
RAAP: A Requirements Analysis and Assessment Process
Framework for Component-Based System

(Invited Paper)

Richard Lai
Department of Computer Science and Computer Engineering,

La Trobe University, Melbourne, Australia
Email: lai@cs.latrobe.edu.au

Sajjad Mahmood

Information and Computer Science Department,
King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Email: smahmood@kfupm.edu.sa

Shaoying Liu
Faculty of Computer and Information Sciences,

Hosei University, Tokyo, Japan
Email: sliu@hosei.ac.jp

Abstract— Success of a Component Based System (CBS)
depends heavily on the selection of the right components. In
reality, components are usually designed for general
purposes and finding the ideal ones is often very difficult.
The CBS requirements process is hence more complicated
than the conventional approach. In this paper, we present a
Requirements Analysis and Assessment Process (RAAP) for
CBS that can provide quantitative information and
guidelines for stakeholders to evaluate the suitability of the
components for a given set of requirements. Subsequently,
they will be able to select the most appropriate components
that best satisfy their needs, taking into consideration the
risks involved and the conflicts that could arise as a result of
selecting certain components earlier in the process. RAAP
consists of three phases: (i) requirements characterization
which elicits user requirements; (ii) top-down analysis
which calculates the degree of satisfaction of a component
and the amount of risks involved; and (iii) trade-off analysis
which identifies and resolves the potential conflicts in
requirements after certain components have been selected.
We also present an application of RAAP to the Seven Eleven
Japan system.

Index Terms— Component based system, software metrics,
requirements analysis, risk assessment

I. INTRODUCTION

Component Based System (CBS) requirements
analysis and component selection is widely recognized as
an interrelated process, which plays a central role in
overall CBS development. Software literature [1-5]
shows that CBS success depends on the ability to select
suitable components. An inappropriate component
selection can lead to adverse effects such as short-listed
components hardly fulfilling the required functionalities,
and introducing extra costs in integration and
maintenance phases [2]. Individual components usually

provide capabilities that might not satisfy all system
requirements and some of them may be unnecessary for a
given system. This reduces the chance of a good match
between a component and stakeholder requirements.
Therefore, it is difficult to find a supplier who can meet
all stakeholder requirements [6]. In this paper, we adopt
Szyperski’s definition of a component [7]: “A software
component is a unit of composition with contractually
specified interface and explicit context dependencies
only. A software component can be deployed
independently and is subject to composition by a third
party”.

Recent research [3, 5, 8] suggests that CBS
requirements analysis does not need to be completed
before starting component selection. However, current
CBS development approaches have a requirements
process that is based on strict requirements definition.
This implies that either candidate components have to be
eliminated because they do not meet the stated
requirements or they will need to be changed
significantly in order to satisfy such restrictive
requirements [3]. It reduces the scope of requirements
negotiation [8] and makes it difficult to evaluate how
components fit in with overall system requirements [9].

Fundamental to CBS success is the need for a
collaborative process whereby both stakeholders and
candidate components balance the conflicting interests
between what is needed and what is available [10, 11].
This collaborative process needs to focus on how to share
knowledge between stakeholders and components and
facilitate negotiation of individual interests during
component selection. Component selection involves a
continuous process of requirements negotiation and for an
effective requirements negotiation, it is necessary to
analyze the impact of the negotiation [12]. This involves
balancing a component’s satisfaction against the involved

1050 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.6.1050-1066

risks. Risk assessment is another important attribute
affecting overall CBS development as it provides a basis
for comparing candidate components by focusing on their
risk profiles.

In this paper, we present a Requirements Analysis and
Assessment Process (RAAP) framework for CBS that can
provide quantitative information and guidelines for
stakeholders to evaluate the suitability of the components
for a given set of requirements. Subsequently, they will
be able to select the most appropriate components that
best satisfy their needs, taking into consideration the risks
involved and the conflicts that could arise as a result of
selecting certain components earlier in the process.
RAAP consists of three phases: (i) requirements
characterization which elicits user requirements; (ii) top-
down analysis which calculates the degree of satisfaction
of a component and the amount of risks involved; and
(iii) trade-off analysis which identifies and resolves the
potential conflicts in requirements after certain
components have been selected. We also present an
application of RAAP to the Seven Eleven Japan system
[13].

The contribution of our work is the development of a
collaborative process, which provides a platform to
quantitatively analyze individual interests and come to an
agreement in a conflicting scenario. We present the
notion of specifying requirements at two abstraction
levels so as to minimize early component exclusion and
accept functionality limitations that cannot be met. We
propose a requirements analysis algorithm that enables a
systematic evaluation of requirements based on
requirements priorities. Further, we have developed
satisfaction and risk metrics, which enable a system
analyst to better, understand what is needed and what is
available. These metrics allow us to derive the
distribution of components that are appropriate for the
resolution of conflicts in different scenarios. Our work
provides a technique to investigate proposed resolutions
and evaluate the risks associated with each proposal.
Further, it helps in assessing conflicts that may arise
when different components are integrated into a CBS.

II. RELATED WORK

Off the Shelf Option (OTSO) method [14] is a process
that directly addresses the issue of component
identification. The process is based on hierarchical
evaluation, which decomposes the requirements into a set
of hierarchical criteria. It facilitates a systematic,
repeatable and requirement-driven component
identification and selection process. OTSO provides a
systematic component selection process and uses an
analytic hierarchy process to provide support in decision-
making. However, it does not discuss how to conduct
requirements acquisition and how to compare candidate
components.

Procurement Oriented Requirements Engineering
(PORE) [1] is based on an iterative process of
requirements acquisition and component evaluation. It
uses a template-based approach for refining the candidate
component list until a suitable component has been

selected. It proposes to use strict criteria to analyze how
candidate components satisfy requirements. However,
there is a lack of specific detail on how requirements are
used in the evaluation process. Furthermore, there is a
lack of assessment of the compliance process.

COTS Aware Requirements Engineering (CARE) [4]
is a goal-oriented requirements engineering approach
which highlights the importance of keeping requirements
flexible. CARE classifies requirements as: stakeholder
requirements and component requirements, with
emphasis on reducing the gap between these two
requirements groups. However, CARE lacks clear
guidelines for handling possible mismatches between the
stakeholder requirements and the candidate component
features.

Kotonya et al. [8] propose a method for CBS
requirements engineering based on the notion of
viewpoints. It is a service-oriented requirements approach
that interleaves the process of requirements with
component verification, negotiation and planning.
However, this approach lacks guidelines on how to rank
requirements and on verification of requirements against
component features.

Alves et al. [3] propose an approach to evaluate
components in terms of how well they match customer
requirements and provides a conflict management
framework to identify the components based on
resolution proposals and risk evaluation. The modeling of
goals starts with the elicitation of high-level goals that
represent the stakeholders’ concerns. Each goal is then
further divided into sub goals and represented by a graph
structure using AND/OR tree. However, there is no
detailed discussion on how to perform risk evaluation.
Further, there is no quantifiable process for evaluating
candidate components based on their satisfaction and risk
assessments.

TABLE I.
COMPONENTS FOR THE SEJ SYSTEM

Component Name Description
Smart Scan Provides ability to read barcodes

IPWorks Provides ability to write
connected applications

PowerTCP Supports data communication
SocketTools Integration of internet

communication functionality
SuperCom Provides ability for serial

communication
Socket Wrench Provide TCP/IP networking

functionality
Component Space Data communication within

windows and web applications
VSView Provides ability to format text

XtraReport Provides ability to create reports
TrueDBInput Provides ability to acquire and

format user inputs
PureComponentEntrySet Enables data customization

ComponentOneInput Enables data customization
Xceed Provides ability to support front-

end and back-end application
development

InputPro Enables creation of data entry
interfaces

Dxperience Enables creation of windows
forms

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1051

© 2011 ACADEMY PUBLISHER

III. SEVEN ELEVEN JAPAN SYSTEM

In this section, we describe our case study, the Seven
Eleven Japan (SEJ) system [13] requirements. We
selected the SEJ system for the following reasons: (1) it is
an application of significant size; (2) availability of SEJ
research literature [13, 15]; and (3) its application as a
validation of requirements techniques [16-18]. SEJ
system manages a national franchise of independently
owned convenience stores and uses its software system to
leverage information to coordinate a supply chain of
business partners. It ensures the stores are stocked with
precisely the products that consumers want and when
they want them [18]. The stakeholders of the SEJ system
include product supplier, delivery centers, franchise
stores and SEJ customers [18].

Figure 1. The SEJ System Architecture.

Figure 1 shows the high-level system architecture of
the SEJ system. It consists of two main parts: ‘SEJ Host
Controller’ and ‘SEJ Store Controller’. The ‘SEJ Store
Controller’ interacts with end customers via ‘sale
register’ and ‘product scanner’. It communicates with the
‘SEJ Host Controller’ to pass information about a store’s
inventory levels, customer behavior etc. The ‘SEJ Host
Controller’ shares information with the delivery centers
to coordinate the supply chain. It also orders products
from suppliers for delivery to the stores. Further, it
provides all the administration and reporting
functionalities of the SEJ system.

