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Abstract—Although many approaches for architecture- 
based reliability estimation exist, these approaches are 
typically limited to certain classes or exclusively concentrate 
on software reliability, neglecting the influence of hardware 
resources, component reliability, component replica and 
software deployment. In this paper, a reliability estimation 
model based on software architecture (SA) is presented. 
This model incorporates the influence of software 
deployment, component reliability and component replica. 
Component lifetimes can be modeled by exponential 
distribution. The approach of calculating system reliability 
considering component replica and component reliability is 
proposed. The influences of different deployment 
architectures on component reliabilities and system 
reliability are investigated. The improvement of system 
reliability by redeployment or component replica is 
discussed. 
  
Index Terms—software architecture, software deployment, 
component reliability, exponential distribution, component 
replica, system redeployment 

I.  INTRODUCTION 

The past few decades have witnessed an unrelenting 
pattern of growth in size and complexity of software 
systems, which will likely continue well into the 
foreseeable future. This pattern is further evident in an 
emerging class of embedded and pervasive software 
systems that are growing in popularity due to increase in 
the speed and capacity of hardware, decrease in its cost, 
emergency of wireless ad hoc networks, proliferation of 
sensors and handheld computing devise, etc. Studies 
have shown that a promising approach to resolve the 

challenges of developing large scale software system is 
to employ the principles of software architectures [1,2]. 
Software architecture provides abstractions for 
representing the structure, behavior, and key properties of 
a software system. They are described in terms of 
software components (computational elements), 
connectors (interaction elements), and their 
configurations [3, 4].  

Many approaches have begun to predict reliability at 
the level of architectural models, or at least in terms of 
high-level system structure [5-12]. Firstly, these 
researchers acknowledge that reliabilities of components 
have a significant impact on system reliability, but they 
almost invariably assume that the reliabilities of the 
components in a system are known. The few researchers 
consider component-level reliability [8, 10], assume that 
the reliabilities of a given component elements, such as 
its services, are known. Secondly, these approaches are 
typically limited to certain failure classes or exclusively 
concentrate on software reliability, neglecting the 
influence of hardware resources, software deployment 
and component replica. In a given context, some of these 
deployment configurations are obviously more effective 
than others in terms of reliability. Additionally, if replica 
of critical software components exists, failure of one host 
node does not mean that the whole system fails. 
Therefore, we propose a new SA based reliability 
estimation model, incorporating the influence of software 
deployment, component replica and component 
reliability. 

The rest of this paper is organized as follows. Section 
II describes system deployment architecture. Section III 
investigates component replica and component reliability. 
Section IV proposes an approach of calculating system 
reliability. Section V gives the experiments. Section VI 
presents the conclusions and directions of future study. 

II.  SYSTEM DEPLOYMENT ARCHITECTURE 

In this section, we present an overview of whole 
structure of system deployment architecture. System 
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deployment architecture is the allocation of the system 
software components on its hardware host nodes [13]. 
We also introduce the frequency matrix CC of interaction 
among software components.  

A.  Whole Structure 
The basic entities of SA based software deployment 

reliability estimation model include host nodes, software 
components and services. In details, the model consists 
of  

1) a set H of host nodes, 1 2{ , , , }mH H H H= … ,which 
represents the host nodes of a system. 

2) a set C of components, 1 2{ , , , }nC C C C= … . Each 
component may have multiple component replica. 

3) a set S of services, which describes the different use 
cases that the whole system offers and can perform. A 
service is composed of the interaction among software 
components in a system. 

All components of set C should be deployed on 
m host nodes. Matrix CH describes how to deploy 
components on host nodes.  
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Each entry ,i jch in matrix CH may be 1 or 0. 

,

0,

1,
j i

i j
j i

if component C isnot deployed on host node H
ch

if component C is deployed on host node H
⎧⎪= ⎨
⎪⎩  

For a system comprising m host nodes and n  software 
components, the number of system deployment 
architectures is

nm . In general, determing the system 
deployment architecture that will maximize its reliability 
for the given target environment is an exponential 
complexity problem. 

B.  Frequency of Interacton among Software 
Components 

Matrix CC describes frequency of interaction among 

software components. 1 2{ , , , }nC C C C= … is a set of 

components. Each entry ,i jcc in matrix CC  represents 
the frequency of interaction between software 

component iC and jC . ,i jcc is an integer number in[ , ]a b . 
The values of a and b depend on concrete system.  
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III.  COMPONENT RELIABILITY AND COMPONENT 
REPLICA 

System reliability can be appropriately evaluated 
through component reliability. When there is not enough 
failure data, it is very common to make certain 
reasonable assumptions. A common assumption is that 
the system lifetime follows an exponential distribution. 
In this section, we suppose that all components follow 
exponential distribution and particularly depend on 
frequency of interaction among software components, as 
shown in formula (1). iRC is the reliability of 

component iC .Component failure rate iCλ is a function of 

interaction frequency ifC of component iC . 

