82 

10% 17.72 23.23 18.17 17.94 

20% 21.65 28.19 24.12 23.71 

30% 26.81 33.43 28.65 27.42 

40% 30.74 37.75 34.96 32.73 

50% 35.12 42.25 28.34 36.76 

 

TABLE I.   
CLASSIFICATION ACCURACY ON 20 NEWSGROUPS  

Size IKDA KPCA KDDA KNDA 

1% 74.36% 65.28% 72.43% 73.54% 

5% 79.58% 67.32% 77.58% 77.42% 

10% 82.61% 70.48% 78.21% 80.28% 

20% 86.27% 74.87% 82.37% 83.31% 

30% 89.53% 78.75% 83.28% 84.46% 

40% 90.43% 81.36% 84.75% 85.96% 

50% 91.23% 84.72% 85.15% 87.23% 
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