A. Components for the SEJ Software System
In our case study, we identified eleven requirements

from the SEJ literature and used component source1 as
the component repository. We have selected component

1 www.componentsource.com

source as the repository because it provides over 1,700
components grouped into 90 categories. We assume that
the SEJ software system is developed on a Microsoft .Net
platform [19] and we need to buy a single license for the
components. Table 1 shows the list of components
selected for the SEJ system.

IV. THE RAAP FRAMEWORK

CBS development is a complex and risk-prone process
[20] which needs a flexible requirements analysis
technique that provides an opportunity for both
stakeholders and component vendors to reach a mutually
acceptable agreement. We believe that a CBS
requirements model needs to address three key issues:
understanding stakeholder requirements and component
features; quantifying alternatives based on satisfaction
and risk analysis; and balancing a component’s
satisfaction against the involved risk during conflict
resolution. By analogy with Mendonca et al.’s
measurement framework [21], our Requirements and
Analysis and Assessment Process can be summarized the
framework shown in Figure 2.

RAAP consists of three phases: namely, requirements
characterization, top-down analysis and trade-off
analysis. The first phase - requirements characterization -
starts with a process to elicit stakeholder requirements.
We propose the use of a goal-oriented requirements
engineering process to specify stakeholder demands.
After this process, requirements are ranked according to
their priority, view and matching potential. The ranked
requirements are analyzed and represented as a directed
graph to specify the relationship between requirements.
The second phase - top-down analysis - presents a metrics
hierarchy to quantify requirements that match component
features. It uses satisfaction and risk metrics to select
suitable components for each requirement. The degree of
satisfaction measure involves the evaluation of a
component’s syntactic properties and configuration
constraints against a given requirement. The risk is
measured as a function of the complexity and severity
assessment of a component. The third phase - trade-off
analysis - is executed to identify and resolve the potential
conflicts in requirements. A conflict between
requirements is detected by analyzing the relationship
between requirements, and potential resolutions are
generated using a set of heuristic rules. Finally, we
propose a set of resolution selection rules for a trade-off
between requirements and components.

Figure 2 also shows the information flow and control
flow of our proposed approach. The control flow
(represented as solid lines) is determined by the
interaction between the phases. A requirement acts as a
unit of analysis and the top-down and the trade-off
analyses is applied incrementally. The requirements
characterization and associated algorithm act as a
prerequisite for the top-down and trade-off analyses. The
top-down and trade-off analyses phases also interact with
each other when the degree of satisfaction and risk
metrics calculated during the top-down analysis phase are

1052 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

used for relevance index and negotiation at the trade-off
phase.

Figure 2. The RAAP Framework.

V. REQUIREMENTS CHARACTERIZATION

Requirements characterization is used to elicit, rank
and represent stakeholder requirements, and determine
how they relate to each other. Requirements
characterization consists of three steps and we discuss
them in detail as follows:

Step 1: Requirements Elicitation - CBS requirements
need to start with a less specific and more flexible
definition [3]. A flexible requirements definition
increases the probability of finding matching components
as requirements either exclude the use of components or
require a large modification because they are less
stringent. We propose to elicit stakeholder demands using
goal - scenario coupling approach [22]. In this paper, we
adopt the goal definition [23]: “an objective the
composed system should meet”. Similarly, we adopt the
scenario definition [24]: “a proposed specific use of the
system”. In the goal scenario coupling approach, goal
discovery and scenario authoring are complementary
activities. After goal discovery, scenario authoring is
initiated, followed by goal discovery. The “goal-
discovery, scenario-authoring” sequence is repeated to
incrementally elicit requirements [22].

The goal-scenario approach [22] is used to elicit CBS
requirements because it allows requirements to be
represented at different levels of abstraction. This
provides a systematic process for refining high-level
requirements into objectively measurable sub-
requirements. The aim of these abstraction levels is to
identify component alternatives that satisfy stakeholders’
requirements. We propose to organize CBS requirements,
as shown in Figure 3, into two hierarchy levels, namely,
high-level requirements and concrete-level requirements.
The high-level requirements cover the overall business
objectives of an organization. The concrete-level
requirements represent a set of services that can be used
to achieve the high-level requirements. These abstraction
hierarchy levels are used to elicit requirements into

concrete sub-requirements, which can be objectively
measured against the component features. Requirements
are elicited into these two levels based on refinement
rules defined in [22].

High-Level Requirements (HLR): - The aim of the
HLR is to identify an initial set of minimum CBS
requirements which correspond to a given business
objective. This initial set of requirements represents a
possible methodology for fulfilling the overall business
vision of a CBS. This emphasis on HLR means the
selection process relies less on pre-emptive decisions
about the candidate component. HLR captures the
requirements as a pair <Gh, Sh> where Gh is a high-level
goal and Sh is a high-level scenario. A high-level goal in
our approach represents a business objective, and the
associated high-level scenario represents the process for
achieving a high-level goal.

Concrete-Level Requirements (CLR): - At the CLR,
the focus is on refining high-level requirements into sub-
requirements that can be used to quantify candidate
components. High-level requirements are refined by
considering the interaction between the system and the
users. These interactions represent a possible method for
achieving a high-level goal defined at HLR. CLR
specifies requirements as a pair <Gc, Sc> where Gc is a
concrete-level goal and Sc is a concrete-level scenario. A
concrete-level goal expresses the manner of realizing a
high-level goal. The associated concrete-level scenario
describes the flow of interactions between a system and
its user to fulfill the concrete-level goal.

Figure 3. Requirements Elicitation Model.

Furthermore, it is important to classify requirements to
enable distinction between core and peripheral
requirements. By analogy with Lee et al. [25, 26] facet
classification model, we classify requirements under three
facets: priority, matching potential and view. This
classification helps in performing an objective measure
between requirements and component features.

Priority - The facet priority represents stakeholders’
desire for a CLR satisfaction. We propose to classify each
CLR priority as mandatory, very important, important or
optional. A mandatory CLR represents a minimum set of
requirements that need to be satisfied in order for the
system to succeed. Very important CLR represents
requirements that ensure significant functionality of the
system. Important CLR represents requirements that

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1053

© 2011 ACADEMY PUBLISHER

ensure sufficient functionality of the system. Similarly,
optional CLR represents requirements that are desirable
but do not affect the success of the system.

Figure 4. Requirements Graph.

Matching Potential - The facet matching potential
represents the CLR prospect of finding a matching
component in the repository. We define the matching
potential as the percentage of the number of candidate
components with the potential to match the CLR to the
total number of components in a repository. Low value of
matching potential indicates a high number of constraints
associated with the CLR realization. High value of
matching potential indicates a low number of constraints
associated with the realization of CLR. The value of
matching potential is computed as follows:

 n
Matching Potential = ∑ CCi / TC (1)
 i = 0

where n is the total number of categories in the

repository with the potential to match the CLR and CC is
the number of components classified in each of these
categories. Finally, TC is the total number of components
in the repository.

View - The facet view classifies a CLR as either actor
specific or system specific. Actor specific CLR are the
objectives of the users who interact with the proposed
system. System specific CLR are the objectives of entities
that do not interact directly with the system but will hold
a stake in the system requirements [8]. A System CLR
provides a mechanism for expressing organizational goals
and constraint requirements that apply to the system as a
whole.

Step 2: Requirements Ranking - In the second step,
each CLR is ranked according to its priority, view and
matching potential. We rank a CLR in a descending order
of priority. Requirements with the same priority are
classified based on their view. Actor specific
requirements get precedence over system level
requirements. Requirements with the same priority and
view are further classified based on their matching
potential values. Requirements with a small ‘matching
potential’ value are ranked higher than requirements with

a bigger ‘matching potential’ value because we aim at
selecting a component for a requirement that has limited
number of choices rather than those with a higher number
of choices. The reason is that by selecting components for
requirements with a bigger number of choices after
component selection for requirements with a smaller
number of choices, we have a better chance of providing
alternatives if a conflict occurs.

Step 3: Requirements Graph - In the third step, we
construct a directed graph called Requirements Graph
(RG), to represent the ranked requirements and the
relationship between them, as shown in Figure 4.

Definition 1: Requirements Graph: A RG is defined
as a tuple {N,E, Root}, where {N,E} is a directed graph;
and Root is the first (starting) node; N is a set of nodes in
a graph, with N = { ni } , i = 1 …. |N|; and E is a set of
edges in the graph, with E = { ei }, i = 1 … |E|.

Definition 2: Node “n”: n ∈ N represents
requirements Ri, which is defined by a tuple <Ri, Ci>,
where Ri is the ith requirements of a CBS; and Ci is the
selected component for the requirement Ri.

