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Abstract—The theory of rough set is the current research 
focus for knowledge discovery, attribute reduction is one of 
crucial problem in rough set theory. Most existing attribute 
reduction algorithms are based on algebra and information 
representations, discernibility matrix is a common 
knowledge representation for attribute reduction. As 
problem solving under different knowledge representations 
corresponding to different difficulties, by changing the 
method of knowledge representation, a novel knowledge 
representation to represent the discernibility matrix using 
ordered binary decision diagrams (OBDD) is proposed in 
this paper, the procedures to translate the discernibility 
matrix model to the conversion OBDD model is presented, 
experiment is carried to compare the storage space of 
discernibility matrix with that of OBDD, results show that 
OBDD model has better storage performance and improve 
the attribute reduction for those information systems with 
more objects and attributes, it provide the foundation for 
seeking new efficient algorithm of attribute reduction.  
Index Terms—rough set, attribute reduction, discernibility 
matrix, ordered binary decision diagrams  
 

I. INTRODUCTION 

The theory of Rough set, proposed by Z. Pawlak in 
1982, is a new mathematical tool to deal with imprecise, 
incomplete and inconsistent data [1]. The main idea of the 
rough set theory is obtain knowledge in the case of 
keeping the same ability for classification through 
attribution reduction. It can find the hiding and potential 
rules, that is knowledge, from the data without any 
preliminary or additional information. The rough set 
theory has become an attractive field in recent years, and 
has already been successful applied in many scientific 
and engineering fields such as machine learning and data 
mining, it is a key issue in artificial intelligence. In the 
rough set theory, attribute reduction is an important 
problem, and is one of the key steps of knowledge 
acquisition. Most existing attribute reduction algorithms 
are based on algebra and information representations [9-14]. 
The problem of attribute reduction is NP-hard has been 
demonstrated by Wong S K M and Ziarko W [6]. The 
main reason causing the problem is attribute 
combinatorial explosion, so far, there is no highly 
efficient attribute reduction algorithm. 

An ordered binary decision diagram (OBDD) is a data 
structure that is used to effectively represent a Boolean 
function. Boolean function can use symbols to represent 
the state space, so the search based on OBDD can 
explore very large state space. In practice, OBDD has 
been successfully used in hardware verification, model 
checking, testing, assembly sequence planning and 
optimization of circuits. Tianlong Gu and Zhoubo Xu 
proposed the symbolic OBDD representations for 
mechanical assembly sequences [8]. A Muir, I Düntsch 
and G Gediga discussed rough set data representation 
using binary decision diagrams [5], in which, a new 
information system representation is presented, called 
BDDIS. Chen Yuming and Miao Duoqian presented 
searching Algorithm for Attribute Reduction based on 
Power Graph [7], a new knowledge representation, called 
power graph, is presented in those paper, therefore, 
searching algorithms based on power graph are also 
proposed. In this paper, OBDD is used to represent 
discernibility matrix. 

This paper is organized as follows. Section II reviews 
some basic concepts and notations related to the theory 
of rough set. Section III presents the fundamentals of 
ordered binary decision diagram. The symbolic OBDD 
representation of attribute reduction is given in section 
IV. In section V, A novel knowledge representation to 
represent the discernibility matrix using ordered binary 
decision diagrams (OBDD) is proposed, the procedures 
to translate the discernibility matrix model to the 
conversion OBDD model is presented, In section VI  
the initial experimental results is presented and 
concludes the paper. 

II. BASIC CONCEPTS OF ROUGH SET  

The basic concepts, notations and results related to the 
theory of rough set are briefly reviewed in this section, 
others can be found in [1-4]. 

A. Information Systems for Rough Set 
An information system T can be represented as a 

4-tuple as follows,  
T=<U, Q, V, f >                                            
Where U is a finite nonempty set of m objects U 
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={s1,s2,…,sm}, Q is a finite nonempty set of  n attributes 
Q={ q1,q2,…,qn }, V=∪q∈QVq, where Vq is a domain of 
the attribute q, f is the information function , which is 
defined as follows: 

 f: U×Q→V                              (1) 
f(s, q) ∈Vq   ∀q∈Q,∀s∈U                    (2) 

Such that f(s, q)=v means that the object s has the value v 
on attribute q. An information table is illustrated in Table 
I, which has five attributes and seven objects, with rows 
representing objects and columns representing attributes.  
  
