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Abstract—To solve the strong nonlinearity and data 
deterioration due to missing, outliers contained in the 
training data, this paper combines robust EMPCA 
(Expectation Maximization Principle Component Analysis) 
and the error-based input weights updating NNPLS (Neural 
Network Partial Least Square) to build a nonlinear and 
robust model as a software sensor of effluent quality indices 
for the anoxic-aeration activated sludge with nitrogen 
removal process in wastewater treatment pants. As the first 
step, data preprocessing based on the modified robust 
EMPCA is used to eliminate gross error, estimate missing 
data. Then an error-based input weights updating NNPLS 
(EB-NNPLS) is further used to predict effluent quality 
indices. This study compares the performance of partial 
least squares (PLS) regression analysis, polynomial PLS, 
NNPLS and EB-NNPLS with robust nonlinearity for the 
prediction of effluent quality. Simulations results for 
industrial process data show that the proposed method 
outperforms basic PLS, the polynomial PLS and NNPLS for 
the prediction of effluent quality indices. 
 
Index Terms—Principal Component Analysis; Partial Least 
Square (PLS); Expectation Maximization (EM); neural 
netowrk Partial Least Square (NNPLS) 
 

I.  INTRODUCTION 

On-line reliable measurement of effluent quality 
indices is very important to monitoring, control and 
operational optimization in the wastewater treatment 
plants (WWTPs). However, due to big investment, poor 
reliability of continuous operation, and difficult 
maintenance, existing on-line hardware sensors in 
accuracy and reliability is not sufficient to measure the 
wastewater quality parameters.  

Due to the complexity of the biological process, it is 
difficult to establish a mechanistic model of the activated 
sludge process. With the popular of DCS in wastewater 
treatment plants, a volume of measured process variables 
and laboratory analysis data are recorded. It is possible to 

forecast the effluent quality indices based on data-driven 
modeling [1].  

Data-driven industrial process modeling methods 
depend on the reliable and accurate industrial filed data. 
However, these data not only contains missing data with 
high incidence, but also contains some outliers (gross 
errors) far from the typical ranges of the measured values 
due to the frequency of analysis, sensor failure, or 
operator mistake, etc. Outliers have a large influence on 
the regression because the residual magnifies the effects 
of these extreme data points. To minimize the influence 
of outliers, robust least squares were used. EM or MI is 
applied to estimate missing data. Víctor et al. [2] 
proposed filling in the missing points in the series with 
arbitrary values and then performing ML estimation of 
the ARIMA model with additive outliers. 

In recent years, multivariate statistical methods are 
successfully applied to monitor and model the wastewater 
treatment process [3]. All the PCA and PLS algorithms 
are based on the assumptions that the data has not been 
spoiled by the outliers. In practice, real data often contain 
some outliers and usually they are not easy to be 
separated from the data set. Expectation maximum EM 
algorithm combined with PCA is a simple and effective 
method to treatment missing data [4]. However, the classic 
EMPCA algorithm is very sensitive to the outliers hidden 
in the data sets.  

 
In practice, it is not suitable to use linear methods like 

PCA and PLS for moderate and strong non-linearity. 
Extra principal component will be retained to fit to the 
nonlinear relationships when linear PLS method deals 
with moderate and strong on-linear process, which will 
add the noise useless to the regression so that model 
generalization decreases and model performance 
deteriorates.  

Many different nonlinear modeling techniques are used 
to solve the different types of nonlinear problems. A 
simple nonlinear PLS method is to use the original PLS 
algorithm for the augmented data matrix through 
transforming and containing the non-linear terms to the 
original data matrix. Its limitation is that non-linear terms 
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among variable combination need a priori knowledge 
about process nonlinearity. It will lead to the number of 
nonlinear term too much, which causes input variable 
dimension excessive so as to compute complexity and 
explain difficulties. A number of methodologies have 
been proposed to integrate non-linear features within the 
linear PLS framework, resulting in the development of 
nonlinear PLS algorithms. Wold et al. introduced a 
spline-PLS algorithm where a spline function is used to 
fit the non-linear mapping between each pair of the latent 
variables [5]. Qin and McAvoy proposed a neural network 
algorithm, which uses a sigmoid activation function 
neural network to fit the inner mapping [6]. The main 
advantages of using the neural network PLS algorithm 
are that the neural networks PLS algorithm can handle 
variable correlations and the data set dimensionality. The 
drawbacks with building NNPLS and RBF-PLS models 
are the selection of the network structures and the model 
can easily be over-fitted.  

