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Abstract— Success of a Component Based System (CBS) 
depends heavily on the selection of the right components. In 
reality, components are usually designed for general 
purposes and finding the ideal ones is often very difficult. 
The CBS requirements process is hence more complicated 
than the conventional approach. In this paper, we present a 
Requirements Analysis and Assessment Process (RAAP) for 
CBS that can provide quantitative information and 
guidelines for stakeholders to evaluate the suitability of the 
components for a given set of requirements. Subsequently, 
they will be able to select the most appropriate components 
that best satisfy their needs, taking into consideration the 
risks involved and the conflicts that could arise as a result of 
selecting certain components earlier in the process. RAAP 
consists of three phases: (i) requirements characterization 
which elicits user requirements; (ii) top-down analysis 
which calculates the degree of satisfaction of a component 
and the amount of risks involved; and (iii) trade-off analysis 
which identifies and resolves the potential conflicts in 
requirements after certain components have been selected. 
We also present an application of RAAP to the Seven Eleven 
Japan system. 
 
Index Terms— Component based system, software metrics, 
requirements analysis, risk assessment 
 

I.  INTRODUCTION 

Component Based System (CBS) requirements 
analysis and component selection is widely recognized as 
an interrelated process, which plays a central role in 
overall CBS development. Software literature [1-5] 
shows that CBS success depends on the ability to select 
suitable components. An inappropriate component 
selection can lead to adverse effects such as short-listed 
components hardly fulfilling the required functionalities, 
and introducing extra costs in integration and 
maintenance phases [2]. Individual components usually 

provide capabilities that might not satisfy all system 
requirements and some of them may be unnecessary for a 
given system. This reduces the chance of a good match 
between a component and stakeholder requirements. 
Therefore, it is difficult to find a supplier who can meet 
all stakeholder requirements [6]. In this paper, we adopt 
Szyperski’s definition of a component  [7]: “A software 
component is a unit of composition with contractually 
specified interface and explicit context dependencies 
only. A software component can be deployed 
independently and is subject to composition by a third 
party”. 

Recent research [3, 5, 8] suggests that CBS 
requirements analysis does not need to be completed 
before starting component selection. However, current 
CBS development approaches have a requirements 
process that is based on strict requirements definition. 
This implies that either candidate components have to be 
eliminated because they do not meet the stated 
requirements or they will need to be changed 
significantly in order to satisfy such restrictive 
requirements [3]. It reduces the scope of requirements 
negotiation [8] and makes it difficult to evaluate how 
components fit in with overall system requirements [9]. 

Fundamental to CBS success is the need for a 
collaborative process whereby both stakeholders and 
candidate components balance the conflicting interests 
between what is needed and what is available  [10, 11]. 
This collaborative process needs to focus on how to share 
knowledge between stakeholders and components and 
facilitate negotiation of individual interests during 
component selection. Component selection involves a 
continuous process of requirements negotiation and for an 
effective requirements negotiation, it is necessary to 
analyze the impact of the negotiation [12]. This involves 
balancing a component’s satisfaction against the involved 
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risks. Risk assessment is another important attribute 
affecting overall CBS development as it provides a basis 
for comparing candidate components by focusing on their 
risk profiles.  

In this paper, we present a Requirements Analysis and 
Assessment Process (RAAP) framework for CBS that can 
provide quantitative information and guidelines for 
stakeholders to evaluate the suitability of the components 
for a given set of requirements. Subsequently, they will 
be able to select the most appropriate components that 
best satisfy their needs, taking into consideration the risks 
involved and the conflicts that could arise as a result of 
selecting certain components earlier in the process. 
RAAP consists of three phases: (i) requirements 
characterization which elicits user requirements; (ii) top-
down analysis which calculates the degree of satisfaction 
of a component and the amount of risks involved; and 
(iii) trade-off analysis which identifies and resolves the 
potential conflicts in requirements after certain 
components have been selected. We also present an 
application of RAAP to the Seven Eleven Japan system 
[13]. 

The contribution of our work is the development of a 
collaborative process, which provides a platform to 
quantitatively analyze individual interests and come to an 
agreement in a conflicting scenario. We present the 
notion of specifying requirements at two abstraction 
levels so as to minimize early component exclusion and 
accept functionality limitations that cannot be met. We 
propose a requirements analysis algorithm that enables a 
systematic evaluation of requirements based on 
requirements priorities. Further, we have developed 
satisfaction and risk metrics, which enable a system 
analyst to better, understand what is needed and what is 
available. These metrics allow us to derive the 
distribution of components that are appropriate for the 
resolution of conflicts in different scenarios. Our work 
provides a technique to investigate proposed resolutions 
and evaluate the risks associated with each proposal. 
Further, it helps in assessing conflicts that may arise 
when different components are integrated into a CBS. 