                                                         

U a  b  c  d  e  
s1 
s2 
s3 
s4 
s5 
s6 
s7 

0  0  0  1  1 
0  1  2  0  0 
0  1  1  1  0 
1  2  0  0  1 
0  2  2  1  0 
0  3  1  0  2 
0  3  1  1  1 

B. Indiscernibility relation and approximation of sets 
Any subset P of Q determines a binary relation on U, 

which will be referred to as an indiscernibility relation 
denoted by IND (P), it is defined as the following way, 
two objects si and sj are indiscernible by the set of 
attributes P in Q, if  f(si,q)=f(sj,q) for every q∈P, More 
formally: 
IND(P)={( si,sj)∈U×U ⏐∀q∈P,f(si,q)=f(sj,q)}     (3) 
Obviously IND (P) is an equivalence relation. The family 
of all equivalence classes of IND (P) will be denoted by 
U/ IND (P) or simply U/P, an equivalence class of IND(P) 
containing s will be denoted by P(s) or [s] P. 

Given any subset of attributes P, any concept X⊆U 
can be precisely characterized in terms of the two precise 
sets called the lower and upper approximations. The 
lower approximation, denoted by PX, is the set of objects 
in U, which can be classified with certainty as elements 
in the concept X using the set of attributes P, and is 
defined as follows: 
PX={ si ∈ U ⏐[ si]P⊆X}                      (4) 

The upper approximation, denoted by PX, is the set of 
elements in U that can be possibly classified as elements 
in X, and is defined as follows: 
PX={ si ∈ U ⏐[ si]P∩X≠∅}                   (5)   
  For any object si of the lower approximation of X, it is 
certain that it belongs to X. For any object si of the upper 
approximation of X, we can only say that it may belong 
to X. 

C. Reduct of rough set theory and independence of 
attributes 

Reduct is a fundamental concept of rough set. 
So-called attribute reduction, it means to delete those 
dispensable attributes with the same partition of the 

universe. In another words, the reduct is a minimal 
subset of attributes, which has the discernible power as 
using the entire attributes. An important task in rough set 
based data analysis is computation of the attribute 
reduction. In order to check whether the set of attributes 
is independent or not, one checks for every attribute 
whether its removal increase the number of elementary 
sets in information system. Given an information table 
T=<U, Q, V, f >, Let q∈Q, attribute q is dispensable in T, 
if IND(U) =IND(U-{q}) ,otherwise q is indispensable in 
T. A subset P⊆Q is called a reduct, if P satisfies the two 
conditions: 

IND (P) = IND (Q)                          (6) 
∀q∈P, IND(P) ≠ IND(P-{q})                    (7) 

The first condition indicates the sufficiency of the 
attribute set P, the second condition indicates that each 
attribute in P is indispensable. Given an information 
table, there may exist many reducts, finding all reducts of 
information system is combinatorial NP-hard 
computational problem. 

D. Discernibility Matrix 
Given an information table T=<U, Q, V, f >, two 

objects are discernible if their values are different in at 
least one attribute, the discernibility knowledge of the 
information system is commonly recorded in a 
symmetric ⎟U⎥×⎟U⎥ matrix MT (cij (si, sj)), called the 
discernibility matrix of T, which stores the sets of 
attributes that discern pairs of objects and helps us 
understand several properties to construct efficient 
algorithm to compute reducts. Each element cij (si, sj) for 
an object pair (si, sj) ∈U×U is defined as follows: 

 
 

 
cij (si, sj)=                                  (8) 

 
 

 
Since MT (cij (si,sj)) is symmetric and cii (si, si)=∅　 

for i=1, 2, …, m, we represent MT (cij (si, sj)) only by 
elements in the lower triangle of MT (cij (si, sj)), i.e. the 
cij (si, sj) is with 1<j<i<m. 

