
A heuristic serial schedule algorithm for
unrelated parallel machine scheduling with

precedence constraints
Chunfeng Liu

School of Management, Hefei University of Technology, Hefei, China
Tourism College of Zhejiang, Hangzhou, China

Email: lcf spring@163.com

Shanlin Yang
School of Management, Hefei University of Technology, Hefei, China

Email: hgdysl@gmail.com

Abstract— The paper presents a priority rule-based heuristic
serial schedule (SS) algorithm for a deterministic scheduling
problem where multiple jobs with arbitrary precedence
constraints are processed on multiple unrelated parallel
machines. The objective is to minimise makespan. The
priority rule employs the arithmetic mean and deviation of
the processing times to determine the prior job-machine pair.
Moreover, at each iteration, the algorithm can schedule the
prior job on the prior machine as early as possible to prevent
certain machines from standing idle by the greatest extent.
The proposed algorithm is demonstrated in detail through
a test instance. Computational experiments are conducted
to show that the new polynomial-time algorithm is effective
in reducing makespan and efficient in shortening runtime.

Index Terms— unrelated machines, scheduling, precedence
constraints, makespan, priority rule, heuristics

I. INTRODUCTION

In real industry such as production plan, controlling
process, job shop scheduling, it often happens that a task
can be separated into several subtasks with precedence
constraints between them, and then the bid invitation and
bidding or other means are adopted to select the best
resources (or machines) to undertake each subtask sepa-
rately, in order to maximise utilization of these resources,
improve productivity and reduce overall cost. Usually,
precedence constraints can be summarized into two cat-
egories. The one is standard precedence constraints, in
which one subtask may have to be completed before
another subtask can be started. Standard precedence con-
straints include chains, out-tree, in-tree, forest, special
constraints, arbitrary precedence constraints and etc. The
other is s-precedence constraints, in which one subtask is
constrained to be started no sooner than another subtask
to be started.

As in the literature, there are some studies about stan-
dard precedence constraints such as follows. For single
machine problems of minimising total completion time,
a polynomial-time algorithm has been known when the
precedence graph is a set of disjoint trees (a forest) [1].

Lawler [2] has proved that the problem with arbitrary
precedence constraints is NP-hard. Adolphson and Hu
[3] have showed that such a problem is equivalent to
the optimal linear ordering problem, and showed that the
complexity of Horn’s algorithm is O (n log n). Sidney
[4] has suggested the concept of ρ-maximal initial sets,
which can be used to decompose the arbitrary precedence
constraints. Chudak and Hochbaum [5] have suggested
2-approximation algorithm using a simple and compact
linear programming (LP) relaxation.

For multi-machine problems of minimising makespan,
Baev et al. [6] have compared four lower bounds (Hu,
RJ, LC and BR), and showed that LC computing in
O(n3) time can achieve tighter lower bound than others.
Chudak and Shmoys [7] have presented a new O(logm)-
approximation algorithm for uniform parallel machine
problem. Aho and Mäkinen [8] have provided a method
to solve parallel machine problem in polynomial-time in
the special case where the size of the task precedence
graph is bounded by maximum degree and by maximum
path length.

For multi-machine problems of minimising total com-
pletion time, the problem on identical parallel machines
is strongly NP-hard even when the precedence graph is
a set of chains [9]. Chang and Hsu [10] have proposed a
scheduling approach combining searching algorithm of ar-
tifical intelligence (AI) with branch-and-bound approach
in order to efficiently find an optimal schedule in a search
tree for arbitrary precedence graph.

For multi-machine problems of minimising total
weighted completion time, Ramachandra and Elmaghraby
[11] have offered a binary integer program (BIP) and
a dynamic program (DP) to solve two machine prob-
lem. They have also introduced a genetic algorithm
(GA) procedure that is capable of solving any problem
size. Queyranne and Schulz [12] have presented a 4-
approximation algorithm for the parallel machine problem
with precedence delays. In that problem each prece-
dence constraint is associated with a certain amount of

1146 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.6.1146-1153

time that must elapse between the completion and start
times of the corresponding jobs. Chudak and Shmoys [7]
have presented a new O(logm)-approximation algorithm
for uniform parallel machine problem. Hall et al. [13]
have introduced a general framework for designing on-
line algorithm in scheduling environments with release
dates. The technique yields the first constant performance
guarantee for a variety of scheduling models. Queyranne
and Sviridenko [14] have considered a general class of
multiprocessor shop scheduling problems, preemptive or
non-preemptive with job or operation release dates, and
presented a general approximation method combining a
linear programming relaxation in the operation comple-
tion times, with any algorithm for the makespan version
of these problems without release dates.