II.  RELATED WORK 

Off the Shelf Option (OTSO) method [14] is a process 
that directly addresses the issue of component 
identification. The process is based on hierarchical 
evaluation, which decomposes the requirements into a set 
of hierarchical criteria. It facilitates a systematic, 
repeatable and requirement-driven component 
identification and selection process. OTSO provides a 
systematic component selection process and uses an 
analytic hierarchy process to provide support in decision-
making. However, it does not discuss how to conduct 
requirements acquisition and how to compare candidate 
components. 

Procurement Oriented Requirements Engineering 
(PORE) [1] is based on an iterative process of 
requirements acquisition and component evaluation. It 
uses a template-based approach for refining the candidate 
component list until a suitable component has been 

selected. It proposes to use strict criteria to analyze how 
candidate components satisfy requirements. However, 
there is a lack of specific detail on how requirements are 
used in the evaluation process. Furthermore, there is a 
lack of assessment of the compliance process. 

COTS Aware Requirements Engineering (CARE) [4] 
is a goal-oriented requirements engineering approach 
which highlights the importance of keeping requirements 
flexible. CARE classifies requirements as: stakeholder 
requirements and component requirements, with 
emphasis on reducing the gap between these two 
requirements groups. However, CARE lacks clear 
guidelines for handling possible mismatches between the 
stakeholder requirements and the candidate component 
features. 

Kotonya et al. [8] propose a method for CBS 
requirements engineering based on the notion of 
viewpoints. It is a service-oriented requirements approach 
that interleaves the process of requirements with 
component verification, negotiation and planning. 
However, this approach lacks guidelines on how to rank 
requirements and on verification of requirements against 
component features. 

Alves et al. [3] propose an approach to evaluate 
components in terms of how well they match customer 
requirements and provides a conflict management 
framework to identify the components based on 
resolution proposals and risk evaluation. The modeling of 
goals starts with the elicitation of high-level goals that 
represent the stakeholders’ concerns. Each goal is then 
further divided into sub goals and represented by a graph 
structure using AND/OR tree. However, there is no 
detailed discussion on how to perform risk evaluation. 
Further, there is no quantifiable process for evaluating 
candidate components based on their satisfaction and risk 
assessments. 

TABLE I.   
COMPONENTS FOR THE SEJ SYSTEM 

Component Name Description 
Smart Scan Provides ability to read barcodes 

IPWorks Provides ability to write 
connected applications 

PowerTCP Supports data communication 
SocketTools Integration of internet 

communication functionality 
SuperCom Provides ability for serial 

communication 
Socket Wrench  Provide TCP/IP networking 

functionality 
Component Space Data communication within 

windows and web applications 
VSView Provides ability to format text 

XtraReport Provides ability to create reports 
TrueDBInput Provides ability to acquire and 

format user inputs 
PureComponentEntrySet Enables data customization 

ComponentOneInput Enables data customization 
Xceed Provides ability to support front-

end and back-end application 
development 

InputPro Enables creation of data entry 
interfaces 

Dxperience Enables creation of windows 
forms 
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III.  SEVEN ELEVEN JAPAN SYSTEM 

In this section, we describe our case study, the Seven 
Eleven Japan (SEJ) system [13] requirements. We 
selected the SEJ system for the following reasons: (1) it is 
an application of significant size; (2) availability of SEJ 
research literature [13, 15]; and (3) its application as a 
validation of requirements techniques [16-18].  SEJ 
system manages a national franchise of independently 
owned convenience stores and uses its software system to 
leverage information to coordinate a supply chain of 
business partners. It ensures the stores are stocked with 
precisely the products that consumers want and when 
they want them [18]. The stakeholders of the SEJ system 
include product supplier, delivery centers, franchise 
stores and SEJ customers [18]. 

 
Figure 1.  The SEJ System Architecture. 

Figure 1 shows the high-level system architecture of 
the SEJ system. It consists of two main parts: ‘SEJ Host 
Controller’ and ‘SEJ Store Controller’. The ‘SEJ Store 
Controller’ interacts with end customers via ‘sale 
register’ and ‘product scanner’. It communicates with the 
‘SEJ Host Controller’ to pass information about a store’s 
inventory levels, customer behavior etc. The ‘SEJ Host 
Controller’ shares information with the delivery centers 
to coordinate the supply chain. It also orders products 
from suppliers for delivery to the stores. Further, it 
provides all the administration and reporting 
functionalities of the SEJ system.  