Definition 3: Root Node “nr”: nr ∈ N is the first
(starting) node of a RG and is defined as a special node
that represents the overall customer’s business objective
and has NULL value for the selected component for the
overall business objective requirement.

Definition 4: Directed Edge “e”: e ∈ E represents the
association between requirements at consecutive RG
levels. It is denoted by <impact>, which represents the
‘Requirements Associations’ relationship between ni and
nj at two consecutive RG levels.

Definition 5: Requirements Associations “RAij”:
RAij is the association relationship such that node ni can
have either ‘Negative’ or ‘Neutral’ impact on nj. A
‘Negative’ association represents a conflict between two
requirements and a “Neutral’ association represents the
situation that there is no conflict between them.

Table 2 shows the characterization algorithm that
defines a set of activities to construct an RG. We discuss
the algorithm in detail below:

1. For a given set of HLR goals {HLR1, HLR2, …

HLRn}, each HLR goal is inserted as a first level
node in a RG such that HLR1 will be the leftmost
first level node and HLRn will be the rightmost
first level node. Since the component selection
process starts for CLR, each first level node in RG
is represented as <HRL, NULL> where NULL
signifies no component is selected for the
requirement.

2. For each CLR-scenario associated with a HLR-
goal, requirements characterization starts with
analyzing a CLR relationship with leaf nodes of
RG (step 9 in Table 2). The relationship between a
CLR and leaf node is analyzed based on the rules
defined in the section of Trade-off Analysis (step
1: conflict identification). This relationship
investigation considers only the leaf nodes
associated with the same HLR as that of a given
CLR.

1054 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

3. For each neutral relationship between a CLR and a
leaf node, a suitable component is identified (step
17 in Table 2) based on satisfaction and risk
metrics, discussed in detail in the section of Top-
down Analysis. First, candidate components’
satisfaction and risk values are calculated. Next,
these components are ranked according to their
satisfaction to risk ratio. Finally, a component
with the highest value of satisfaction to risk ratio
is selected.

4. For a negative relationship between a CLR and a
leaf node, we use the resolution generation rules
(as discussed in the section of Trade-off Analysis)
to identify possible resolutions to the problem of a
conflicting scenario. Candidate components are
assigned a relevance index that is used to calculate
suitability of each resolution. The resolution with
the highest value of suitability is used to select a
component.

5. Finally, a tuple <CLR, selected component> is
inserted into the RG as a leaf node.

6. Repeat steps 2 to 4 for all requirements in the
stack.

TABLE II.
THE REQUIREMENTS CHARACTERIZATION ALGORITHM

1. Algorithm ()
2. {
3. Insert Root node.
4. Insert all HLR at level one of the RG.
5. Push CLR into the Stack from lowest to highest ranking.
6. While Stack Not Empty do
7. {
8. Pop a CLR from the stack ;
9. If (characterize (CLR, Leaf Node of RG) ! =

SUCCESS)
10. Return FAILURE;
11. Else
12. Return SUCCESS;
13. }
14. }
15. characterize (CLR, Leaf Node of RG)
16. {
17. If (Identify_Relationship (CLR, Leaf Node of RG) ! =

CONFLICT)
18. {
19. Select_Component (CLR);
20. Insert CLR as new leaf node <CLR, selected

component>;
21. Return SUCCESS;
22. }
23. Else If (Trade-off (CLR, Leaf Node of RG) !=

FAILURE)
24. {
25. Generate resolutions for the conflicting scenario;
26. Identify suitable resolution;
27. Select_Component (CLR);
28. Insert CLR as new leaf node <CLR, selected

component>;
29. Return SUCCESS;
30. }
31. Else
32. Return FAILURE;

}

A. Applying Requirements Characterization to the SEJ
System

The first step in requirements characterization is to
elicit requirements. We start eliciting SEJ system
requirements by identifying the SEJ business objective.
The overall business objective of the SEJ system is ‘ to
create a chain of convenience stores where you can find a
solution for any of your daily life problems at hours when
needed’ [13]. There are five high-level requirements,
which represent the overall objectives of SEJ software
system. The high-level requirements of SEJ software
system is to reduce loss of costumers, maximize use of
limited floor space, minimize unsold perishable goods,
shorten inventory turnover time and stock products
according to changing consumer needs. In this paper, we
will consider two high-level requirements, namely, HLR
4 - shorten inventory turnover time; and HLR 5 - stock
products according to changing consumer needs.

Figure 5 shows requirements elicitation for the HLR4.
The HLR4-goal ‘shorten inventory turnover’ describes a
method of fulfilling the SEJ business objective. The
associated HLR4–scenario describes the flow of
interactions among the SEJ entities to achieve the HLR4–
goal. Based on refinement rules defined in [22], we
identify that HLR4–scenario consists of three basic
interactions: (i) ‘co-ordinate supply chain network’; (ii)
‘provide stock ordering decision support’; and (iii)
‘control store inventory’. Next, we consider each HLR–
scenario interaction as a CLR-goal and elicit an
associated CLR–scenario to help achieve the goal. CLR–
scenario actions or events are identified by considering
the interactions between the system and its users. For
example, the CLR-goal to ‘provide stock ordering
decision support to stores’ is realized by three events:
‘display sale performance reports’, ‘display SEJ stock
order recommendations’ and ‘accept or update stock
order recommendation’.

Similarly, HLR5 ‘stock products according to
changing customer needs’ is another method of fulfilling
overall SEJ business objectives. We identify that the
HLR5–scenario consists of three basic interactions: (i)
‘correlate purchase data with customer profile’; (ii)
‘deliver stocks to store in time’; and (iii) ‘update store
inventory in real time’. In this paper, we consider only
the first HLR–scenario interaction to show the conflicting
requirements situations. The first HLR5–scenario
interaction is considered as a CLR–goal and we elicit
associated CLR–scenario to help achieve the goal. The
CLR–goal to ‘correlate purchase data with customer
profile’ is realized by two events: ‘store customer
profile’; (ii) ‘maintain customer privacy’; and (iii)
‘update customer profile information’.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1055

© 2011 ACADEMY PUBLISHER

Figure 5. Requirements Elicitation for the SEJ System

In the second stage of requirements characterization,
we rank each interaction of the CLR scenario. Each CLR
scenario interaction is assigned priority, matching
potential and view. For example, CLR 42.1 has priority,
matching potential and view as ‘very important’, ’15.52’
and ‘system’, respectively. The priority and view is
assigned by a domain expert. Furthermore, we identify
that CLR 42.1 can be matched by the components
classified in ‘reporting’, ‘database reporting’, ‘charting
and graphics’, ‘spreadsheet’ and ‘database management’
categories of component source repository. The number
of components in these categories is 38, 49, 82, 42 and
53, respectively. We calculate ‘matching potential’ of
CLR 42.1 as ((38 + 49 + 82 + 42 + 53)/ 1700) * 100) =
15.52, where 1700 is the total number of components in
the repository. Similarly, all the remaining CLR scenario
interactions are assigned priority, matching potential and
view values, as shown in Table 3.

TABLE III.
REQUIREMENTS CLASSIFICATIONS FOR THE SEJ SYSTEM

HLR CLR Description Priority Matching Potential View

HLR 41

CLR 41.1 Send product order to supplier Important 16.82 Actor
CLR41.2 Send shipping requests to delivery center. Important 16.82 Actor

HLR 42
CLR 42.1 Display sale person order reports. Very important 15.52 System
CLR42.2 Display SEJ stock order recommendation. Very important 8.25 System
CLR 42.3 Accept or update stock order recommendation. Important 11.47 System

HLR 43

CLR 43.1 Scan product shipments as received. Mandatory 13.76 Actor
CLR 43.2 Scanner remits inventory data to store computer. Mandatory 8.35 System

CLR 43.3 Store computer regularly updates SEJ host computer with
inventory data. Mandatory 16.52 System

HLR 51
CLR 51.1 Store customer profile Mandatory 5.58 Actor
CLR 51.2 Maintain customer privacy Mandatory 5.58 Actor
CLR 51.3 Update customer profile information Mandatory 16.52 System

Table 4 shows CLR scenario interactions ranking

based on the ranking rules defined in section 5. For
example, CLR 43.1, CLR 43.2 and CLR 43.3 are all
mandatory requirements; hence, the ranking process starts
with these requirements. Since CLR 43.1 has ‘actor’
view, it is ranked higher than CLR 43.2 and CLR 43.3.
CLR 43.2 and CLR 43.3 are both mandatory and system
specific requirements, so we take their ‘matching
potential’ into account to rank them. Since ‘matching
potential’ of CLR 43.2 is lower than CLR 43.3, we rank
CLR 43.2 higher than CLR 43.3. Requirements with
lower ‘matching potential’ are ranked higher than
requirements with lower ‘matching potential’ because we
first want to select components for a requirement that has
more limited choices than those with a higher number of
choices. We argue that selecting components for
requirements with larger choices provides a better chance
of providing alternatives in cases of conflict.