The other studies about s-precedence constraints can be
found in recent literature. Kim and Posner [15] have con-
sidered the multiple identical parallel machine scheduling
problem of minimising makespan subject to s-precedence
constraints, and introduced a list scheduling heuristic that
schedules the job maximising the sum of processing times
of its successors along any path whenever a machine be-
comes available. Kim et al. [16] have also considered the
parallel machine problem of minimising total completion
time, and formulated it as a LP problem with preemption
allowed. To solve the LP problem efficiently, they have
developed a cutting plane approach in which a pseudo-
polynomial dynamic programming algorithm is derived to
solve the involved separation problem.

As mentioned above, there has been no study yet on the
unrelated parallel machine scheduling problem subject to
arbitrary precedence constraints. Such a problem typically
occurs in an office or project management environment,
where machines are workers who have different skills
for office scheduling problem, and machines are types of
resources which are allocated to activities for multi-mode
project scheduling problem. To the best of our knowledge,
it is only Herrmann et al. [17] who have considered
the special case of unrelated parallel machine scheduling
problem with chains. Motivated from the facts, we pro-
pose a heuristic serial schedule method (SS algorithm)
for the unrelated parallel machine scheduling problem
of minimising makespan subject to arbitrary precedence
constraints.

The remainder is organized as follows. The problem
is presented in Section II. In Section III, we propose
a priority rule-based heuristic serial schedule (SS) algo-
rithm. In Section IV, the SS algorithm is demonstrated
with a test instance. In Section V, several numerical
experiments are conducted to evaluate the performance
of the proposed algorithm. Finally, the paper closes with
a general discussion of the proposed approach as well as
a few remarks on research perspectives in Section VI.

II. PROBLEM FORMULATION

We consider the following scheduling problem P. A
set J = {1, . . . , n} of n jobs has to be processed
on m unrelated parallel machines M = {1, . . . ,m}.

Each machine can process at most one job at a time.
Each job is processed on only one machine and non-
preemptive during the processing period. Each job j has a
positive processing time pjv when processed on machine
v. There are arbitrary standard precedence constraints
between jobs. The constraints force a job not to be started
before all its predecessors are completed. The objective
is to find a feasible schedule that minimises makespan
Cmax = maxj∈J FTj . Here, FTj denotes the completion
time of job j. In standard scheduling notation [18], this
problem P is known as Rm|prec|Cmax, where R denotes
unrelated parallel machines, and prec denotes arbitrary
standard precedence constraints. Ullman [19] has proved
the parallel machine problem P |pi = 1; prec|Cmax with
unit processing time is NP-hard. Consequently, the prob-
lem P is also NP-hard evidently.

The problem can be represented as a mathematical
formulation as follows [20]:

Min Cmax = max
j∈J

FTj (1)

st.
m∑

v=1

UB∑
r=1

xjvr = 1,∀j ∈ J (2)

n∑
j=1

xjvr ≤ 1,∀r ∈ R,∀v ∈ M (3)

n∑
i=1

xivr −
n∑

j=1

xj,v,r−1 ≤ 0,

∀v ∈ M,∀r ∈ {2, . . . , UB} (4)
FTj − FTi + L(2− xjvr − xi,v,r−1) ≥ pjv,

∀i, j ∈ J, i ̸= j,∀v ∈ M, ∀r ∈ {2, . . . , UB}
(5)

FTj ≥
UB∑
r=1

pjvxjvr,∀j ∈ J,∀v ∈ M (6)

FTj − FTi ≥
m∑

v=1

UB∑
r=1

pjvxjvr,∀i ∈ Pj (7)

xjvr ∈ {0, 1}, FTj ≥ 0,∀j ∈ J,∀v ∈ M, ∀r ∈ R
(8)

The input parameters of the model include:
J the job set, J = {1, . . . , n}.
M the machine set, M = {1, . . . ,m}.
UB the maximum number of positions on each

machine that jobs are placed on them. It is
computed as follows: UB = n−m+ 1 (i.e.,
the maximum machine utilization is met, so
that all machines are used).