   The physical meaning of the matrix element cij(si,sj) 
is that objects si and sj can be distinguished by any 
attribute in cij(si, sj), In another words, cij(si,sj) is defined 
as the set of all attributes which discern object si and 
si .The pair (si, sj) can be discerned if cij(si, sj) ≠∅. The 
discernibility matrix of Table I is shown Table II, for the 
underlined object pair (s1, s2), the entry {b, c, d, e} 
indicates that attribute b, c, d or e discerns the two 
objects. 
 

TABLE I.  AN INFORMATION TABLE 

{q∈Q⎟f(si, q)≠f(sj, q)}  f(si) ≠ f(sj) 

∅                 otherwise 
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TABLE II. DISCERNIBILITY MATRIX FOR THE INFORMATION SYSTEM IN TABLE I  
 
 
 
      
 
 
 
 
 
 
 
 

III. ORDERED BINARY DECISION DIAGRAM 

Let x→y0, y1 be the if-then-else operator defined by 
x→y0, y1= (x∧y0)∨(¬x∧y1)            (9) 

Hence, f→f0, f1 is true if f and f0 are true or if f is false 
and f1 is true. We call f the test expression. All operators 
can easily be expressed using only the if-then-else 
operator and the constants 0 and 1.Moreover, this can be 
done in such a way that all tests are performed only on 
variables and variables occur in other places. Hence the 
operator gives rise to a new kind of normal form. For 
example, ¬x is (x→0, 1), x⇔y is x→ (y→1, 0), (y→0, 1). 
Since variables must only occur in tests the Boolean 
expression x is represented as x→1, 0. 

If we by f [0/x] denote the Boolean expression 
obtained by replacing x with 0 in f then it is not hard to 
see that the following equivalence holds: 

f=x →f [1/x], f [0/x]                (10)  
This is known as the Shannon expansion of f with 

respect to x.This simple equation has a lot of useful 
applications. The first is to generate an INF from any 
expression f. If f contains no variables it is either 
equivalent to 0 or 1 which is an INF. Otherwise we form 
the Shannon expansion of f with respect to one of the 
variables x in f. Thus since f [0/x] and f [0/x] both contain 
one less variable than f, we can recursively find INFs for 
both of these; call them f0 and f1.An INF f is now simply 
x →f1, f0. 
We have proved: 
Proposition 1 Any Boolean expression is equivalent to an 
expression in INF. 
Example 1 Consider the Boolean expression f(x1, x2, x3) 
=(x1+x2).x3. If we find an INF of f by selecting in order 
the variables x3<x2<x1 on which to perform Shannon  
expansions, we get the expression 

f= x3→f1, f0 
 f1= x2→f11, f10 
 f0= x2→f01, f00 

f11= x1→1, 1 
f10= x1→1, 0 
f01= x1→0, 0 
f00= x1→0, 0 

Figure I show the expression as a tree. Such a tree is also 
called a decision tree. 

A lot of the expressions are easily seen to be identical, 
so it is tempting to identify them. For example, instead of 
f01 we can use f00. 

If we in fact identify all equal subexpressions we end  
up with what is known as a binary decision diagram. It is 
no longer a tree of Boolean expressions but a directed 
acyclic graph. 

Given an n-ary Boolean function f(x1, x2…xn), an 
ordered binary decision diagram (OBDD) is a finite 
directed acyclic graph with one root, n+1 levels, and 
exactly two branches at each non-terminal node. One of  
these is the 0 case, denoted by low(x) and drawn as a 
dashed line, the other the 1 case, denoted by high(x) and 
drawn as a solid line. The levels are determined by the 
fixed ordering of the variables xi<xj<…<xk. Each 
traversal through the tree corresponds to an assignment 
to the variables, and the nodes at level n+1 give the 
evaluation of f corresponding through this traversal. For 
example, Figure I shows a binary decision tree (the 
reduction rules are not applied) for the function (x1+x2).x3 

              
                                                         

 
 

 
 
 
 
The following reduction rules do not change the value 

of the function: 

 s1        s2        s3          s4         s5         s6     s7 

s1

s2

s3

s4

s5

s6

s7

 