Finally, in the third step of requirements
characterization, we construct the SEJ requirements
graph, as shown in Figure 6. The SEJ requirements graph
construction starts with inserting a root node, which
represents the overall SEJ business objective. Next, we
insert the HLR as first level nodes in the graph. Based on
SEJ requirements ranking, as shown in Table 4, we start
the component selection process for HLR 4, by
considering the highest ranked requirement CLR 43.1.

TABLE IV.
REQUIREMENTS RANKING FOR THE SEJ SYSTEM

HLR CLR Rank

HLR 4

CLR 43.1 1
CLR 43.2 2
CLR 43.3 3
CLR 42.2 4
CLR 42.1 5
CLR 41.1 6
CLR 41.2 7
CLR 42.3 8

HLR 5

CLR 51.1 1
CLR 51.2 2
CLR 51.3 3

We identity that ‘SmartScan’ is the most suitable
component to fulfill CLR 43.1. The component is
identified using satisfaction and risk metrics, as discussed
in section 6. Further, CLR 43.2 is selected for identifying
suitable component. We analyze its relationship with
CLR 43.1 to identify any potential conflicts between the
requirements. Since there is no conflict between these
two requirements, we identify ‘IPWorks’ as the suitable
component for CLR 43.2. Similarly, ‘TrueDBInput’
component is identified as the suitable component for
CLR 51.1. CLR 51.2 is the next highest ranked
requirement and its relationship is analyzed with CLR
51.1. Since there is a conflicting relationship between

1056 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

CLR 51.1 and CLR 51.2, we identify
‘PureComponentsEntrySet’ as a suitable component for
CLR 51.2. This conflict identification and subsequent
component selection is based on trade-off analysis which
is discussed in detail in section 7.

VI. TOP DOWN ANALYSIS

The top-down approach uses matching criteria between
component features and requirements to calculate a
component’s satisfaction degree and associated risk. The
concrete-level requirements are analyzed against
candidate component features to obtain satisfaction
metrics. We use severity analysis and complexity metrics
to derive component risk assessment. We choose a
suitable component from a range of candidate
components at each level of RG by defining a decision
metrics denoted by D (RG, i). Decision metrics value is
defined as a percentage of component satisfaction degree
and associated risk, as shown in equation 2.

D (RG, i) = (Satisfaction (C) / Risk (C)) x 100 (2)
where i is the depth number where a particular

requirement occurs in the requirement graph. We discuss
satisfaction degree and risk metrics in detail as follows.

A. Statisfacation Degree
A key challenge in CBS requirements engineering is to

reconcile stakeholders’ demands against available
component capabilities. The component matching

involves an evaluation of the degree to which a
component satisfies a requirement. The first step is to
identify component attributes that contribute to the
satisfaction assessment. A component is characterized
according to its characteristics and context dependencies
[27]. Fundamental to a component are its characteristics
that specify the functionality provided. These
characteristics define only the individual elements of a
component, mainly in syntactic terms. However, a
component is subject to configuration dependencies on its
use. These dependencies are both on individual elements
as well as on the relationship among the elements [28].
Thus, it is essential for a component user to understand
the constraints so as to be able to use it properly.

Recently, Cechich et al. [29] defined a measure for
early detection of component functional suitability as a
function of number of compatible functionality, missing
functionality and additional functionality. We believe that
in addition to these three attributes, it is important to
consider the impact of missing and additional features
introduced by candidate components. Further,
configuration constraint is another primary attribute,
which directly affects the satisfaction degree of a
component with reference to a requirement. After a
detailed analysis, we identify a set of attributes, as shown
in Table 5, which need to be considered during
satisfaction degree measurement.

TABLE V.
CRITERIA FOR ASSESSING SUITABILITY OF A COMPONENT

Item Criterion Measurement scale
C1 Compatible features – CF {1,2….n} where n is the number of compatible features.
C2 Missing features – MF {1,2….n} where n is the number of the CLR scenarios not met by a component.
C3 Impact of missing features – IMF {negligible, little, moderate, considerable, great}
C4 Additional features – AF {1,2….n} where n is the number of additional features provided by components and not required

by the requirement.
C5 Impact of additional features – IAF {negligible, little, moderate, considerable, great}
C6 Adaptation effort required – AER {negligible, little, moderate, considerable, great}
C7 Adhere to system architecture – ASA {poor, fair, good, very good, excellent}
C8 Non development cost – NDC {within budget, <5%, 5 – 7 %, 7 – 10 %, > 10%}

We commence the satisfaction measure by considering

CLR.. The satisfaction of a requirement is realized at the
CLR scenario level and each CLR scenario interaction is
objectively measured against component features.
Candidate component features are identified from their
interface specification and information provided in
information brochures, evaluation downloads, user
documentation, tutorials and manuals. Table 5 shows the
checklist of selection criteria that is used to measure the
satisfaction degree of a component with respect to a
requirement (CLR).

We classify our checklist into two main groups:
component characteristics and configuration constraints.
The first group measures the suitability of a component
from the perspective of its characteristics. It consists of
five selection criteria: Compatible Features (CF), Missing
Features (MF), Impact of Missing Features (IMF),
Additional Features (AF) and Impact of Additional
Features (IAF). CF measures the number of component
features that contribute to fulfilling the requirement.

Table 6 shows matching metrics where CLR scenario
interactions are listed in rows and component features are
arranged in columns. A ‘ ’ at the intersection of a CLR
scenario interaction and a component feature indicates
that the corresponding component feature satisfies it.
Similarly, MF and AF are the number of CLR scenario
interactions not fulfilled by a component and the number
of additional features introduced by the component,
respectively. We introduce the notion of IMF, which
quantifies the impact of the missing features as
‘negligible, little, moderate, considerable or great’.
Similarly, IAF quantifies the impact of extra features
introduced by the component as “negligible”, “little”,
“moderate”, “considerable” or “great’. However, it is
important to note that due to human-centric nature of
requirements engineering, a domain expert will play a
key role in determining how requirements are perceived
and how component information are analyzed.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1057

© 2011 ACADEMY PUBLISHER

TABLE VI.
MATCHING METRICS

 Interaction
1

Interaction
2

Interaction
…..

Interaction
n

Feature A1
Feature A2
…….
Feature An

The second group evaluates the compatibility of a

component from the perspective of context dependency.
First, we consider Adaptation Effort Required (AER),
which quantifies the amount of adaptation development
required to use the component. It is important to consider
adaptation cost as, although it usually accounts for less
than half the total CBS development effort, the effort per
line of adaptation averages three times the effort per line
of traditional development code [30]. Adhere to System
Architecture (ASA) analyses the compatibility of a
component regarding its operating system for
development, architecture of product and pre-requires.
Non Development Cost (NDC) assesses the cost
associated with licensing administration [30].

TABLE VII.
UTILITY FUNCTION FOR IMF, IAF AND AER

 Great Considerable Moderate Little negligible
IMF -5 -3 1 3 5
IAF -5 -3 1 3 5
AER -5 -3 1 3 5

TABLE VIII.
UTILITY FUNCTION FOR ASA

 Poor Fair Good Very
Good

Excellent

ASA -5 -3 1 3 5

TABLE IX.
UTILITY FUNCTION FOR NDC

 Within
Budget

< 5% 5 – 7 % 7 – 10 % > 10 %

NDC 5 3 1 -3 -5

First, we define a utility function uf1, based on multi-

attribute utility theory [31] to classify IMF, IAF and
AER. The function uf1 is transformed into the unit
interval {-5, 5}, as shown in Table 7. Similarly, we define
utility function uf2 to classify ASA. The function uf2 is
transformed into the unit interval {-5, 5}, as shown in
Table 8. Finally, we define utility function uf3 based on
US Department of Defense (DOD) risk management
guide [32] to classify NDC. The function uf3 is
transformed into the unit interval {-5, 5} , as shown in
Table 9. We define characterizes measure for a
component c, denoted as CM (c), as:

 CM (c) = CF + (MF x IMF) + (AF x IAF) (3)
We define configuration constraints measure for a

component c, denoted as CCM (c), as:
 CCM (c) = AER + ASA + NDC (4)
Finally, the degree of satisfaction of a component c,

denoted by SD (c), is defined as:
 SD (c) = CM(c) + CCM (c) (5)

B. Risk Assessment
We use risk assessment to quantify the degree of

uncertainty associated with the selection of a component
during a CBS development. Goseva-Popstojanova et al.
[33] defines risk as a combination of probability of
malfunctioning (failure) and the consequence of
malfunctioning (severity). The probability of failure
depends on the probability of occurrence of a fault
combined with the likelihood of exercising that fault in a
scenario in which a failure will be triggered [33]. Since it
is difficult to find exact estimates for the probability of
failure of a component in the early phases of CBS
development, we use complexity to estimate the fault
proneness of a component. Component complexity is
chosen as a quantitative factor because it has a proven
impact on fault proneness [33, 34]. Further, we perform
severity analysis to quantify the impact of the probable
failure. Thus, we define the risk for a component c as:

 Risk (c) = Complexity (c) x Severity_Index (c) (6)

Complexity Analysis
We propose to perform a complexity assessment for a

CBS from the perspective of a system analyst.
Fundamental to a component is its interface, which
characterizes the functionality provided. The interface
defines the services provided by a component and acts as
a basis for its use and implementation. Ideally, an
interface specification describes the functional properties
of a component. Function properties include a signature
part to describe the operations, and a behavior part to
address the overall behavior of a component. The
interface signature delineates the individual elements of a
component in a syntactic manner.