A. Components for the SEJ Software System 
In our case study, we identified eleven requirements 

from the SEJ literature and used component source1 as 
the component repository. We have selected component 

                                                           
1 www.componentsource.com  

source as the repository because it provides over 1,700 
components grouped into 90 categories. We assume that 
the SEJ software system is developed on a Microsoft .Net 
platform [19] and we need to buy a single license for the 
components. Table 1 shows the list of components 
selected for the SEJ system. 

IV.  THE RAAP FRAMEWORK 

CBS development is a complex and risk-prone process 
[20] which needs a flexible requirements analysis 
technique that provides an opportunity for both 
stakeholders and component vendors to reach a mutually 
acceptable agreement. We believe that a CBS 
requirements model needs to address three key issues: 
understanding stakeholder requirements and component 
features; quantifying alternatives based on satisfaction 
and risk analysis; and balancing a component’s 
satisfaction against the involved risk during conflict 
resolution. By analogy with Mendonca et al.’s 
measurement framework [21], our Requirements and 
Analysis and Assessment Process can be summarized the 
framework shown in Figure 2. 

RAAP consists of three phases: namely, requirements 
characterization, top-down analysis and trade-off 
analysis. The first phase - requirements characterization - 
starts with a process to elicit stakeholder requirements. 
We propose the use of a goal-oriented requirements 
engineering process to specify stakeholder demands. 
After this process, requirements are ranked according to 
their priority, view and matching potential. The ranked 
requirements are analyzed and represented as a directed 
graph to specify the relationship between requirements. 
The second phase - top-down analysis - presents a metrics 
hierarchy to quantify requirements that match component 
features. It uses satisfaction and risk metrics to select 
suitable components for each requirement. The degree of 
satisfaction measure involves the evaluation of a 
component’s syntactic properties and configuration 
constraints against a given requirement. The risk is 
measured as a function of the complexity and severity 
assessment of a component. The third phase - trade-off 
analysis - is executed to identify and resolve the potential 
conflicts in requirements. A conflict between 
requirements is detected by analyzing the relationship 
between requirements, and potential resolutions are 
generated using a set of heuristic rules. Finally, we 
propose a set of resolution selection rules for a trade-off 
between requirements and components. 

Figure 2 also shows the information flow and control 
flow of our proposed approach. The control flow 
(represented as solid lines) is determined by the 
interaction between the phases. A requirement acts as a 
unit of analysis and the top-down and the trade-off 
analyses is applied incrementally. The requirements 
characterization and associated algorithm act as a 
prerequisite for the top-down and trade-off analyses. The 
top-down and trade-off analyses phases also interact with 
each other when the degree of satisfaction and risk 
metrics calculated during the top-down analysis phase are 
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used for relevance index and negotiation at the trade-off 
phase. 

 
Figure 2.  The RAAP Framework. 

V.  REQUIREMENTS CHARACTERIZATION 

Requirements characterization is used to elicit, rank 
and represent stakeholder requirements, and determine 
how they relate to each other. Requirements 
characterization consists of three steps and we discuss 
them in detail as follows: 

Step 1: Requirements Elicitation - CBS requirements 
need to start with a less specific and more flexible 
definition [3]. A flexible requirements definition 
increases the probability of finding matching components 
as requirements either exclude the use of components or 
require a large modification because they are less 
stringent. We propose to elicit stakeholder demands using 
goal - scenario coupling approach [22]. In this paper, we 
adopt the goal definition [23]: “an objective the 
composed system should meet”. Similarly, we adopt the 
scenario definition [24]: “a proposed specific use of the 
system”. In the goal scenario coupling approach, goal 
discovery and scenario authoring are complementary 
activities. After goal discovery, scenario authoring is 
initiated, followed by goal discovery. The “goal-
discovery, scenario-authoring” sequence is repeated to 
incrementally elicit requirements [22]. 

The goal-scenario approach [22] is used to elicit CBS 
requirements because it allows requirements to be 
represented at different levels of abstraction. This 
provides a systematic process for refining high-level 
requirements into objectively measurable sub-
requirements. The aim of these abstraction levels is to 
identify component alternatives that satisfy stakeholders’ 
requirements. We propose to organize CBS requirements, 
as shown in Figure 3, into two hierarchy levels, namely, 
high-level requirements and concrete-level requirements. 
The high-level requirements cover the overall business 
objectives of an organization. The concrete-level 
requirements represent a set of services that can be used 
to achieve the high-level requirements. These abstraction 
hierarchy levels are used to elicit requirements into 

concrete sub-requirements, which can be objectively 
measured against the component features. Requirements 
are elicited into these two levels based on refinement 
rules defined in [22]. 