{b,c,d,e} 

{b,c,e}    {c,d} 

{a,b,d}    {a,b,c,e}  {a,b,c,d,e} 

{b,c,e}    {b,d}     {b,c}       {a,c,d,e} 

{b,c,d,e}  {b,c,e}    {b,d,e}      {a,b,c,e}   {b,c,d,e} 

{b,c}     {b,c,d,e}  {b,e}        {a,b,c,d}   {b,c,e}    {d,e} 

Figure I. Binary decision tree for the function (x1+x2).x3 

① 

②

④

③

Figure II. OBDD for (x1+x2).x3 
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1) Delete redundant terminal nodes and only one of 
them is reserved, one terminal label for 0 and one 
terminal label for 1, redirect all lines from level n to 
the respective node. 

2) For non-terminal nodes u and v, if u and v are on the 
same level and low (u) = low (v), high (u) = high (v), 
then delete one of them, and all entry edges of the 
deleted node should point to the reserved node. 

3) For non-terminal node u, if low (u) = high (u), then 
delete u, and all the entry edges of u should point to 
low (u). 

The binary decision tree of the Figure I can be 
transformed into an ordered binary decision diagram 
(OBDD) by maximally reducing it according to the 
above reduction rules. The advantage of an OBDD is that 
it is unique for a particular function and variable order. 
This property makes it useful in functional equivalence 
checking and other operations like functional technology 
mapping. A path from the root node to the 1-terminal 
represents a variable assignment for which the 
represented Boolean function is true. Figure II shows an 
OBDD for the Boolean function f(x1,x2,x3)=(x1+x2).x3.We 
trace the path ①→②→③→④, and reach the terminal 
node 1. Thus, the value of Boolean function f(x1,x2,x3)= 
(x1+x2).x3 of variable assignment(0,1,0) is 1. 

OBDD have some interesting properties. They provide 
compact representations of Boolean expressions, and 
there are efficient algorithms for performing all kinds of 
logical operations on OBDD. They are all based on the 
crucial fact that for any Boolean function f there is 
exactly one OBDD representing it. This means, in 
particular, that there is exactly one OBDD for the 
constant true function. Hence, it is possible to test in 
constant time whether an OBDD is constantly true or 
false. 

IV. SYMBOLIC OBDD REPRESENTATION OF ATTRIBUTE 
REDUCTION 

Let T=<U, Q, V, f> is an information system which 
have n attributes, there may exist many reducts. Any 
reduct can be characterized by its set of attributes, and 
can be represented by an n-dimensional binary vector 
[x0x1…xn], in which 1 component (xi) indicates that the 
corresponding attribute is indispensable and 0component 
(xi′) indicates that the corresponding attribute is 
dispensable, all the reducts is denoted by m-variables 
Boolean functionΨ(x1,x2, …xn). For example, consider 
the attribute reduction of the information table in Table I, 
any reduct can denoted by 5-dimensional binary vector 
[x0x1 x2 x3x4],the component from left to right correspond 
to attribute a, b, c, d and e respectively. The initial state is 
11111 or x1x2x3x4x5, for the two reducts {c, d, e} and {b, 
d}, the reduct {c, d, e} corresponds to 00111 or 
x0′x1′x2x3x4 and other corresponds to 01010 or 
x0′x1x2′x3x4′. All the reducts is denoted by 5-variables 
Boolean function Ψ(x0,x1,x2,x3,x4)= x0′x1′x2x3x4+ 
x0′x1x2′x3x4′ ,Figure  III shows the OBDD representation 
of attribute reduction related to information table in 
Table I. 

 
 Figure III  OBDD of reducts   

V. BINARY DISCERNIBILITY FUNCTION AND OBDD 
REPRESENTATION OF BINARY DISCERNIBILITY 

FUNCTION 

A. Binary discernibility function 
Two objects are discernible if their values are different 

in at least one attribute, A.Skowron suggested a matrix 
representation for storing the sets of attributes that 
discern pairs of objects, called a discernibility matrix, 
which help us to construct efficient algorithm to compute 
reducts. According to calculate the discernibility function 
relating to the discernibility matrix, reducts can be 
obtained. 