TABLE X.
NO/NP COMPLEXITY METRICS

NO/NP 1 – 19 20 – 50 51 +
1 Low Low Average
2 - 5 Low Average High
6 + Average High High

We present a measure of interface complexity based on

the IFPUG [35] function point count (an international
standard -ISO/IEC 20926:2003). In IFPUG, data
functions are defined as functionality provided to a user
to meet internal and external data requirements and are
classified into two types: (i) internal logical file (ILF) and
(ii) external input file (EIF). The complexities of the ILF
and EIF are determined by the data element type (DET)
and the record element type (RET). We classify the
interfaces that have the same operations and also
exchange data with their environment as candidates for
function count. For each of the selected candidates, we
classify them as either ILF or EIF. Interfaces that have
operations that change the attributes of other interfaces in
the data exchange are classified as ILF. All the remaining
interfaces are classified as EIF.

1058 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

TABLE XI.
COMPONENT INTERFACE COMPLEXITY METRICS

Data Type Low Average High
ILFi --- x 7 --- x 10 --- x 15
EIFi --- x 5 --- x 7 --- x 10

In IFPUG, each identified ILF and EIF is ranked based

on the number of DET and RET using RET/DET metrics
[35]. Since RET is a user recognizable subgroup, we
count the number of operations (NO) in an interface.
Similarly, DET is a unique user recognizable field; we
count the number of parameters (NP) in an interface. By
analogy with RET/DET metrics [35], we propose NO/NP
complexity metrics, shown in Table 10, to rank candidate
interface. Ranked interfaces are assigned weights based
on IFPUG standard weights, shown in Table 11. Finally,
we define an interface complexity measure of a
component i, denoted by ICi, as

 n n
ICi = ∑ ILFi + ∑ EIFi (7)

 i = 1 j = 1

where ILFi and EIFi are the weighted values for a

component interface classified based on its complexity.
An example showing the approach to measuring the
complexity of a CBS specification can be found in [27].

Severity Analysis - In addition to the estimate of the
fault proneness of each of the components based on the
interface complexities, we need to consider the severity
of the consequences of potential failures [33]. For
example, a component may have low complexity, but its
failure may lead to catastrophic consequences. Therefore,
our risk assessment takes into consideration the severity
associated with each component, based on how its failure
affects the requirement satisfaction. We identify that
Volatility of Component (VC) and Supplier Creditability
(SC) help to estimate consequence of the malfunction of a
component. We use VC and SC to estimate the severity
of the component, based on the experience recorded by
other users of the component, and stored in component
repositories.

TABLE XII.
VC SEVERITY CLASSIFICATION

Volatility of component – VC Severity Index (VC)
VC <= 1.22 versions per year 1
1.22 < VC <= 1.38 versions per
year

2

1.38 < VC < 1.54 3
1.54 < VC <=1.7 versions per
year

4

> 1.7 versions per year 5

We calculate VC of a component as the ratio of the

number of component releases to the total number of
years from the first release. For example, ‘Rapid Spell’2
component has had five releases since its launch in 2003.
Therefore, its VC value is 1.25 (five divided by four). We
classify and calculate the severity index of VC by
calculating confidence interval [36] based on a sample

2 www.componentsource.com

size of 80 components available in the component source
repository. We calculate the confidence interval of VC
with the confidence coefficient of 95%. Further, we
assumed that the severity index of a component c with the
VC (c) >= mean is positive. The results of the analysis
indicated that, for 95% of components, their VC value
was in the interval [1.22, 1.54]. The mean value of VC
was 1.38 releases per year. Table 12 shows the severity
index for VC based on our confidence interval analysis.

TABLE XIII.
SC SEVERITY CLASSIFICATION

Supplier creditability – SC Severity Index (SC)
1 5
2 4
3 3
4 2
5 1

SC is the ranking given by the reviewers of the

component. The rating reflects the creditability of the
component. Component source repository provides a
rating of components, based on the reviews, by rating
components on the scale of one to five. A component
with rating five indicates that the customers of the
component are completely satisfied with its functionality,
provided documentation and support. A component with
rating one indicates that the customer is not satisfied with
the provided functionality. Table 13 shows the severity
index for a component on a scale of one to five. We
propose to assign a severity index (SC) of five to a
component, which has a rating of one. This indicates that
the component is less credible and thus, will have a high
degree of severity of consequences associated with its
use. Finally, we define the overall severity index of a
component c, denoted by Severity_Index (c) as:

 Severity_Index (c) = Severity Index (VC) + Severity Index (SC) (8)

C. Applying Top-Down Analysis to the SEJ System
We illustrate our top-down analysis based on CLR

43.2. We identify that CLR 43.2 is achieved as follows:
converting scanner data into a network element, building
network document, processing the request/response and,
finally, writing the network document to an output
stream. We start the satisfaction degree measure of
candidate components for CLR 43.2 by developing
matching metrics, as shown in Table 14. For example, we
identity that the IPWorks component provides the overall
required functionality using XML parsers and file transfer
support. Table 14 shows that there are four compatible
features provided by IPWork and zero missing features.
IPWorks also provides three additional features and they
have ‘little’ effect on the overall CLR 43.2 satisfaction.
Similarly, it requires ‘moderate’ adaptation effort and the
system architecture requirements match to the overall SEJ
software system development platform. However, non-
development cost associated with IPWorks is moderate
(less than 5% over the budget). Therefore, we calculate
satisfaction degree for IPWorks, based on equation 3, 4
and 5, as follows:

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1059

© 2011 ACADEMY PUBLISHER

SD (IPWorks) = (4 + (0x5) + (3 x 1)) + (1 + 3 + 3) = 7 + 7 = 14 (9)

TABLE XIV.
CLR 43.2 MATCHING METRICS

 Convert
data to
network
element

Build
network
document to
be
transferred

Process the
request/res
ponse

Write
the
networ
k data
to an
output
stream

Network
communication

XML parser
SOAP support
File transfer
Email
Network
monitor

Authentication

The IPWorks component has eleven interfaces, which

are identified from the evaluation version of the

component. From eleven interfaces, five qualify as EIF
because operations of these interfaces do not change the
attributes of other interfaces in exchanging the
information. The remaining six are classified as ILF
because they affect the attributes of other interfaces
during the message exchange. Further, functional
complexity of both EIF and ILF interfaces is low and
their weighted complexity value is (5 x 7 = 35) and (6 x 5
= 30), respectively. For a detailed discussion of the way
to classify interfaces and calculate complexity, please
refer to our previous work [27]. Further, we assign a
value of 3 to the volatility of IPWorks because it had six
versions in the last four years (1.5 versions per year),
using Table 12. IPWorks has been assigned rating 3 on
the component source website, thus its SC value is 1.
Finally, we calculate decision metrics value for IPWorks
using equation 2, as shown in Table 15. Similarly, we
calculate decision metrics values for all the candidate
components for CLR 43.2.

TABLE XV.
CLR 43.2 MATCHING METRICS

Component Satisfaction Degree Risk D (RG, i)
CF MF IMF AF IAF AER ASA NDC IC VC SC

IPWorks 4 0 5 3 1 1 3 3 65 3 1 5.38%
PowerTCP 2 2 -2 2 3 -2 3 1 36 2 3 3.33%
SocketTools 2 2 -5 3 1 -5 3 5 58 4 3 -0.49%
SuperCom 2 2 -5 2 1 -5 3 -2 43 1 1 -11.63%
SocketWrench 2 2 -5 0 0 1 -2 3 45 1 1 -6.67%
ComponentSpace 3 1 -5 0 0 -2 3 3 48 5 3 0.52%

VII. TRADE-OFF ANALYSIS

Trade-off analysis aims at balancing the conflicting
interests between stakeholder requirements and
negotiating resolutions during component selection. In
this paper, we consider only interaction conflicts.
Requirements are said to be in interaction conflict if the
satisfaction of one requirement may impair or eliminate
the satisfaction of another requirement [26]. The key
feature of trade-off analysis in our approach is a shift
from a requirements-driven conflict analysis to a
collaborative process in which both requirements and
component features balance the conflicting interests.
Traditionally, interaction conflict analysis [37, 38] has
been achieved by conflict detection, resolution generation
and resolution selection. Conflict between requirements is
detected by matching requirements and potential
resolutions are generated using analytic compromise and
heuristic compensation. Finally, resolutions are selected
based on a set of guidelines.