High-Level Requirements (HLR): - The aim of the 
HLR is to identify an initial set of minimum CBS 
requirements which correspond to a given business 
objective. This initial set of requirements represents a 
possible methodology for fulfilling the overall business 
vision of a CBS. This emphasis on HLR means the 
selection process relies less on pre-emptive decisions 
about the candidate component. HLR captures the 
requirements as a pair <Gh, Sh> where Gh is a high-level 
goal and Sh is a high-level scenario. A high-level goal in 
our approach represents a business objective, and the 
associated high-level scenario represents the process for 
achieving a high-level goal. 

Concrete-Level Requirements (CLR): - At the CLR, 
the focus is on refining high-level requirements into sub-
requirements that can be used to quantify candidate 
components.  High-level requirements are refined by 
considering the interaction between the system and the 
users. These interactions represent a possible method for 
achieving a high-level goal defined at HLR. CLR 
specifies requirements as a pair <Gc, Sc> where Gc is a 
concrete-level goal and Sc is a concrete-level scenario. A 
concrete-level goal expresses the manner of realizing a 
high-level goal. The associated concrete-level scenario 
describes the flow of interactions between a system and 
its user to fulfill the concrete-level goal. 

 

 
Figure 3.  Requirements Elicitation Model. 

Furthermore, it is important to classify requirements to 
enable distinction between core and peripheral 
requirements. By analogy with Lee et al. [25, 26] facet 
classification model, we classify requirements under three 
facets: priority, matching potential and view. This 
classification helps in performing an objective measure 
between requirements and component features. 

Priority - The facet priority represents stakeholders’ 
desire for a CLR satisfaction. We propose to classify each 
CLR priority as mandatory, very important, important or 
optional. A mandatory CLR represents a minimum set of 
requirements that need to be satisfied in order for the 
system to succeed. Very important CLR represents 
requirements that ensure significant functionality of the 
system. Important CLR represents requirements that 
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ensure sufficient functionality of the system. Similarly, 
optional CLR represents requirements that are desirable 
but do not affect the success of the system. 

 

 
Figure 4.  Requirements Graph. 

Matching Potential - The facet matching potential 
represents the CLR prospect of finding a matching 
component in the repository. We define the matching 
potential as the percentage of the number of candidate 
components with the potential to match the CLR to the 
total number of components in a repository. Low value of 
matching potential indicates a high number of constraints 
associated with the CLR realization. High value of 
matching potential indicates a low number of constraints 
associated with the realization of CLR. The value of 
matching potential is computed as follows:  

 n 
Matching Potential =          ∑     CCi / TC  (1) 
                                           i = 0  

 
where n is the total number of categories in the 

repository with the potential to match the CLR and CC is 
the number of components classified in each of these 
categories. Finally, TC is the total number of components 
in the repository. 

View - The facet view classifies a CLR as either actor 
specific or system specific. Actor specific CLR are the 
objectives of the users who interact with the proposed 
system. System specific CLR are the objectives of entities 
that do not interact directly with the system but will hold 
a stake in the system requirements [8]. A System CLR 
provides a mechanism for expressing organizational goals 
and constraint requirements that apply to the system as a 
whole. 

Step 2: Requirements Ranking - In the second step, 
each CLR is ranked according to its priority, view and 
matching potential. We rank a CLR in a descending order 
of priority. Requirements with the same priority are 
classified based on their view. Actor specific 
requirements get precedence over system level 
requirements.  Requirements with the same priority and 
view are further classified based on their matching 
potential values. Requirements with a small ‘matching 
potential’ value are ranked higher than requirements with 

a bigger ‘matching potential’ value because we aim at 
selecting a component for a requirement that has limited 
number of choices rather than those with a higher number 
of choices. The reason is that by selecting components for 
requirements with a bigger number of choices after 
component selection for requirements with a smaller 
number of choices, we have a better chance of providing 
alternatives if a conflict occurs. 

Step 3: Requirements Graph - In the third step, we 
construct a directed graph called  Requirements Graph 
(RG), to represent the ranked requirements and the 
relationship between them, as shown in Figure 4. 

Definition 1:  Requirements Graph: A RG is defined 
as a tuple {N,E, Root}, where {N,E} is a directed graph; 
and Root is the first (starting) node; N is a set of nodes in 
a graph, with N = { ni } , i = 1 …. |N|; and E is a set of 
edges in the graph, with E = { ei }, i = 1 … |E|. 