From a discernibility matrix, we can define a Boolean 
function, called discernibility function, denoted byΩ. We 
assign a Boolean variable “q” to any attribute q. If cij (si, 
sj) = {q1, q2… qk}≠∅, then allocate an Boolean function 
q1∨q2∨…∨qk, denoted by Σcij(si, sj), otherwise allocate 
Boolean constant 1. Discernibility function can be 
defined as follows: 

Ω=  ∏  Σcij(si, sj)                       (11) 
(si, sj ∈) U×U 

Proposition 2   Let T=<U, Q, V, f> is an information 
table, Ω  is the discernibility function of T, attribute 
reduction problem is equivalent to the problem of 
transforming the discernibility function to a minimal 
disjunctive form. Each conjunctive term of the minimal 
disjunctive form is called a prime implicant. An attribute 
set P= {q1, q2 …qk} is a reduct if and only if the 
conjunction of all attributes in P, denoted by q1∧q2∧qk, is 
a prime implicant ofΩ. 

An important method is presented by proposition 2, in 
order to find the set of reducts, the discernibility function 
can be transformed into the minimal disjunctive form by 
using the absorption and distribution, accordingly, 
attribute reduction can be modeled based on the 
manipulation of a Boolean function. The procedure to 
compute reducts based on discernibility matrix is 
presented as follows: 
Input: the information table T=<U, Q, V, f> 
Output: the attribute reduct P 
Step 1.Build the discernibility matrix MT (cij (si, sj)) of 
information T. 
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Step 2.Compute the discernibility function Ω relating to 
the discernibility matrix MT (cij (si, sj)). 
Step 3. Calculate the minimal disjunctive normal form of 
Ω , All conjunctive term of the minimal disjunctive form 
is reduct of Q. 

In this paper, an equivalent definition of a binary table 
to represent discernibility between pairs of objects, 
called binary discernibility function, and the OBDD is 
introduced to represent the binary discernibility function 
which is expressed as a discernibility function f, the 
procedures to translate the discernibility matrix model to 
the conversion OBDD model is presented. The binary 
discernibility function f is defined as follows: 

U×U→ {0, 1} ⎟Q⎥                           (12) 

Where U is a finite nonempty set of m objects U 
={s1,s2,…,sm}, Q is a finite nonempty set of  n attributes 
Q={ q1,q2,…,qn },{0,1}⎟Q⎥ is n-dimensional binary vector 
space, each component corresponds to the n attributes 
q1,q2, …qn respectively. Attributes q1, q2 …qn is denoted 
by 1, 2 …n to facilitate the description. 

Suppose object pair (si, sj) ∈U×U, the value f (si, sj) 
of discernibility function f is n-dimensional binary vector. 
In which, the kth component fk (si, sj) =0(k=1, 2 …n) 
indicates that si and sj is indistinguishable on the attribute 
k, in another words, the object si has the same value v on 
attribute k with the object sj. The kth component  fk (si, 
sj) =1(k=1,2, …n) indicates that si and sj is discernible on 
the attribute k, in another words, the object si has the 
different value v on attribute k with the object sj. For 
example, Table III shows the binary discernibility 
function  f  for the information system in Table I, 
which consists of seven objects U ={s1,s2,s3,s4,s5,s6,s7}, 
five attributes Q={q1,q2,q3,q4,q5}for example, f(s1, s2) 
is [01111],it means that the object s1 is distinguishable on 
the attribute sets {b, c, d, e} with the object s2. 