  , 1, 2, ,iC t
iRC e i nλ− ×= = …                 (1) 

For a system consisting of m host nodes and n  
software components, if component iC has been identified 
as a candidate for replication, iC should be replicated 

1m − times. That is, iC has 1m − component replicas 
or m components provide the same service. With 
redundant copies, a replicated component can continue to 
provide a service in spite of the failure of some of its 
copies. 
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  0'i i c other otherC fC fλ ρ λ ρ= × + + ×             (3) 

  0''i other otherC fλ λ ρ= + ×                     (4) 
cρ   frequency criticality of interaction among software 

components.  
otherρ  criticality of other factors, it is a real number in 

[-1,1]. 
0λ    initial value of component failure probability. 

otherf  influence of other factors on component reliability. 
ifC  frequency sum of interaction between 

component iC and other components deployed on 
other host nodes 

The value of ifC can be obtained by matrix CC in 

formula(5). ( )iH C describes the host node that 

component iC is deployed on.       

       
,

, ( ) ( )j i j

i i j
C H C H C

fC cc
∀ ≠

= ∑
              (5)             

IV.  SYSTEM RELIABILITY 

It is often infeasible or difficult to directly estimate 
complex system reliability through large sample 
system-level test. Such difficulties may arise when the 
system-level test is costly or leads to destruction of the 
system itself. Nevertheless, system reliability can be 
appropriately evaluated through the component reliability 
information [14]. In this section, we suppose that the 
main sources of system failure are software component 
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failure and host node failure. Therefore, system 
reliability is calculated in formula (6).  

1 1
1 1 (1 )
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systemR   system reliability 
systemp   failure probability of system 
( )jH C  the host node that jC is deployed on 

ipch    failure probability of components deployed on 

host node iH  
iph     failure probability of host node iH  

V.  EXPERIMENTS 

In this section, four experiments are based on such a 
system consisting of eight original software components 
and four host nodes. Each original software component 
can provide a different service. The inputs of the 
experiments include randomly generated frequency 
matrix of interaction among software components and 
failure probabilities of four host nodes. Additionally, four 
experiments are based on three different deployment 
architectures. 

A.  Inputs 

Matrix CC is randomly generated frequency matrix of 
interaction among software components. Each entry in 
matrix CC is an integer number [0, 7]. We can calculate 

the value of ifC for component iC on the basis of 
matrix CC . 

0 3 0 0 0 0 7 1
3 0 7 0 2 2 0 0
0 7 0 6 0 5 0 0
0 0 6 0 3 0 0 7
0 2 0 3 0 7 0 4
0 2 5 0 7 0 3 0
7 0 0 0 0 3 0 0
1 0 0 7 4 0 0 0

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Failure probabilities of four host nodes are real 

numbers in [0, 0.02]. iph  represents the failure 

probability of host node iH . 1 0.0093ph = , 2 0.0195ph = , 
3 0.0069ph = , 4 0.0101ph = . 

B.  Deployment Architecture and Frequency of Software 
Component Interaction 

These eight components should be deployed on four 
host nodes. On the basis of frequency matrix of 
interaction among software components, we obtain three 
typical deployment architectures. 

1) Deployment architecture 

We use matrix 1CH to describe the first deployment 

architecture. 1CH shows that 4 5 8, ,C C C  are deployed 

on host node 1H . 6 7,C C are deployed on 2H . 1 2,C C  are 

deployed on 3H . 3C is deployed on 4H .  
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We use matrix 2CH to describe the second deployment 

architecture. Matrix 2CH  shows that 8C is deployed on 

host node 1H . 5 6,C C are deployed on 2H . 1 7,C C  are 

deployed on 3H . 2 3 4, ,C C C are deployed on 4H . 
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We use matrix 3CH to describe the third deployment 

architecture. 3CH shows that 1 5,C C are deployed on host 

node 1H . 4 6,C C are deployed on 2H . 2 7,C C are deployed 

on 3H . 3 8,C C are deployed on 4H . 
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2) Frequency of component interaction 

On the basis of matrix CC , we calculate ifC of each 

component iC in formula (5). 1F represents the set of 
ifC of the first deployment architecture.  

[ ]1 8 11 18 6 9 14 7 1F =  
Therefore, it is easy to know that 3 18fC =  and 
8 1fC = in the first deployment architecture. 

Similarly, 2F represents the set of ifC of the second 

deployment architecture. 3F represents the set of ifC  of 
the third deployment architecture. 

[ ]2 4 7 5 10 9 10 3 12F =  
[ ]3 11 14 18 16 16 17 10 12F =  

C. Experiments 
The system includes eight software components. Each 

software component can provide a different service. The 
values of relevant parameters are 

0otherf = and 0otherρ = .  
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1) Experiment one 

In this experiment, 0 0.0004λ = and 0.00001cρ = . 
System reliability of three different deployment 
architectures can be shown in Fig.1. EFDSR represents 
system reliability of the first deployment architecture. 
ESDSR represents system reliability of the second 
deployment architecture. ETDSR represents system 
reliability of the third deployment architecture.  
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Figure 1.  System reliability of three deployment architectures 

As seen in Fig. 1, with the increasing of system 
run-time, system reliability of the second deployment 
architecture is obviously highest among the three. The 
impact of the first deployment architecture on system 
reliability is similar to the third one during [0, 70] hours. 