Both polynomial PLS and NNPLS method are not 
updated input weights in the training process. Input 
weights needn’t be updated only when mild nonlinear 
between input/output data. To overcome the problems 
associated with the updating of both the inner and outer 
weights, Wold et al. proposed solution is for the internal 
model using Newton -Raphson linearization, then worked 
out with the increment of weights of weights updated, 
which is applicable to any input/output latent variable 
relationship is continuous and differentiable [7]. Baffi et al. 
proposed an error based updating procedure, which 
resulted in an ‘error-based’ neural network PLS algorithm 

[8, 9]. In a similar manner to the original input weights 
updating procedure, the error based input weights 
updating procedure can be applied to any non-linear 
functional relationship between the input and the output 
latent variables, providing that it is continuous and 
differentiable with respect to the input weights w. 
Weights updated improved NNPLS internal map neural 
network modeling ability and model overall performance. 

The prediction capacity of data-driven model strongly 
depends on the quality of the training data. It yields the 
very unreliable result when training data contains some 
outlier and missing data. In this paper, a nonlinear robust 
modeling method is proposed for predicting the effluent 
quality indices. Data analysis performed on a robust 
EMPCA model is used to eliminate gross error, estimate 
missing data. Then an error-based input weights updating 
NNPLS (EB-NNPLS) model is further used to predict 
effluent quality indices. Finally, a case study compares 
the performance of partial least squares (PLS), polyPLS, 
NNPLS, NNPLS with the robust nonlinear model based 
on the EMPCA and the EB-NNPLS for the prediction of 
effluent quality.  

II.  MATERIALS AND METHODS 

A.  Description of Wastewater Treatment Process  
The case study is a municipal wastewater treatment 

plant designed for 1060,000 (p. e.), located in shenyang, 
China. It aims at removal of pollutants in the wastewater. 
A schematic diagram of the process is shown in Fig 1.  

 
The plant provides primary and secondary treatment 

with daily capacity of 400,000 ton. It contains 6 water 
lines in parallel, where lines NO.1~3# are traditional 
activated sludge process, lines No.4~6# are anoxic-
aeration (A/O) activated sludge process with nitrogen 
removal. The case study focuses on A/O activated sludge 
process, which consists of a pre-dentrification system 
with an anoxic reactor, an aerated reactor, and two 
secondary settlers. The data used in this study were 
collected from the A/O activated sludge process. 

B.  Data Reconciliation based on an Improved EMPCA   
Poor-quality data has become a serous problem to the 

modeling, control and optimization in the wastewater 
treatment plants. The traditional PCA constructs the rank 
k  subspace approximation to zero-mean training data 
that is optimal in a least-squares sense. The main 
disadvantage of least squares is its sensitivity to outliers. 
Outliers have a large influence on the regression because 
squaring the residuals magnifies the effects of these 
extreme data points. To minimize the influence of outliers, 
robust least squares were used. The mean value for the 
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Figure 1 Schematic diagram of the activated sludge process 
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corresponding variable is used as the initial value of 
missing data in EM PCA iterative solution. An improved 
robust EM PCA algorithm is proposed to solve the 
problems [10]. The structure of robust estimation with the 
missing data and outliers is depicted in Fig 2. 

 
It consists of the following parts: the outliers’ detection, 

initialization of missing data, PCA decomposition using 
EM algorithm and data reconstruction. In the outliers’ 
detection part, the outliers’ positions in the original data 
are firstly determined according to centre limit thermo. 
Then they are regarded as the missing points. Due to the 
dynamic nature of wastewater treatment, the moving 
median (MM) filter is used as the initial values of missing 
points. PCA decomposition is used to solve the scores 
and loading of the incomplete data using EM 
optimization algorithm. In reconstruction part, estimation 
of the missing data is given according to EMPCA model 
parameters scores vector T and loading vector P.  

This can be summarized as follows:  
Step 1: Determining outliers’ positions according to 
center limit theorem and let the outliers missing points. 
Given data sample Xobs(m×n), m is the number of sample 
data, n is the number of variable. 