R the position set, R = {1, . . . , UB}.
pjv the processing time of job j on machine v.
Pj the set of immediate predecessors of job j.
L A large positive number.

The decision variables of the model include:
xjvr equals 1 if job j is processed in the position

r on machine v and 0 otherwise.
FTj the completion time of job j.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1147

© 2011 ACADEMY PUBLISHER

The objective function (1) minimises the the makespan.
Constraints (2) ensure that each job is assigned to one
of the existing positions on the machines. Constraints
(3) guarantee that at most one job can be assigned
to each position. Constraints (4) ensure that until one
position on a machine is occupied, jobs are not assigned
to subsequent positions. Constraints (5) ensure that the
completion time of a job in sequence on a machine is
at least equal to the sum of the completion time of the
preceding job and the processing time of the present
job. Constraints (6) measure completion time for each
job on each machine. Constraints (7) observe precedence
relationships. Constraints (8) define the type of decision
variables.

III. PRIORITY RULE-BASED HEURISTIC SERIAL
SCHEDULE (SS) ALGORITHM

The SS algorithm consists of n iterations. At each itera-
tion, an eligible job is selected according to its priority and
inserted inside a partial schedule on the earliest eligible
machine (respecting the precedence constraints), while
keeping unchanged the start time of the already scheduled
jobs. A job is eligible if all its predecessors have already
been scheduled. A machine is eligible if the machine is
idle from the start of schedule time point t.

A. priority rule

In this subsection, we first introduce a job-on-node
(JON) network to represent the entire schedule. The nodes
of this graph represent the jobs. Arc (i, j) means that
job i must be completed before job j can be started. In
addition, The dummy jobs s = 0 and e = n+1 correspond
to the start and end of schedule respectively such that
∀v ∈ M,psv = pev = 0.

Then, three job-sets and one machine-set associated
with each iteration are defined. Jobs which are completed
up to the schedule time are in the completion job-set Cu.
Jobs which are already scheduled are in the total sched-
uled job-set Hu. Jobs which are available for scheduling
w.r.t. precedence constraints but yet unscheduled are in
the decision job-set Du. Finally, machines which are idle
from the start of schedule time point t are in the idle
machine-set Wu. A priority rule is used to select an
eligible job of Du and an eligible machine of Wu, which
can be described as follows: if there is only one machine
in Wu, the job of Du having the minimum processing
time on the machine is selected; otherwise, the job of Du

having the maximum deviation of the processing times on
the machines of Wu is selected, meanwhile, the machine
of Wu processing the job having the minimum processing
time is selected.

The variables used for the SS algorithm are summarized
as follows:

u the counter of iteration.
Hu the total scheduled job-set at u iteration.
Cu the completion job-set at u iteration.
Du the decision job-set at u iteration,

Du = {j|j /∈ Hu, Pj ⊆ Cu}.
Wu the idle machine-set at u iteration.
|Wu| the number of elements of set Wu.
Iv the start idle time of machine v.
(j∗, v∗) the prior job-machine pair (j∗ denoting the

selected prior job, and v∗ denoting the
selected prior machine).

Ej the arithmetic mean of the processing times
of job j on the machines of Wu,
Ej =

1
|Wu|

∑
v∈Wu

pjv, j ∈ Du.
σ2
j the deviation of the processing times of job

j on the machines of Wu from Ej ,
σ2
j = 1

|Wu|
∑

v∈Wu
(pjv − Ej)

2, j ∈ Du.
t the schedule time point.