 
 
 
 

 f1  f2  f3  f4  f5    f1  f2  f3  f4  f5

(s1,s2) 0  1  1  1  1 (s3,s4) 1  1  1  1   1

(s1,s3) 0  1  1  0  1 (s3,s5) 0  1  1  0   0

(s1,s4) 1  1  0  1  0 (s3,s6) 0  1  0  1   1

(s1,s5) 0  1  1  0  1 (s3,s7) 0  1  0  0   1

(s1,s6) 0  1  1  1  1 (s4,s5) 1  0  1  1   1

(s1,s7) 0  1  1  0  0 (s4,s6) 1  1  1  0   1

(s2,s3) 0  0  1  1  0 (s4,s7) 1  1  1  1   0

(s2,s4) 1  1  1  0  1 (s5,s6) 0  1  1  1   1

(s2,s5) 0  1  0  1  0 (s5,s7) 0  1  1  0   1

(s2,s6) 0  1  1  0  1 (s6,s7) 0  0  0  1   1

(s2,s7) 0  1  1  1  1   

 
This binary discernibility function has the following 

properties: 
1) Given object pair (si, sj ∈) U×U, if the binary 

discernibility function f of which is 0 vector, then object 
si and sj is in discernibility 
Intuitively, assume  f (si, sj) is 0 vector, that is, for any 
k (k = 1,2, ... n), with fk (si, sj) = 0, in another words, 
the object si has the same value on all attributes with 
the object sj, so objects si and sj are indistinguishable. 

2) If there is an attribute qk ,for any object pairs(si, sj), fk 
(si, sj) = 1,then for any object pair(si, sj) ,object si is 
distinguishable on the attribute the attribute qk with 
sj,Since it has only one attribute, it’s a reduct of Q. 

3) Given object pair (si, sj ∈) U×U, If there is only one 
component fk (si, sj) =1, then the object si is discernible 
only on the attribute qk with sj, so qk is indispensable 
to the reduct. 

B.OBDD representation  for Binary discernibility 
function 

Suppose a binary discernibility function f of an 
information system with ⎟U⎟ objects and ⎟Q⎥ attributes, 
we can encode the objects with a u-dimensional binary 
vector [x0x1…xu-1], where u=⎟log2⎟U⎥⎟. Therefore, these 
seven objects of the information system in Table I can be 
represented by 3-dimensional binary vector [x0x1x2], let 
s1= [001], s2= [010], s3= [011], s4= [100], s5= [101], s6= 
[110] and s7= [111]. For an object pair (si, sj ∈) U×U, in 
which the first object can be encoded with u-dimensional 
binary vector [x0x1…xu-1] and the second object encoded 
with u-dimensional binary vector [y0y1 …yu-1]. Similarly, 
attributes of an information system can be encoded with 
v-dimensional binary vector [z0z1 …zv-1], where 
v=⎟log2⎟Q⎥⎟. Therefore, the characteristic function of 
binary discernibility function denoted by Φf(x0x1 …xu-1 
y0y1 …yn-1 z0z1 …zv-1) can be formulated as:                       

 
1  f(si,sj)=1  

 
Φf(x0x1 …xu-1 y0y1 …yu-1 z0z1 …zv-1)=            (13) 

TABLE  III.  BINARY DISCERNIBILITY FUNCTION  f  FOR 

THE INFORMATION SYSTEM IN TABLE I 
  

 0  othervise 
 

By encoding a= [001], b= [010], c= [011], d= [100], 
e= [101], based on the information table in Table I, we 
obtain the characteristic function of binary discernibility 
function f as follows: 
Φf(x0,x1,x2,y0,y1,y2,z0,z1,z2)=x0′x1′x2y0′y1y2′z0′z1z2′+x0′x1′x2y