δδ 3+≤≤3− XXX obs                      (1) 

where jX  is median estimation of the observed sample 
and δ  its median absolute deviation. 
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The observed variable ),( jiX obs  at the ith sample is 
outlier when it excesses its confidence limit. The outliers 
are deleted, which can be seen as missing points. 
Therefore, the sample data only contains missing points, 
not contaminated by the outliers.  
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Step 2: Replace the missing elements in data matrix X 
with their initial estimations using the Moving Median 
(MM) filter for the corresponding variables. The filter is 
described as follows:  

2−2+21+2=
2+2−=

/,,/,/
)),/,,(,),/,((),( **

ωωω
ωω

jIj
njiXjiXmedianjiX

Λ
Λ

 (5) 

where jI , is the number of observations of the real signal 

)(:,* jX , 1+w  is the window width, and ),( jiX  is the 
output signal of the filter. MM filter is pronounced if the 
signal is contaminated with outliers. 
Step 3: Perform PCA of the completed data set X using 
EM algorithm. Model parameters including score vector 
T  and loading vector P  are solved iteratively by E step 
and M step.   

E-step: XTTTP TT 1−= )(                       (6) 

M-step: 1−= )( PPXPT TT                       (7) 

Step 4: Reconstruct the data matrix ETPX += 'ˆ  with the 
predefined number of significant principal components.  

Step 5: Replace the missing elements in the matrix X* 
with their predicted values from X̂ . 
Step 6: Repeat steps 2 to 5 till convergence.  

It is important to emphasize that the values for the 
missing data are optimized in order to be further analyzed 
by PCA. The convergence f was calculated as:  

1)-(rSS
1)-(rSS-(r)SS

miss

missmiss=f                     (8) 

where ∑ 1=
2=

n

i piX )((r)SS *
miss  and T is the estimated 

value for the missing element *
piX . The EMPCA 

parameters fulfill the least square criterion since the 
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Figure 2. Structure of robust estimation algorithm 
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EMPCA approach minimizes the sum of the squared 
residuals:    

2∑ −= )(min **
, , jipji XXSPE            (9) 

C.  Error-based Input Weights Updating Neural Network 
PLS Algorithms 

The neural network PLS algorithm keeps the robust 
generalization property by using linear PLS regression as 
of outer models and universal approximation capabilities 
by using neural networks as inner models. Outer PLS 
model decomposes the (n×M) matrix of zero-mean 
variables )( MnX ×  and the (n×p) matrix of zero-
mean variables ( )pnY ×  into the form 

⎩
⎨
⎧

+=
+=

FUQY
ETPX

'
'

                                     (10) 

where the T, U are (n × h) matrices of the h 
extracted score vectors, the (M×h) matrix P and the 
(p×h) matrix Q represent matrices of loadings and 
the (n×M) matrix E and the (n×p) matrix F are the 
matrices of residuals. Neural network is used as 
inner regression model. Though there are some 
advantages of NNPLS, the agorithm doesn’t update 
the outer input weights w , Since a inner nonlinear 
function impacts upon mappings of the inner and the 
outer model, NNPLS without updating the input 
weights may no longer be acceptable for highly 
nonlinearity.  

The error-based input weights updating procedure 
assumes that the non-linear function between the 
input and the output latent variables is continuous 
and differentiable with respect to the input weights 
w  and that the non-linear mapping can be 
approximated by means of a Newton–Raphson 
linearization of the non-linear function [9]. The input 
weights updating procedure is performed within the 
NIPALS algorithm and replaces the step for the 
calculation of the input weights w . A non-linear 
functional relationship ( )⋅f  between the input and 
the output latent variables t and u: 

( ) ( ) ewXfetfu +=+= ,                      (11) 

where ( )⋅f  stands for the nonlinear relation 
represented by a neural network, input score vectors 
t , output score vectors u  and residual matrices e . 
( )⋅f  is a continuous function differentiable with respect 

to w  for each pair of latant variables. A two-layer feed-
forward network is used to fitted the nonlinear relation 
with one centred sigmoidal activation function σ  hidden 
layer with NC neurones and one linear activation function 
output layer. The non-linear inner relationship 
provided by the neural network can be written in 
explicit form as:  

( ) etu +++⋅⋅= 2112 ββωσω                  (12) 

Replacing t  with wX ⋅  , (12) becomes: 

( )( ) ewXu +++⋅⋅⋅= 2112 ββωσω            (13) 

where X  denotes the input data matrix when defining 
the first latent variable, or the deflated input data matrix 
when referring to subsequent latent variables. The above 
relationship can be approximated by means of Newton–
Raphson linearization: 
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Where: 
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)(ˆ00 tfuf ==  is the prediction of the output latent 

variable. wΔ  is the column vector compring the finite 
increments mwΔ . The overall Newton–Raphson 
approximation can be written as: 

u = +00f ( )( ) kk wxt Δ⋅⋅+⋅−⋅⋅⋅ 11
2

21 1
2
1 βωσωω                     (17) 