B. SS algorithm

In this subsection, we give a pseudo-code description
of the heuristic serial schedule procedure which consists
of n iterations (cf. SS algorithm). Step 1 initialises some
variables u, t, Hu, Cu, Wu, Iv and computes Du. In step
2 each job is scheduled at each iteration until u ≤ n
does not hold. If |Wu| = 1 holds, the prior job-machine
pair (j∗, v∗) can be directly determined according to the
minimum processing time of the jobs j ∈ Du in step
2.1.1. Else, the arithmetic mean Ej and the deviation σ2

j

of the processing times of job j are computed in step
2.1.2, then the job of Du having the maximum σ2

j is
selected in step 2.1.3, meanwhile, the machine of Wu

having the minimum pj∗v is determined in step 2.1.4. In
step 2.2 the start time STj∗ and the completion time FTj∗

of job j∗ are saved. In step 2.3 u is increased for the next
iteration. In step 2.4 the total scheduled job-set Hu and the
start idle time Iv∗ of machine v∗ are updated. In step 2.5
the minimum start idle time of the machines is selected
as the current schedule time point t. The idle machine-set
Wu, the completion job-set Cu and the decision job-set
Du are computed in steps 2.6–2.8. In step 2.9 the schedule
time point t is postponed to the next minimum start idle
time until Du is not empty. Finally, the makespan Cmax

is set equal to the maximum completion time of the jobs
j ∈ J . The principle of SS algorithm just outlined is
illustrated in Figure 1.

As one can notice, the SS algorithm is a polynomial-
time algorithm. Step 2.9 executes n iterations at most for
each iteration of step 2. Since the algorithm stops after n
iterations when all the jobs have been scheduled, its total
time complexity is O(n2).

IV. TEST INSTANCE

In order to test the SS algorithm on the instance that
Herrmann et al. [17] have given, we consider a special
case of the problem P, which changes the condition of
arbitrary precedence constraints to a set of chains and
maintains the others unchanged. Let P′ denote the revised

1148 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

Initialise , , , , , ,
u u u u v

u t H C W D I

u n

1
u

W

2 * *compute , , ,
j j

E j v
* *

compute (,)j v

* *save ,
j j

ST FT

start

: 1u u

compute , , ,
u u u

t W C D

u
D

compute , , ,
u u u

t W C D

maxcompute C

end

*update ,
u v

H I

no

yes

no

yes

noyes

Figure 1. Program flow chart

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1149

© 2011 ACADEMY PUBLISHER

SS algorithm

1. Initialise: u = 1, t = 0, Hu = Cu = {s},Wu = M, compute Du;
Iv = 0,∀v ∈ M

2. WHILE (u ≤ n) DO
2.1. IF (|Wu| = 1)

2.1.1. (j∗, v∗) : pj∗v∗ = min{pjv |j ∈ Du, v ∈ Wu}
ELSE

2.1.2. Ej = 1
|Wu|

∑
v∈Wu

pjv , σ
2
j = 1

|Wu|
∑

v∈Wu
(pjv − Ej)

2,∀j ∈ Du

2.1.3. j∗ : σ2
j∗ = max{σ2

j |j ∈ Du}
2.1.4. v∗ : pj∗v∗ = min{pj∗v|v ∈ Wu}

2.2. STj∗ = t, FTj∗ = t+ pj∗v∗

2.3. u := u+ 1
2.4. Hu := Hu ∪ {j∗}, Iv∗ = FTj∗

2.5. t = min{Iy |y ∈ M}
2.6. Wu = {y|Iy = t, y ∈ M}
2.7. Cu = {j|FTj ≤ t, j ∈ Hu}
2.8. compute Du

2.9. WHILE (Du = ∅) DO
2.9.1. M ′ = M\Wu

2.9.2. t = min{Iy |y ∈ M ′}
2.9.3. W ′

u = {y|Iy = t, y ∈ M ′}
2.9.4. Wu := Wu ∪W ′

u
2.9.5. Cu = {j|FTj ≤ t, j ∈ Hu}
2.9.6. compute Du

3. Cmax = max
j∈J

{FTj}

TABLE I.
PROCESSING TIMES

job1 job2 job3 job4 job5 job6 job7

machine1 3 4 8 2 5 9 3
machine2 9 5 2 6 10 4 8

problem. Herrmann et al. have considered the problem
P′, and provided a heuristic which assigns the jobs to
the machines and defines the schedule simultaneously. We
denote it as HH algorithm for convenience. Herrmann et
al.’s instance can be described as follows. There exists
seven jobs and two unrelated parallel machines. The
processing times are given in Table I. Furthermore the
following precedence constraints need to be considered:
S3 = {7}, S1 = {3}, S2 = {6}.The solution to
this problem is reached after seven iterations using the
SS algorithm. The results obtained at each iteration are
gathered in Table II.