0′y1y2′ z0′z1z2+ x0′x1′x2y0′y1y2′ z0z1′z2′+x0′x1′x2y0′y1y2′ 
z0z1′z2+ x0′x1′x2y0′y1y2z0′z1z2′+x0′x1′x2y0′y1y2 z0′z1z2+ 
x0′x1′x2y0′y1y2 z0z1′z2+x0′x1′x2y0y1′y2′ z0′z1′z2+ 
x0′x1′x2y0y1′y2′ z0′z1z2′+x0′x1′x2y0y1′y2′ z0z1′z2′+ 
x0′x1′x2y0y1′y2 z0′z1z2′+ x0′x1′x2y0y1′y2 z0′z1z2+ 
x0′x1′x2y0y1′y2 z0z1′z2+x0′x1′x2 y0y1y2′ z0′z1z2′+ x0′x1′x2 
y0y1y2′ z0′z1z2+ x0′x1′x2 y0y1y2′ z0z1′z2′+x0′x1′x2 y0y1y2′ 
z0z1′z2+x0′x1′x2 y0y1y2 z0′z1z2′+ x0′x1′x2 y0y1y2 
z0′z1z2+x0′x1x2′ y0′y1y2 z0′z1z2+ x0′x1x2′ y0′y1y2 
z0z1′z2′+x0′x1x2′ y0y1′y2′ z0′z1′z2+ x0′x1x2′ y0y1′y2′ 
z0′z1z2′+x0′x1x2′ y0y1′y2′ z0′z1z2+ x0′x1x2′ y0y1′y2′ 
z0z1′z2+ x0′x1x2′ y0y1′y2 z0′z1z2′+ x0′x1x2′ y0y1′y2 
z0z1′z2′+x0′x1x2′ y0y1y2′ z0′z1z2′+ x0′x1x2′ y0y1y2′ 
z0′z1z2+ x0′x1x2′ y0y1y2′ z0z1′z2+ x0′x1x2′ y0y1y2 
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z0′z1z2′+x0′x1x2′ y0y1y2 z0′z1z2+ x0′x1x2′ y0y1y2 
z0z1′z2′+ x0′x1x2′ y0y1y2 z0z1′z2+ x0′x1x2 y0y1′y2′ 
z0′z1′z2+x0′x1x2 y0y1′y2′ z0′z1z2′+ x0′x1x2 y0y1′y2′ 
z0′z1z2+ x0′x1x2 y0y1′y2′ z0z1′z2′+ x0′x1x2 y0y1′y2′ 
z0z1′z2+x0′x1x2 y0y1′y2 z0′z1z2′+ x0′x1x2 y0y1′y2 
z0′z1z2+x0′x1x2 y0y1y2′ z0′z1z2′+ x0′x1x2 y0y1y2′ 
z0z1′z2′+x0′x1x2 y0y1y2′ z0z1′z2+ x0′x1x2 y0y1y2 
z0′z1z2′+ x0′x1x2 y0y1y2 z0z1′z2+ x0x1′x2′ y0y1′y2 
z0′z1′z2+x0x1′x2′ y0y1′y2 z0′z1z2+ x0x1′x2′ y0y1′y2 
z0z1′z2′+x0x1′x2′ y0y1′y2 z0z1′z2+ x0x1′x2′ y0y1y2′ 
z0′z1′z2+x0x1′x2′ y0y1y2′ z0′z1z2′+ x0x1′x2′ y0y1y2′ 
z0′z1z2+ x0x1′x2′ y0y1y2′ z0z1′z2+ x0x1′x2′ y0y1y2 
z0′z1′z2+x0x1′x2′ y0y1y2 z0′z1z2′+ x0x1′x2′ y0y1y2 
z0′z1z2+ x0x1′x2′ y0y1y2 z0z1′z2′+ x0x1′x2 y0y1y2′ 
z0′z1z2′+x0x1′x2 y0y1y2′ z0′z1z2+ x0x1′x2 y0y1y2′ 
z0z1′z2′+ x0x1′x2 y0y1y2′ z0z1′z2+ x0x1′x2 y0y1y2 
z0′z1z2′+x0x1′x2 y0y1y2 z0′z1z2+ x0x1′x2 y0y1y2 z0z1′z2+ 
x0x1x2′ y0y1y2 z0z1′z2′+ x0x1x2′ y0y1y2 z0z1′z2 

The characteristic function is Boolean function, and 
can be compactly represented by OBDD. The OBDD of 
the discernibility matrix corresponding  to 
Φf(x0,x1,x2,y0,y1,y2,z0,z1,z2)is shown in Figure IV,  the 
path reach the terminal node 0 is omitted. Variables 
x0x1x2 denote the code of the first object in object pair(si, 
sj)  and variables y0y1y2 the second object, attribute set 

{a, b, c, d, e} is encoded with the variables z0z1z2. For 
example, Figure IV, the rightmost path 
x0′x1′x2y0′y1y2′z0′z1z2′ from the root node to the 1-terminal 
indicates object s1and s2 can be discernibility on the 
attribute b, that is, object s1 has the different value on 
attribute b with the object s2.Therefore, we obtain the 
OBDD of binary discernibility matrix. 