In CBS development, there is a need to find a balance
between requirements and available component features.
Requirement-driven approaches alone are usually not
sufficient as they do not support a collaborative process
of negotiating individual interests of stakeholders against
a component’s features. We propose a trade-off analysis,
which attempts to find a mutually acceptable resolution to
a conflicting situation by providing an opportunity for

stakeholders to trade-off individual interests. The trade-
off analysis consists of four stages: conflict identification,
potential resolution generation, measuring the
component’s relevance to each potential resolution and
selection of suitable resolution. In the first step,
interaction conflict is identified among requirements. In
the second step, we propose a set of rules to generate
potential resolution to a conflict. In the third step, we
calculate the relevance index for each component with
reference to the potential resolutions. Finally, a suitable
resolution and components are selected using the
relevance measure.

Step 1: Conflict Identification
For a given requirement, trade-off analysis starts with

investigating its relationships with other requirements.
We adopt the concept of Generic Relationship Question
(GRQ) [21] to represent the relationships between
requirements and identify possible conflicts. Suppose we
want to investigate the relationship between two
concrete-level requirements, (1) CLR - X with ranking i
and (2) CLR - Y with ranking i + 1. Since CLR - Y has a
higher ranking than requirement X, we assume that a
suitable component (Component A) has already been
identified and it is represented as a leaf node <CLR - Y,
Component A> in RG. We develop the following GRQ to
represent the relationship between CLR - X and CLR –
Y:

1060 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

How does ‘Requirement X’ relate to ‘Component A’? (10)

where ‘Requirement X’ defines a set of interactions

associated with CLR X–scenario. Similarly, ‘Component
A’ represents a set of component features, which specify
the functionality of the component selected for CLR – Y.

After establishing the GRQ, we propose to start the
conflict identification by doing a pair-wise comparison
between ‘Requirement X’ and ‘Component A’. The set of
interactions identified for ‘Requirement X’ are mapped to
the component features identified for ‘Component A’.
Further, impact of each ‘Requirement X’ interaction is
analyzed against all features associated with ‘Component
A’. This impact can be neutral or negative. A neutral
impact indicates that the component feature does not
influence satisfaction of the interaction. The negative
impact indicates that the component feature does
influence satisfaction of the interaction. We believe this
pair-wise comparison reduces the importance of intuition
in detecting conflicts [39] since it forces the comparison
of all possible interactions.

Table 16 shows conflict identification metrics where
all the interaction steps associated with ‘Requirement X’
are listed in rows, and all the features associated with
‘Component A’ are arranged in columns. We define that
two requirements have a conflicting relationship if there
is at least one negative impact between them. A ‘X‘ at the
interaction of a component feature and CLR scenario
interaction indicates that the interaction has a negative
impact on the component feature. We acknowledge the
fact that a domain expert will play a key role in
identifying the conflicts between requirements.

Figure 6. Requirements Graph for the SEJ System

TABLE XVI.
CONFLICT IDENTIFICATION METRICS

 Feature 1 Feature 2 …. Feature n
Interaction
1

 X

Interaction
2

X X

….
Interaction
n

Step 2: Resolution Generation
The next step in trade-off analysis is to generate

potential resolutions to a conflict. We adopt the concept
of knowledge-based negotiation [40] to propose a set of
rules for resolution generation. Knowledge-based
negotiation proposes concepts of compensation and
dissolution. For compensation, the strategy is to satisfy
requirements outside the conflict to increase the overall
desirability of the resolution by adding new issues to
negotiations. For dissolution, the strategy is to allow
conflicting designs to be part of the specification, but
remove their negative interaction. Dissolution replaces
conflicting items with potentially less contentious items.
In our approach, we propose the following heuristics as a
guideline to generate resolutions.

Rule1: For each conflict, introduce one or a group of
new interactions for the scenario associated with a
requirement with lowest priority in the conflict, such that
it applies a set of constraints, which result in conflict
resolution.

Rule2: Delete an interaction or group of interactions
from the scenario associated with a requirement with
lowest priority in the conflict such that it removes the
conflict.

Rule3: Write an adaptation code for interoperability
between selected components such that it masks the
conflict.

Step 3: Relevance Index
In order to effectively select a suitable resolution to a

conflict, there is a need to analyze the impact of each
resolution and quantify candidate components relevance
with respect to each resolution. We introduce the notion
of a relevance index, which provides a mechanism for
understanding and balancing the satisfaction and risk
associated with each resolution. The relevance index of a
component is defined as a function of a component’s
satisfaction degree, associated risk and impact of each
resolution. We calculate relevance index as follows:
• Calculating satisfaction and risk metrics for the

requirements. We use the set of metrics defined in
section 6 to measure candidate components
satisfaction degree and associated risk with
reference to the requirement. These measures
indicate the potential value for each metrics in the
case where there is no conflict between the
requirement and its predecessor requirements. We
calculate these values to help us in identifying the
impact on component satisfaction and risk caused
by the conflict. We propose to denote these values
as SP and RP respectively.

• Calculating component satisfaction degree and
risk for each resolution. Similarly, we use the set
of metrics defined in section 6 to measure
component satisfaction and associated risk with
reference to each conflict resolution. These
measures indicate the actual value for each metrics
with reference to a conflict resolution. We propose
to denote these values as SA and RA respectively.

• Calculating impact of resolution for each metrics.
Whenever a conflict is detected and a set of

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1061

© 2011 ACADEMY PUBLISHER

resolutions is generated, it is necessary to take into
account the impact of the resolutions on the
candidate component’s satisfaction. When a
satisfaction metric value decreases against its
potential value, we assign an impact factor to the
component’s satisfaction degree to quantify the
impact introduced by the conflict resolution. We
define the Satisfaction Impact Factor (SIF) as

if (SA < 0) then SIF = (SA – SP) / SA
else if (SA >= 0) then SIF = (SP – SA) / SA (11)

• Calculating the relevance index (RIc) for each
component. Relevance percentage for a
component in a resolution is defined as the ratio of
a component’s satisfaction degree and risk
subtracted by the associated impact factor.

 RIc = ((SA / RA) – SIF) x 100 (12)

Step 4: Situable Resolution Selection
The last step of trade-off analysis is to identify
suitable resolution and select relevant components.
We propose to identify suitable resolutions and
select relevant components by comparing the
relevance index measures. However, it is
important to note that the final figures of the
relevance index cannot be used as the sole
criterion for selecting suitable resolutions and
relevant components. For example, the same
relevance measure may be achieved for two
components, but the individual attributes that
contribute to the measure may be different from
one another. Hence, we define the following steps
as a guide on selecting suitable resolutions and
components.
Rule 1: Calculating the suitability of each
resolution, with the suitability of each resolution
defined as the sum of relevance indexes of all
components for the resolution divided by the total
number of components.

 C
Suitability = ∑ RIc / C (13)

 i = 0
where C is the total number of components.
Rule 2: Identifying the most suitable resolution by
selecting the one with highest value of suitability.
Rule 3: Formulating the most suitable resolution
and selecting the component with the highest
value of relevance index.
Rule 4: If two, or more than two, components
have the same relevance index, select the
component with the highest value of satisfaction.
Rule 5: If two, or more than two, components
have the same value for relevance index and
satisfaction, then select the component with the
lowest value of risk.

A. Applying Trade-off Anlysis to the SEJ System
The first step in trade-off analysis is to analyze the

relationship between requirements and identify potential
conflicts. Figure 6 shows an example of a negative

relationship between CLR 51.1 - ‘Store customer profile’
and CLR 51.2 – ‘Maintain customer privacy’. Since, CLR
51.1 is the highest ranked requirement for HLR 5, the
‘TrueDBInput’ component has already been selected
using top-down analysis. We represent the relationship
between CLR 51.1 and CLR 51.2 by defining the
following GRQ template.

How does ‘Requirement 51.2’ relate to ‘Component

TrueDBInput’? (14)

We identify that ‘Component TrueDBInput’ consists

of three features, namely, ‘data validation’, ‘data storage
and ‘support of user friendly data entry’. Similarly,
‘Requirement 51.2’ consists of two interactions which
help achieve CLR 51.2 – scenario. These interactions are:
(i) control access to customer data and (ii) protect
customer data.

TABLE XVII.
CONFLICT IDENTIFICATION METRICS FOR CLR51.1 & CLR 52.1

 Data validation Data storage User friendly
data entry

Control access
to customer
data

Protect
customer data

 X

We start the trade-off analysis by developing conflict

identification metrics, as shown in Table 17, to perform a
pair-wise comparison between ‘Requirement 51.2’ and
‘Component TrueDBInput’. We select the first
‘Requirement 51.2’ interaction and analyze its impact on
all the ‘Component TrueDBInput’ features. This
interaction has a neutral impact on all the three features.
For example, the ‘data validation’ feature does not
influence the satisfaction of ‘control access to customer
data’. Next, we select the second ‘Requirement 51.2’
interaction and analyze its impact on all the ‘Component
TrueDBInput’ features. This interaction has a neutral
impact on ‘data validation’ and ‘user friendly data entry’
features. However, it has a negative impact on ‘data
storage’ feature because stakeholders of the SEJ system
wants to obtain all customer’s consent before data
storage. Therefore, it is important to resolve this conflict
before selecting a suitable component for CLR 51.2.