When u = 1, the selected prior job j∗ = 1 is processed
on the selected prior machine v∗ = 1, started at time
STj∗ = 0, and completed at time FTj∗ = 3. After
increasing u the variables Wu = {2}, Cu = {s} and
Du= {2, 4, 5} are computed in steps 2.6–2.8, which are
to be used at the next iteration. The following iterations
are similar to the first iteration.

Both the final solution using the SS algorithm and the
one using the HH algorithm are presented by Gantt graphs
in Figures 2 and 3, respectively. It is easy to observe that
the makespan Cmax = 13 using the SS algorithm is less
than the one using the HH algorithm by 2 units.

V. COMPUTATIONAL EXPERIMENTS

The following numerical experiments are conducted to
evaluate the performance of the SS algorithm compared to

the HH algorithm for the problem P′. The performance is
to be evaluated by use of several impact factors including
number of jobs (n), number of machines (m), number of
constraint chains (NC) and processing times (pjv).

To test the effects of varying n, m and NC, four
different values of n are used, including 30, 60, 90 and
120, four different values of m are used, including 5, 8, 12
and 15, and four different values of NC are used, including
50, 60, 70 and 80. Moreover, to determine whether the
range of pjv may have any impact on the performance
of the SS algorithm, four different distributions of pjv
are used, including pjv ∼ DU[10, 15], pjv ∼ DU[10, 20],
pjv ∼ DU[10, 25] and pjv ∼ DU[10, 30], where DU[a, b]
represents a discrete uniform distribution with a range
from a to b.

Four sets of numerical experiments are conducted. In
the first set, n is allowed to vary, given m = 5, NC = 25
and pjv ∼ DU[10, 15]. In the second set, m is allowed to
vary, given n = 90, NC = 80 and pjv ∼ DU[10, 15]. In
the third set, NC is allowed to vary, given n = 90, m = 5
and pjv ∼ DU[10, 15]. In the fourth set, the distribution
of generating pjv is allowed to vary, given n = 90, m = 5
and NC = 80. The four experiment results are presented
in Tables III–VI, respectively.

As the performance measures, the average relative error
hhGap of the HH algorithm is used which is defined as
100 ∗ (Chh − LB) /LB, and the average relative error
ssGap of the SS algorithm is used which is defined as
100∗(Css − LB) /LB, where Chh, Css and LB represent
the solution value of the HH algorithm, the one of the
SS algorithm and a lower bound of the problem P′,
respectively. To allow other researchers to compare their
results with those reported here, we chose an easy lower

1150 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

TABLE II.
SUMMARY OF ITERATIONS

u j∗ v∗ STj∗ FTj∗ u Wu Cu Du

1 1 1 0 3 2 {2} {s} {2,4,5}

2 2 2 0 5 3 {1} {s,1} {3,4,5}

3 4 1 3 5 4 {1,2} {s,1,2,4} {3,5,6}

4 3 2 5 7 5 {1} {s,1,2,4} {5,6}

5 5 1 5 10 6 {2} {s,1,2,4,3} {6,7}

6 6 2 7 11 7 {1} {s,1,2,4,3,5} {7}

7 7 1 10 13 8 {1,2} {s,1,2,4,3,5,6,7} {e}

1

0

2

31 2 4

2

machine

time

5 86 7 9 10 11 12

1 4 5 7

13

3 6

Figure 2. Gantt chart using SS algorithm

1

0

2

31 2 4

2

5 86 7 9 10 11 12

1 4 7 5

13

3 6

14 15

machine

time

Figure 3. Gantt chart using HH algorithm

TABLE III.
PERFORMANCE COMPARISON BETWEEN THE HH AND SS ALGORITHMS FOR DIFFERENT NUMBER OF JOBS (n)

m = 5,
NC = 25,

pjv ∼ DU[10, 15]

hhGap
(%)

ssGap
(%)

decrease-
AveGap

(%)

hhCPU
(s)

ssCPU
(s)

decrease-
CPU
(%)