A matrix Z  in the error-based updating procedure is 
defined  

[ ] ( )( ) ⎥⎦
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Placing the updating parameters kwΔ  in a column 

vector wΔ , the Taylor series expansion can be written as: 

u = +00f wZ Δ⋅                                   (19) 

The mismatch e  between the output score vectors u 
and the nonlinear estimation by neural network model 
was given by:            

wZuue Δ⋅=−= ˆ                                         (20) 

where: 

qYu ⋅=                                               (21) 

( ) 2112ˆ ββωσω ++⋅⋅= tu              (22) 

New input weights w in the PLS outer mapping can be 
calculated by updating parameters wΔ  according to the 
matrix Z and mismatch e: 

www Δ+=                                                         (23) 

where : 

( ) eZZZw TT ⋅⋅⋅=Δ
−

                              (24) 
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III.  RESULTS AND DISCUSSION 

A.  Analysis of Historical Data 
Wastewater treatment plants (WWTPs) are known to 

be highly non-linear systems subject to large 
perturbations in influent flow rate and pollutant load, 
together with uncertainties concerning the composition of 
the incoming wastewater. Reliable estimates of effluent 
quality are of great value for different operational tasks 

such as process monitoring, online simulation, and 
advanced control. The case study focuses on A/O 
activated sludge process.  

The following variables were sampled at the points 
from influent from sewage, primary clarifiers, bioreactor  
to effluent from  secondary clarifiers. Basic statistical 
descriptors of the variables comprised in the database and 
its statistical analysis are shown in Table1. The database 
covers 365 consecutive days, each day as a sample. 

TABLE I.   
BASIC STATISTICAL ANALYSIS AND MEASURED VARIABLES 

No. Variable Missing (%) Outlier (%) Mean StDev Unit 
Influent from sewage 

1 Influent COD 16.9 0.5 269.84 78.61 /mg l  

2 Influent SS 15.5 1.1 134.85 51.18 /mg l  
3 Influent pH 23.4 0 7.25 0.09 - 
4 ammonia nitrogen 34.4 2.5 33.01 7.23 /mg l  

Primary clarifiers 
5 COD at repartition 2# 31.1 3.6 348.86 173.65 /mg l  

6 SS at repartition 2# 29.8 3.6 219.46 141.51 /mg l  

7 Flowrate 7.1 0.3 1641.50 880.59 dm /3  
Bioreactor 

8 Return sludge flow 7.1 0 3031.10 1117.60 dm /3  
9 ORP in Aeration tank 7.7 0.8 -122.92 145.37 mV  
10 ORP in anoxic tank 8.1 1.6 -47.43 173.67 mV  
11 Aeration flow 13.2 2.7 3233.00 2595.60 dm /3  
12 DO in aerobic tank 7.3 0.3 4.73 2.58 /mg l  

13 DO in anoxic tank 8.2 0 3.64 3.14 /mg l  

14 MLSS 17.7 0 6.18 2.32 lg /  

15 Sludge volume 17.7 0 592.81 152.87 lml/  
16 SVI 17.7 0.3 96.34 23.77 - 
17 pH 24.7 0 6.80 0.21 - 

Effluent from  secondary clarifiers 
18 BOD5 39.3 4.4 14.47 5.29 /mg l  

19 COD 27.1 3 60.08 16.50 /mg l  

20 SS 27 1.4 15.03 8.68 /mg l  

21 ammonia-nitrogen 40 4.1 24.48 5.98 /mg l  

Table I lists on-line and off-line variables and their 
means and standard deviations, percent of missing and 
outliers. Partial original data with the high missing 
percent and a small amount of outliers, such as influent 
and effluent quality BOD5, COD, SS et al. Data Analysis 

of missing elements and outliers on the real data set 
shows the original history data contains measurements of 
pollutants’ concentration performed in different sampling 
sites over a certain period of time. 

B. Data Processing 

 
(a) Original data   
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(b) Rectificated data 

Figure 3. Data rectification results comparisons 

To preprocess the original data prior to this 
application, outliers are firstly detected according to 
center limit theorem in the incomplete database. Then 
missing data is initialized using MM filters. Robust 
expectation-maximization principal component analysis 
(EMPCA) decomposes the initialized data into scores (T) 
and loading (P) to reconstruct the missing data and 
outliers through 'ˆ TPX = . Comparisons between the 
original data and rectified data in influent SS and effluent 
SS, influent COD and repartition COD were shown in Fig. 
3. Results of data rectification using robust EMPCA show 
the robust EMPCA can better detect outliers and estimate 
the missing data. 