A detailed analysis of component reliabilities of the 
three different deployment architectures is shown in 
Tab.I.  

RH represents the highest of component reliability 
among the three deployment architectures. RM 
represents the medium value of component reliability 

among the three deployment architectures. RL represents 
the lowest of component reliability among the three 
deployment architectures. RS describes that there is a 
negligible difference of component reliability between 
two deployment architectures.  
 

As seen in Tab.I, component reliabilities of 
component 2C and 4C of three deployment architectures 
are obviously different. There is a negligible difference 

of component reliabilities of 5C and 8C between two 
deployment architectures. Therefore, if 4C is the most 
important component, we will deploy components on 
host nodes according to the second deployment 
architecture. 

2) Experiment two 
In this experiment, the first deployment architecture is 

the basis of the experiment. The value of cρ may be 

different. These values are 0.00001cρ = , 0.00002cρ =  

and 0.00004cρ = . The influence of the values of cρ on 
system reliability can be shown in Fig. 2. With the higher 

value of cρ , system reliability becomes the lower. With 
the increasing of system run-time, the difference of 

system reliabilities with different values of cρ is more 
apparent. 
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Figure 2.  System reliability of different value of cρ   

The influence of the values of cρ on reliability of 

component 3C is shown in Fig. 3. 
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Figure 3. Component 3C reliability of different values of cρ  

With the higher value of cρ , reliability of 

component 3C becomes the lower. With the increasing of 
system run-time, the difference of reliability of 

TABLE I. THE EXPERIMENTAL RESULTS FOR COMPONENT 

RELIABILITIES OF THREE DEPLOYMENT ARCHITECTURES 

 First 

deployment 

architecture 

Second 

deployment 

architecture 

Third 

deployment 

architecture 

2C  RM RH RL 

4C  RH RM RL 

5C  RS RS RM 

8C  RH RS RS 
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component 3C of different values of cρ is more apparent. 

3) Experiment three 
In this experiment, we investigate the impact of 

system redeployment on system reliability. The value 

of cρ is 0.00004. Before thirty hours, system runs the 
third deployment architecture. At thirty hours, system 
reliability is less than 0.8. After thirty hours, we improve 
system reliability by redeployment, as shown in Fig. 4. 
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Figure 4.  System reliability with system redeployment 

After thirty hours, system begins to redeploy and run 
the second deployment architecture. In Fig.4, BDA 
represents system reliability of third deployment 
architecture during [0, 30] hours. BDE represents system 
reliability without system redeployment during [30, 80] 
hours. ADA represents system reliability with system 
redeployment during [30, 80] hours. 

After system redeployment, component reliability has 
changed. Component reliability can be calculated in 
formula (8).  
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   (8) 

ibfC represents interaction frequency of component 
iC before redeployment. iafC represents interaction 

frequency of component iC after redeployment. 

4) Experiment four 
In this experiment, we investigate the difference of 

system reliability by replicating components and system 

redeployment. The value of cρ is 0.00004. When system 
reliability drops to some value, system reliability need to 
be improved by system redeployment or replicating 
components, as shown in Fig.5.                          
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Figure 5.  System reliability with redeployment and component replica 

3CC represents system reliability with replicating 

component 3C during [30,80]hours. 38CC represents 

system reliability with replicating component 3C and 
8C simultaneously during [30,80]hours. The meanings of 

BDA, BDE and ADA are illustrated in experiment three. 
As seen in Fig. 5, system reliability with replicating 
multiple components is higher than system redeployment. 
System reliability with redeployment is higher than 
replicating single component. System reliability will be 
improved by replicating components and system 
redeployment. However, if replicating components, we 
need to take into consideration the computational 
resources required and those available at each host node; 
if system redeployment, we need to consider the time to 
redeploy and the cost of system redeployment. 

VI.  CONCLUSIONS AND FUTURE RESEARCH 

It is very important to estimate system reliability based 
on software architecture. Reliability is one of the most 
critical extra-functional properties of a software system. 
This paper analyzes the defects of existing 
architecture-level reliability estimation approaches, and 
proposes a novel system reliability estimation model 
incorporating the influence of component reliability, 
software deployment and component replica. Different 
deployment architectures have a significant influence on 
system reliability and component reliability. We present 
how to calculate system reliability and component 
reliability. We present the approaches of improving 
system reliability and the conditions of applying these 
approaches. In future research, system reliability 
estimation model based on SA will include other 
influence factors, such as software architectural styles, 
component replica strategies and so on. 
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