MIN MAX AVE MIN MAX AVE

n

30 14.06 34.49 23.39 4.69 38.63 16.17 30.9 0.03 0.02 41.89

60 15.14 25.80 20.78 8.42 24.80 14.94 28.09 0.15 0.08 48.89

90 16.51 26.33 22.47 10.53 49.47 20.81 7.42 0.43 0.24 44.53

120 17.20 25.49 22.18 6.53 45.33 18.29 17.54 0.84 0.47 43.75

bound:

LB =

n∑
j=1

min
v∈{1,...,m}

pjv

m
. (9)

Because the lower bound LB is not greater than the op-
timal solution, the relative distance between the solution
of the SS (HH) algorithm and the optimal solution is not
greater than ssGap (hhGap). Each table entry represents
the minimum, maximum and average of its associated 10
instances. Let decreaseAveGap denote the percentage
that ssGap is less than hhGap. Let ssCPU (hhCPU)
denote the CPU time of the SS (HH) algorithm without

including input and output time. Let decreaseCPU de-
note the percentage that ssCPU is less than hhCPU .

The experiments have been performed on a Pentium-
based Lenovo-compatible personal computer with 2.40
GHz clock-pulse and 496 MB RAM. The HH and SS
algorithms have been coded in C++, compiled with the
Microsoft Visual C++ 6 compiler, and tested under Mi-
crosoft Windows XP Professional SP3.

It can be observed from Tables III and IV that, there are
no strong correlations between the average of the average
relative error (ssGap) and the number of jobs (n), but
the average ssGap decreases as m decreases. This may

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1151

© 2011 ACADEMY PUBLISHER

TABLE IV.
PERFORMANCE COMPARISON BETWEEN THE HH AND SS ALGORITHMS FOR DIFFERENT NUMBER OF MACHINES (m)

n = 90,
NC = 80,

pjv ∼ DU[10, 15]

hhGap
(%)

ssGap
(%)

decrease-
AveGap

(%)

hhCPU
(s)

ssCPU
(s)

decrease-
CPU
(%)

MIN MAX AVE MIN MAX AVE

m

5 22.89 30.64 27.61 1.596 7.03 4.54 83.55 0.37 0.21 43.56

8 23.54 33.05 28.19 6.90 17.49 9.33 66.92 0.44 0.22 50.50

12 18.81 25.69 23.15 8.97 23.14 14.85 35.84 0.52 0.23 56.26

15 22.52 27.34 24.76 4.30 33.81 18.96 23.43 0.59 0.20 66.19

TABLE V.
PERFORMANCE COMPARISON BETWEEN THE HH AND SS ALGORITHMS FOR DIFFERENT NUMBER OF CONSTRAINT CHAINS (NC)

n = 90,
m = 5,

pjv ∼ DU[10, 15]

hhGap
(%)

ssGap
(%)

decrease-
AveGap

(%)

hhCPU
(s)

ssCPU
(s)

decrease-
CPU
(%)

MIN MAX AVE MIN MAX AVE

NC

50 22.65 29.07 25.42 3.36 21.07 11.16 56.11 0.38 0.21 45.73

60 21.34 28.36 25.75 4.43 17.07 7.52 70.81 0.37 0.21 42.69

70 23.02 33.37 26.95 1.37 13.47 5.29 80.38 0.37 0.22 40.76

80 25.13 30.04 28.43 2.86 7.56 5.02 82.35 0.37 0.22 40.93

TABLE VI.
PERFORMANCE COMPARISON BETWEEN THE HH AND SS ALGORITHMS FOR DIFFERENT PROCESSING TIMES (pjv)

n = 90,
m = 5,

NC = 80

hhGap
(%)

ssGap
(%)

decrease-
AveGap

(%)

hhCPU
(s)

ssCPU
(s)

decrease-
CPU
(%)

MIN MAX AVE MIN MAX AVE

pjv

DU[10, 15] 24.34 30.83 27.33 1.35 7.33 4.30 84.27 0.38 0.22 42.12

DU[10, 20] 35.56 48.35 40.69 3.16 12.56 6.40 84.27 0.37 0.21 43.02

DU[10, 25] 44.69 55.87 49.00 3.84 15.63 7.43 84.84 0.38 0.21 45.25

DU[10, 30] 42.56 65.81 57.30 4.97 14.50 7.91 86.19 0.39 0.21 46.44

due to the fact that a job is easier to be assigned on
certain machine as m decreases, which results in a shorter
makespan.