TABLE XVIII.
RELEVANCE INDEX METRICS

Component SA Risk SP SIF RI1
PureComponents
EntrySet

14 130 17 0.214286 -10.66%

ComponentOne
Input

12 190 15 0.25 -18.68%

Xceed -10 315 -2 0.8 -83.17%
AspLib 4 258 9 1.25 -

123.45%
Input Pro -7 220 -6 0.142857 -17.47%
Dxperience -10 565 -8 0.2 -21.77%

The second step in trade-off analysis is to generate

resolutions to a conflict. We identify the following

1062 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

potential resolutions for the abovementioned conflict
based on the resolution generation rules just defined.
• Resolution 1: Add a new interaction ‘notify

customer before data entry’ in CLR 51.2 -
scenario to provide a compromise for the
identified conflict.

• Resolution 2: Add a new interaction ‘collect
information only if customer agrees to data
collection’ in CLR 51.2 - scenario to provide a
compromise for the identified conflict.

TABLE XIX.
RESOLUTION SELECTION METRICS

Component RI1 RI2
PureComponents
EntrySet

-10.66% -10.95%

ComponentOne Input -18.68% -17.86%
Xceed -83.17% -83.94%
AspLib -123.45% -124.10%
Input Pro -17.47% -18.23%
Dxperience -21.77% -20.96%

Suitability -45.87% -46.01%

For each resolution, we calculate the relevance index

for the candidate components, as shown in Table 18. For
example, we calculate the relevance index for
‘PureComponentsEntrySet’. Firstly, we calculate
components satisfaction degree and risk with reference to
original CLR 51.2. The ‘PureComponentsEntrySet’
component has two CF, zero MF with ‘great’ impact; and
three AF with negligible impact. Thus, its potential
satisfaction value is measured as 17. Next, we calculate
its satisfaction degree with reference to resolution 1
which modified CLR 51.2 by adding a new interaction.
Since, ‘PureComponentsEntrySet’ component does not
support the new interaction; it now has two CF, one MF
with considerable impact and three AF with negligible
impact. Thus, its actual satisfaction value is measured as
14. It is important to note that the risk value remains the
same because it does not depend on the set of CLR
interactions. Finally, we calculate the impact factor for
the component ‘PureComponents EntrySet’, based on
equation 11, as .21 ((17 – 14) /17). Similarly, the
relevance index of the component is calculated, based on
equation 12, as -10.66% ((14/130) - .21)) x 100.

Similarly, we calculate the suitability of each
resolution based on equation 13. Finally, based on rules
defined in step 4 of section 7, we identify that a suitable
resolution for the conflict is resolution 1 and
‘PureComponents EntrySet’ is the component which best
satisfies the requirement CLR 51.2, as shown in Table 19.
It is important to note that the suitability values for both
resolutions are very similar because one new interaction
was introduced for both resolutions and both of them
were not directly supported by candidate components.
Further, all components have negative relevance index
values which also highlights the fact that some sort of
tailoring code is required by the components in order to
meet stakeholder requirements.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented RAAP, a
Requirements Analysis and Assessment Process
framework for CBS that can provide quantitative
information and guidelines for stakeholders to evaluate
the suitability of the components for a given set of
requirements. RAAP guides stakeholders through a
collaborative process of requirements elicitation,
matching and trade-off analyses. This collaborative
process involves continuous requirements analysis by
providing a set of metrics for balancing the stakeholder
expectations against potential risks. We propose the
notation of a relevance index and identify suitable
resolutions to a conflicting scenario. RAAP investigates
proposed resolutions and evaluates the risk associated
with each proposal. It also helps in assessing types of
conflicts that may arise when different components are
integrated into a CBS. Using the SEJ system as a case
study, we demonstrated the usefulness RAAP. This SEJ
case study consists of eleven requirements, two
conflicting requirements situation and a RG containing
fourteen nodes.

In this work, we have gained a few insights. The
collaborative assessment of requirements provides a road
map for identifying risks and improving the quality of the
process by selecting suitable components. Our
requirements analysis algorithm evaluates requirements
in a descending order from high priority to low priority
requirements, thus, first selecting components which
satisfy high priority requirements. It helps in developing a
CBS with high stakeholder satisfaction. One of the
limitations of RAAP is that we consider only the
functional requirements. An important aspect of a CBS is
its non-functional requirements, like security and
performance. It is important to incorporate these non-
functional requirements during CBS development
because the non-functional requirements can also conflict
with one another and need to be represented and
analyzed. Furthermore, in the course of applying RAAP
to the SEJ software system, we observed the following
points.
• Comprehensive assessment of candidate

components helps in making informed decisions
during component selection. Our case study shows
that satisfaction and risk measures aid in making
informed decisions about component selections.
Furthermore, they provide a mechanism for
understanding and measuring the impact of
changes during conflict resolution. For example,
Table 15 indicates how candidate components
match a requirement by quantifying their
satisfaction degrees and associated risks.

• Development of CBS with likelihood of high
priority requirements satisfaction. Our process
starts selecting components by ranking
requirements based on their priority, view and
matching potential. Selecting components based
on this ranking helps CBS satisfy at least the actor
specific and high priority requirements.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1063

© 2011 ACADEMY PUBLISHER

• Early detection of components that will require
adaptation effort. As shown in our case study,
during the top-down and trade-off analysis, a
component can have a negative satisfaction
measure, which indicates that the component will
need some sort of wrapper code to either satisfy
the requirement or avoid the conflict. Thus, these
satisfaction numbers enable a system analyst to
identify these components early in the
requirements and specification phases of a CBS
life cycle.

• Easy back tracking of risks. Our process also
develops a requirements graph, as shown in Figure
6, which can be used as a possible way to
backtrack any earlier decisions regarding
component selections and required adaptation
efforts.

• The Need for a standard notation. Component
information in a component source repository is
available in a number of formats ranging from
natural language descriptions; help files, to sample
evaluation copies. A domain expert plays a role in
how requirements are perceived and component
information is analyzed. Thus, there is a need to
extend Unified Modeling Language (UML) [41],
an industry de-facto standard, to describe the
RAAP specifications. For example, Hussein et al.
[42] proposed a UML profile to specify intrusion
detection facilities during CBS development.

• The Need for developing an automated tool. An
apparent obstacle to the use of the RAAP is the
effort and time required to collect the relevant
metrics. In our case study, on average five
candidate components were evaluated for each
CLR; and it involved on average thirty
computations for matching between CLR
scenarios and component features. We plan to
develop an automated tool for RAAP. The tool
will consist of six modules: namely, requirements
elicitor, component analyzer, graph generator,
metrics collectors, conflict resolver and user
interface. The requirements elicitor module will be
used for eliciting stakeholder requirements, which
contain high-level and concrete-level
requirements. The requirements elicitor module
will rank requirements based on priority, matching
potential and view. The component analyzer
module will extract component feature
information contained in a repository. The graph
generator module will construct a directed graph
to represent the requirements, the selected
components and the relationship between different
requirements. The metrics collector module will
compute the satisfaction and risk metrics for each
requirement of the system. The conflict resolver
module will describe the conflicts between
requirements, generate the resolutions and
calculate the relevance indexes to help software
designers select a suitable resolution for a given
conflicting requirements situation. Finally, the

user interface module will facilitate users to
interactively enquire about the selected
components.

For our future work, we plan to investigate the benefits
of satisfaction, risk, resolution selection metrics; and
relevance index for a CBS. We also aim to extend UML
so that a CBS using RAAP can be specified in UML.
This will help the automation as both stakeholder
requirements and component specifications can be based
on machine-readable UML.

ACKNOWLEDGMENT

The second author would like to thank King Fahd
University of Petroleum and Minerals, Dhahran, Saudi
Arabia for its continuous support in research.

REFERENCES

[1] N. A. Maiden and C. Ncube, "Acquiring COTS Software
Selection Requirements," IEEE Software, vol. 15, pp. 46-
56, 1998.

[2] K. R. P. H. Leung and H. K. N. Leung, "On the Efficiency
of Domain based COTS Product Selection Method,"
Information and Software Technology, vol. 44, pp. 703 -
715, 2002.

[3] C. Alves and A. Finkelstein, "Investigating Conflicts in
COTS Decision-Making," International Journal of
Software Engineering and Knowledge Engineering, vol.
13, pp. 1-21, 2003.