C.  Soft Sensor of  Effluent Quality 
There are lots of factors, including inlet water 

quality and quantity, operating conditions, and external 
environment, that affect effluent quality in the wastewater 
treatment process. The secondary variables with the 
strongest relationships are chosen to establish a soft 
sensing model of effluent quality. The first 17 variables 
from No.1 to 17 were used as predictors X to explain 
response variable Y-block from No. 18 to 21. Original 
data set exists not only a few missing point, meanwhile 
some data points were measured or not recorded. History 
data is indived into two groups: 200 samples for model 
training and 165 samples for model test.  

TABLE II. 

CUMULATIVE VARIANCE FOR DIFFERENT PLS ALGORITHM 
PLS POLYPLS NNPLS EB-NNPLS LV X-Block Y-Block X-Block Y-Block X-Block Y-Block X-Block Y-Block 

1 12.67 17.53 36.57 14.76 36.57 14.95 27.39 45.4 
2 34.92 25.46 58.69 26.95 58.69 27.12 43.64 55.79 
3 59.71 27.74 66.11 31.7 66.13 31.84 52.61 61.1 

4 69.68 29.8 70.77 36.36 70.2 38.16 65.02 63.24 

5 75.32 31.09 77.82 39.09 77.78 40.75 71.01 64.51 

6 80.01 31.57 81.57 40.98 81.53 42.84 74.3 65.94 

7 83.24 31.93 85.84 42.00 85.82 43.84 77.72 66.33 

8 85.39 32.05 89.21 43.13 89.2 45.39 81.18 67.26 

9 87.05 32.13 91.45 43.93 91.46 46.07 85.21 68.27 

10 88.74 32.22 93.14 44.37 92.86 46.64 87.73 68.34 

         

In Table II the cumulative variances captured by the 
input and output variables for each model for COD 
prediction are given. Comparing the error-based NNPLS 
algorithm with the PLS, polynominal PLS and NNPLS, it 
can be observed that variance captured in Y-block for 
error-based NNPLS is more than the variance in Y-block 
of the other methods due to the input weight updating 
procedure when 10 latent variables are retained. NNPLS 
and EB-NNPLS is performed using conjugate gradient 
optimization procedure or optimization tool box 

procedure “leastsq”. The maximum number of sigmoids 
for each latent variable for inner neural nets models is set 
to 6. 

Fig. 4 shows comparison results of the predicted 
values and real values for EB-NNPLS, NNPLS and linear 
PLS model. It concludes that the prediction performance 
of nonlinear PLS model is better than prediction 
performance of linear model, nonlinear EB-NNPLS 
model better than NNPLS and polynomial PLS model.  
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(a) BOD5 

 

(b) COD 

 

(c) SS 

 

(d) Ammonia nitrogen NH 

Figure 4. Comparison results of the predicted values and real values 
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Root mean square error (RMSE) of EB-NNPLS is 
compare with RMSE of the linear, polynomial PLS, 
NNPLS for test data (Table III). It can be seen from 
Table III that the performances of nonlinear PLS 

outperform linear PLS and error-based input weight 
updating method is better than the methods with updating 
input weights.  

TABLE III. 

BASIC STATISTICAL ANALYSIS AND MEASURED VARIABLES 

 

 

 

 

 

 

IV.  CONCLUTIONS 

The soft sensor technique is to solve prediction of 
some key variables. This paper deals with the 
development of software sensor techniques that estimate 
the effluent quality parameters from easy measurable 
secondary variables using robust EMPCA and error-
based weight updating NNPLS. Based on the error input 
weights updating NNPLS method is to establish the 
effluent quality model for estimation of effluent quality. 
The nonlinear robust soft sensor technique proposed here 
may also be used for fault detection of processes, the 
estimation of toxicity, and automation of other 
wastewater treatment processes. Simulations for 
industrial process data show that the proposed method 
outperforms basic PLS, the polynomial PLS and NNPLS 
for the prediction of effluent quality.  
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Methods 
RMSE PLS POLYPLS NNPLS EB-NNPLS 

BOD 3.80  3.54  3.16  2.94 

COD 14.45  12.42  12.10  9.86 

SS 6.74  6.31  5.72  5.56 

Ammonia nitrogen NH 4.06  3.49  3.19  2.87 
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