In Table V, the average of the average relative error
(ssGap) decreases as the number of constraint chains
(NC) increases. Because the jobs become weaker in
precedence constraints and easier to be scheduled as the
number of constraint chains increases, which also results
in a shorter makespan.

In Table VI, the average of the average relative error
(ssGap) increases slowly as the range of processing times
(pjv) increases. Since the lower bound of the problem
P′ relaxes the processing time of each job j to the
minimum processing time minv∈{1,...,m} pjv , LB gives a
slacker lower bound as the range of processing times (pjv)
increases, which brings about a greater average ssGap.

Moreover, referring to Tables III–VI, it can be con-
cluded that the average ssGap is less than the average
hhGap by 7%–87% (see decreaseAveGap). The reason
why the SS algorithm gets better solution than the HH
algorithm can be explained as follows. First, the SS
algorithm computes the idle machine-set Wu having the
minimum of start idle time in steps 2.6 and 2.9.4, which
can prevent certain machines from standing idle by the

greatest extent in the next iteration of scheduling and
lead to a shorter makespan. However, it can be observed
from the above test instance that the HH algorithm is
easy to make certain machine idle and results in a longer
makespan. Second, the SS algorithm employs heuristic
priority rule when selecting the prior job and machine in
step 2.1. The job having the largest range of processing
times is processed in the minimum processing time, which
shortens the makespan. In addition, the average ssCPU
is less than the average hhCPU by 40%–67% (see
decreaseCPU). Therefore the SS algorithm can run more
quickly than the HH algorithm.

VI. CONCLUSIONS

This paper considers an unrelated parallel machine
scheduling problem of minimising makespan subject to
arbitrary precedence constraints. A priority rule-based
heuristic serial schedule (SS) algorithm is proposed for
the NP-hard problem. The priority rule can select the
prior job and machine at each iteration. The algorithm
can schedule the jobs on the idle machines as early as
possible.

In order to evaluate the effectiveness and efficiency of
the proposed algorithm, four sets of numerical experi-

1152 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

ments are conducted. Experiment results show that the
proposed SS algorithm performs better as the number of
machines (m) decreases. The SS algorithm gets better so-
lution than the HH algorithm. Moreover, the SS algorithm
is a polynomial-time algorithm that can run in O(n2), and
consumes shorter CPU time than the HH algorithm. So
it can be embedded in more sophisticated heuristics or
metaheuristics for determining initial feasible schedules
that can be improved in further stages, or for computing
effective upper bounds which allow to cut parts of search
trees during branch-and-bound procedures.

As a further study, it would be interesting to consider
various priority rules as heuristic information, and it also
seems to be worthwhile to extend the problem to an
unrelated parallel machine scheduling problem subject to
s-precedence constraints.

ACKNOWLEDGMENT

This research is supported by National Natural Sci-
ence foundation of China under grant number 70631003,
and in part by National High Technology Research and
Development Program 863 of China under grant number
2008AA042901.

REFERENCES

[1] W. A. Horn, “Single-machine job sequencing with treelike
precedence ordering and linear delay penalties,” SIAM
Journal on Applied Mathematics, vol. 23, pp. 189–202,
1972.

[2] E. L. Lawler, “Sequencing jobs to minimize total weighted
completion time subject to precedence constraints,” Annals
of Discrete Mathematics, vol. 2, pp. 75–90, 1978.

[3] D. Adolphson and T. C. Hu, “Optimal linear ordering,”
SIAM Journal on Applied Mathematics, vol. 25, pp. 403–
423, 1973.

[4] J. B. Sidney, “Decomposition algorithms for single-
machine sequencing with precedence relations and deferral
costs,” Operations Research, vol. 23, pp. 283–298, 1975.

[5] F. A. Chudak and D. S. Hochbaum, “A half-integral
linear programming relaxation for scheduling precedence-
constrained jobs on a single machine,” Operations Re-
search Letters, vol. 25, pp. 199–204, 1999.

[6] I. D. Baev, W. M. Meleis, and A. Eichenberger, “Lower
bounds on precedence-constrained scheduling for parallel
processors,” Information Processing Letters, vol. 83, pp.
27–32, 2002.