[4] L. Chung and K. Cooper, "Knowledge Based COTS Aware
Requirements Engineering Approach," In Proceedings of
the 14th international conference on Software engineering
and knowledge engineering, pp. 175-182, 2002.

[5] I. Sommerville, "Integrated Requirements Engineering: A
Tutorial," IEEE Software, vol. 22, pp. 16 - 23, 2005.

[6] S. Lauesen, "COTS Tenders and Integration
Requirements," In Proceedings of 12th IEEE International
Requirements Engineering Conference, Kyoto, Japan, pp.
166-175, 2004.

[7] C. Szyperski, D. Gruntz, and S. Murer, Component
Software - Beyond Object - Oriented Programming,
Second edition ed: Addison-Wesley, 2002.

[8] G. Kotonya and J. Hutchinson, "Viewpoints for Specifying
Component Based Systems," In Proceedings of 7th
International Symposium on Component Based Software
Engineering, vol. LNCS 3054, pp. 114 - 121, 2004.

[9] C. Rolland, "Requirements Engineering for COTS Based
Systems," Information And Software Technology, vol. 41,
pp. 985 - 990, 1999.

[10] B. Boehm and C. Abts, "COTS Integration: Plug and
Pray?," IEEE Computer, vol. 32, pp. 135 - 138, 1999.

[11] C. Alves, "COTS Based Requirements Engineering,"
Component Based Software Quality, LNCS 2693, pp. 21 -
39, 2003.

[12] C. Alves and A. Finkelstein, "Requirements Negotiation
for COTS-based Systems: Challenges and Open Issues," In
Proceedings of Second International Workshop on
Requirements and COTS Components (RECOTS'04),
Koyoto, Japan, 2004.

[13] A. Ishikawa and T. Nejo, The Success of 7-Eleven Japan:
Discovering the Secrets of the World's Best-Run
Convenience Chain Stores: World Scientific Publishing
Co., 1998.

[14] J. Kontio, S.-F. Chen, K. Limperos, R. Tesoriero, G.
Caldiera, and M. Deutsch, "A COTS Selection Method and

1064 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

Experience of its use," In Proceeding of 20th Annual
Software Engineering Workshop, Greenbelt, Maryland,
1995.

[15] S. Whang, C. Koshijima, H. Saito, T. Ueda, and S. V.
Horne, Seven Eleven Japan (GS18): Stanford University
Press, 1997.

[16] S. J. Bleistein, A. Aurum, K. Cox, and P. K. Ray, "Strategy
Oriented Alignment in Requirements Engineering: Linking
Business Strategy to Requirements of e-Business Systems
using the SOARE Approach," Journal of Research and
Practice In Information Technology, vol. 36, pp. 259 - 276,
2004.

[17] S. J. Bleistein, K. Cox, and J. Verner, "Validating strategic
alignment of organizational IT requirements using goal
modeling and problem diagrams," Journal of Systems and
Software, vol. 79, pp. 362 - 378, 2006.

[18] S. J. Bleistein, K. Cox, J. Verner, and K. T. Phalp, "B-SCP:
A Requirements Analysis Framework for Validating
Strategic Alignment of Organizational IT based on
Strategy, Context and Process," Information and Software
Technology, vol. 48, pp. 846-868, 2006.

[19] J. Lowy, Programming .NET Components: O'Reilly
Media, Inc, 2005.

[20] K. C. Wallnau, S. A. Hissam, and R. C. Seacord, Building
Systems from Commercial Components: Addison- Wesley,
2002.

[21] M. G. Mendonca and V. R. Basili, "Validation of an
Approach for Improving Existing Measurement
Frameworks," IEEE Transactions on Software
Engineering, vol. 26, pp. 484 - 499, 2000.

[22] C. Rolland, C. Souveyet, and C. B. Achour, "Guiding Goal
Modeling Using Scenarios," IEEE Transactions on
Software Engineering, vol. 24, pp. 1055 - 1071, 1998.

[23] A. V. Lamsweerde and E. Letier, "Handling Obstacles in
Goal-Oriented Requirements Engineering," IEEE
Transactions on Software Engineering, vol. 26, pp. 978 -
1005, 2000.

[24] C. Potts, K. Takahashi, and A. I. Anton, "Inquiry-based
Requirements Analysis," IEEE Software, vol. 11, pp. 21 -
32, 1994.

[25] J. Lee and N.-L. Xue, "Analyzing User Requirements by
Use Cases: A Goal-Driven Approach," IEEE Software, vol.
16, pp. 92 - 101, 1999.

[26] J. Lee, N.-L. Xue, and J.-Y. Kuo, "Structuring
Requirement Specifications with Goals," Information and
Software Technology, vol. 43, pp. 121 - 135, 2001.

[27] Sajjad Mahmood and Richard Lai, "A Complexity
Measure for UML Component System Specification,"
Software-Practice and Experience, Vol. 38, Issue 2, pp.
117 – 134, 2008.

[28] J. Han, "A comprehensive interface definition framework
for software components," In Proceedings of 998 Asia
Pacific Software Engineering Conference, Taipei, Taiwan,
pp.110-117, 1998.

[29] A. Cechich and M. Piattini, "Early Detection of COTS
Component Functional Suitability," Information and
Software Technology, vol. 49, pp. 108 - 121, 2007.

[30] V. R. Basili and B. Boehm, "COTS-based Systems Top 10
List," IEEE Computer, vol. 34, pp. 91-93, 2001.

[31] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach: Thomson Computer
Press, 1996.

[32] "Risk Management Guide for DOD Acquisition,"
Department of Defense, 2003.

[33] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W.
Abdelmoez, D. E. M. Nassar, H. Ammar, and A. Mili,
"Architectural-level risk analysis using UML," IEEE

Transactions on Software Engineering, vol. 29, pp. 946-
960, 2003.

[34] Khaled El Emam, Walcelio Melo, and J. C. Machado, "The
Prediction of Faulty Classes Using Object Oriented Design
Metrics," Journal of Systems and Software, vol. 56, pp. 63
- 75, 2001.

[35] IFPUG, Function Point Counting Practices Manual,
Release 4.1: International Function Point Users Group,
Princeton Junction NJ, 2000.

[36] W. Mendenhall and T. Sincich, Statistics for Engineering
and the Sceinces: Maxwell Macmillan International, 1992.

[37] A. v. Lamsweerde, R. Darimont, and E. Letier, "Managing
Conflicts in Goal-Driven Requirements Engineering,"
IEEE Transactions on Software Engineering, vol. 24, pp.
908 - 926, 1998.

[38] W. N. Robinson and S. D. Pawlowski, "Managing
Requirements Inconsistency with Development Goal
Monitors," IEEE Transactions on Software Engineering,
vol. 25, pp. 816 - 835, 1999.

[39] L. M. Cysneiros and J. C. S. d. P. Leite, "Nonfunctional
Requirements: From Elicitation to Conceptual Models,"
IEEE Transactions on Software Engineering, vol. 30, pp.
328-350, 2004.

[40] W. N. Robinson and S. Fickas, "Supporting Multi-
Perspective Requirements Engineering," In Proceedings of
First International Conference on Requirement
Engineering, Silver Spring, MD, 1994.

[41] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual: Addison-Wesley,
2005.

[42] M. Hussein and M. Zulkernine, "Intrusion detection aware
component-based systems: A specification-based
framework," The Journal of Systems and Software, vol. 80,
pp. 700-710, 2007.

Richard Lai is with the Department
of Computer Science and Computer
Engineering at La Trobe University,
Australia. Prior to joining La Trobe, he
had spent more than 10 years in the
computer and communications industry.
He was ranked as the world’s number
one scholar in systems and software
engineering consecutively for four years
(1999–2002), according to an annual

survey published in the Journal of Systems and Software. His
current research interests include component-based software
system, software measurement, requirements engineering, and
global software development.

Sajjad Mahmood received the PhD
degree in computer science, from La
Trobe University, Melbourne, Australia.
He is an assistant professor of the
Information and Computer Science
Department at the King Fahd University
of Petroleum and Minerals, Dhahran,
Saudi Arabia. His research interests

include software reuse, component-based software engineering
and software product lines.

JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011 1065

© 2011 ACADEMY PUBLISHER

Shaoying Liu is a professor in the
department of computer science at Hosei
University. He received his Ph.D in
formal methods at the University of
Manchester, UK, and has experienced in
working at Xi’an Jiaotong University,
the University of York, the University of
London, and Hiroshima City University
before 2000. His research interests

include formal methods, formal engineering methods, software
inspection, testing, and intelligent software engineering
environments. He has published over 110 papers in refereed
journals and international conferences, one book titled “Formal
Engineering for Industrial Software Development” with
Springer, and another four edited conference proceedings. He is
a fellow of British Computer Society, senior member of IEEE
Computer Society, and member of Japan Society for Software
Science and Technology.

1066 JOURNAL OF SOFTWARE, VOL. 6, NO. 6, JUNE 2011

© 2011 ACADEMY PUBLISHER