Knowledge representation is necessary for the solution 
of a problem, problem description is for further 
problem-solving. As we know, problem-solving under 
different knowledge representations corresponding to 
different difficulties. From the problem description to 
solve the problem, there is a process, the processes 
involved in attribute reduction based on the OBDD 
representation is as follows: 
Input: the information table T=<U, Q, V, f> 
Output: the attribute reduct P 
Step 1.Build the binary discernibility matrix of 
information T. 
Step 2.Compute the characteristic function  relating to 　
the binary discernibility matrix and represented in 
OBDD 
Step 3. Calculate the minimal disjunctive normal form of 
by performing logic operation on OBDD, All conjunctive 
term of the minimal disjunctive form is reduct of Q.

 

 
 Figure IV. OBDD of binary discernibility matrix 
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The levels are determined by the fixed ordering 
of the variables x0<x1< x2< y0<y1<y2<z0<z1<z2 with 
the OBDD showed in Figure IV. The size of the 
OBDD is determined both by the function being 
represented and the chosen ordering of the 
variables, called variable ordering, it is of crucial 
importance to care about variable ordering when 
applying this data structure in practice. Hence, we 
can improve the performance of OBDD 
representation for attribute reduction in the rough 
set theory. 

 
VI. EXPERIMENTS AND CONCLUSIONS 

A. Experimental Results 
The success of the OBDD representation for 

discernibility matrix is currently defined in terms 
of its storage efficiency. The experiments are 
carried in windows XP and software package 
javaBDD, which is developed by Stanford 
University. The software can easily generate a 
variety of required BDD and have a strong 
capacity for manipulating BDD. The storage 
efficiency of symbolic OBDD representation has 
been tested using many random data sets, and 
compared with discernibility matrix, the results is 
shown in Table IV. 

 
TABLE IV.  Storage efficiency comparison of 

OBDD with discernibility matrix 
 

Size(KB)  ⎟U⎥ ⎟Q⎥ 
discernibility matrix  OBDD 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

7 
50 
80 
100 
100 
150 
150 
200 
400 
500 

5 
5 
6 
7 
9 
10 
12 
10 
7 
11 

0.19 0.23 
9.76 8.39 
28.58 21.15 
53.67 35.95 
71.23             46.87 
175.78            120.12 
202.56            138.23 
299.34            181.52 
872.69            460.26 
2142.76           996.35 

Table IV shows that symbolic OBDD 
representation outperforms discernibility matrix 
in storage efficiency, especially on complex 
information system with more objects and 
attributes. Because all identical nodes are shared 
and all redundant tests are eliminated, OBDD 
have some very convenient properties, therefore, 
the storage of the OBDD representation required 
is less than that of discernibility matrix. For 
example, the data of the second group in Table IV, 
the storage required by discernibility matrix is 
1.16 times the storage required by OBDD and the 
data or the 10th group achieves 2.16 times. 
Experimental results show that the OBDD 
representation has better storage performance and 
can improve the attribute reduction of complex 
information system with more objects and 
attributes. 

B. Conclusion 
Attribute reduction is fundamental in rough set 

theory. The concept of a discernibility matrix 
enables us to establish a logical and theoretical 
foundation for reducts of an information table. 
This paper studies the knowledge representation 
for attribute reduction of the rough set theory. 
From a point of view to improve the knowledge 
representation for attribute reduction,  a novel 
knowledge representation to represent the 
discernibility matrix is proposed, called symbolic 
OBDD representation, and the procedures to 
translate the discernibility matrix to the 
conversion OBDD representation is presented. 
The representation provides a new way to solve 
the problem of attribute reduction, which can 
translate computing problem of attribute reduction 
into searching problem in OBDD. Experiments 
give the proof that the OBDD representation has 
better storage performance. It is desirable that 
develops optimization symbolic algorithms for 
attribute reduction and work out a better heuristic 
function.  
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