[7] F. A. Chudak and D. B. Shmoys, “Approximation algo-
rithms for precedence-constrained scheduling problems on
parallel machines that run at different speeds,” Journal of
Algorithms, vol. 30, pp. 323–343, 1999.

[8] I. Aho and E. Mäkinen, “On a parallel machine scheduling
problem with precedence constraints,” Journal of Schedul-
ing, vol. 9, pp. 493–495, 2006.

[9] J. Du, J. Y. T. Leung, and G. H. Young, “Scheduling chain-
structured tasks to minimize makespan and mean flow
time,” Information and Computation, vol. 92, pp. 219–236,
1991.

[10] J. M. Chang and C. C. Hsu, “Task scheduling with
precedence constraints to minimize the total completion
time,” International Journal Systems Science, vol. 26, pp.
2203–2217, 1995.

[11] G. Ramachandra and S. E. Elmaghraby, “Sequencing
precedence-related jobs on two machines to minimize
the weighted completion time,” International Journal of
Production Economics, vol. 100, pp. 44–58, 2006.

[12] M. Queyranne and A. S. Schulz, “Approximation bounds
for a general class of precedence constrained parallel ma-
chine scheduling problems,” SIAM Journal on Computing,
vol. 35, no. 5, pp. 1241–1253, 2006.

[13] L. A. Hall, A. S. Schulz, and D. B. Shmoys, “Scheduling
to minimize average completion time: offline and online
algorithms,” Mathematics of Operations Research, vol. 22,
pp. 513–544, 1997.

[14] M. Queyranne and M. Sviridenko, “Approximation algo-
rithms for shop scheduling problems with minsum objec-
tive,” Journal of Scheduling, vol. 5, pp. 287–305, 2002.

[15] E. S. Kim and M. E. Posner, “Parallel machine scheduling
with s-precedence constraints,” IIE Transactions, vol. 42,
pp. 525–537, 2010.

[16] E. S. Kim, C. S. Sung, and I. S. Lee, “Scheduling of
parallel machines to minimize total completion time sub-
ject to s-precedence constraints,” Computers & Operations
Research, vol. 36, pp. 698–710, 2009.

[17] J. Herrmann, J. M. Proth, and N. Sauer, “Heuristics for un-
related machine scheduling with precedence constraints,”
European Journal of Operational Research, vol. 102, pp.
528–537, 1997.

[18] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R.
Kan, “Optimization and approximation in deterministic
sequencing and scheduling: A survey,” Annals of Discrete
Mathematics, vol. 5, pp. 287–326, 1979.

[19] J. D. Ullman, “NP-complete scheduling problems,” Jour-
nal of Computer and System Sciences, vol. 10, pp. 384–
393, 1975.

[20] R. Tavakkoli-Moghaddam, F. Taheri, M. Bazzazi, M. Izadi,
and F. Sassani, “Design of a genetic algorithm for bi-
objective unrelated parallel machines scheduling with
sequence-dependent setup times and precedence con-
straints,” Computers & Operations Research, vol. 36, pp.
3224–3230, 2009.

Chunfeng Liu was born in 1977. He
received his B.S. degree from School of
Mechanical Engineering of Nanjing Uni-
versity of chemical industry in 1999, and
M.S. degree from School of Management
of Zhejiang University in 2004.

He serves as an associate professor
at Tourism College of Zhejiang China.
In addition, he is currently a doctoral
student at School of Management of Hefei

University of Technology. His major research interests are
production planning and scheduling of discrete manufacturing
systems.

Shanlin Yang was born in 1948. He
received his B.S. and M.S. degrees from
School of Computer and Information En-
gineering of Hefei University of Technol-
ogy in 1982 and 1985, respectively.

He has been a professor and Ph.D.
advisor at Hefei University of Technology
since 1997, where he has served succes-
sively as a dean of School of Manage-
ment, vice president, director of Institu-

tion of Computer Network Systems since 1994. He conducted
cooperating research at the University of Melbourne, Australia,
from 1986 to 1987. His research interests include information
management, decision support systems, scheduling, supply chain
management and so on. He has chaired more than 30 projects
from National Natural Science Foundation of China, National
High Technology Research and Development Program 863 of
China and so on. Moreover, he has won the second prize of
China National Prize for Progress in Science and Technology.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1153

© 2011 ACADEMY PUBLISHER