Definition 2:  Node “n”: n ∈ N represents 
requirements Ri, which is defined by a tuple <Ri, Ci>, 
where Ri is the ith requirements of a CBS; and Ci is the 
selected component for the requirement Ri. 

Definition 3:  Root Node “nr”: nr ∈ N is the first 
(starting) node of a RG and is defined as a special node 
that represents the overall customer’s business objective 
and has NULL value for the selected component for the 
overall business objective requirement. 

Definition 4:  Directed Edge “e”: e ∈ E represents the 
association between requirements at consecutive RG 
levels. It is denoted by <impact>, which represents the 
‘Requirements Associations’ relationship between ni and 
nj at two consecutive RG levels. 

Definition 5:  Requirements Associations “RAij”: 
RAij is the association relationship such that node ni can 
have either ‘Negative’ or ‘Neutral’ impact on nj. A 
‘Negative’ association represents a conflict between two 
requirements and a “Neutral’ association represents the 
situation that there is no conflict between them. 

Table 2 shows the characterization algorithm that 
defines a set of activities to construct an RG. We discuss 
the algorithm in detail below: 

 
1. For a given set of HLR goals {HLR1, HLR2, … 

HLRn}, each HLR goal is inserted as a first level 
node in a RG such that HLR1 will be the leftmost 
first level node and HLRn will be the rightmost 
first level node.  Since the component selection 
process starts for CLR, each first level node in RG 
is represented as <HRL, NULL> where NULL 
signifies no component is selected for the 
requirement. 

2. For each CLR-scenario associated with a HLR-
goal, requirements characterization starts with 
analyzing a CLR relationship with leaf nodes of 
RG (step 9 in Table 2). The relationship between a 
CLR and leaf node is analyzed based on the rules 
defined in the section of Trade-off Analysis (step 
1: conflict identification). This relationship 
investigation considers only the leaf nodes 
associated with the same HLR as that of a given 
CLR. 
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3. For each neutral relationship between a CLR and a 
leaf node, a suitable component is identified (step 
17 in Table 2) based on satisfaction and risk 
metrics, discussed in detail in the section of Top-
down Analysis.  First, candidate components’ 
satisfaction and risk values are calculated. Next, 
these components are ranked according to their 
satisfaction to risk ratio. Finally, a component 
with the highest value of satisfaction to risk ratio 
is selected. 

4. For a negative relationship between a CLR and a 
leaf node, we use the resolution generation rules 
(as discussed in the section of Trade-off Analysis) 
to identify possible resolutions to the problem of a 
conflicting scenario. Candidate components are 
assigned a relevance index that is used to calculate 
suitability of each resolution. The resolution with 
the highest value of suitability is used to select a 
component. 

5. Finally, a tuple <CLR, selected component> is 
inserted into the RG as a leaf node. 

6. Repeat steps 2 to 4 for all requirements in the 
stack. 

TABLE II.   
THE REQUIREMENTS CHARACTERIZATION ALGORITHM 

1. Algorithm ( ) 
2. { 
3.      Insert Root node. 
4.      Insert all HLR at level one of the RG.  
5.      Push CLR into the Stack from lowest to highest ranking. 
6.      While Stack Not Empty do 
7.      { 
8.            Pop a CLR from the stack ; 
9.            If (characterize (CLR, Leaf Node of RG) ! = 

SUCCESS) 
10.            Return FAILURE; 
11.      Else  
12.            Return SUCCESS; 
13.      }  
14. } 
15. characterize (CLR, Leaf Node of RG) 
16. {   
17.       If (Identify_Relationship (CLR, Leaf Node of RG) ! = 

CONFLICT) 
18.       { 
19.            Select_Component (CLR); 
20.            Insert CLR as new leaf node <CLR, selected 

component>;  
21.            Return SUCCESS; 
22.      } 
23.      Else If (Trade-off (CLR, Leaf Node of RG) != 

FAILURE) 
24.      { 
25.            Generate resolutions for the conflicting scenario; 
26.            Identify suitable resolution;  
27.            Select_Component (CLR); 
28.            Insert CLR as new leaf node <CLR, selected 

component>; 
29.            Return SUCCESS; 
30.      } 
31.      Else 
32.            Return FAILURE; 

}  

A. Applying Requirements Characterization to the SEJ 
System 

The first step in requirements characterization is to 
elicit requirements. We start eliciting SEJ system 
requirements by identifying the SEJ business objective. 
The overall business objective of the SEJ system is ‘ to 
create a chain of convenience stores where you can find a 
solution for any of your daily life problems at hours when 
needed’ [13]. There are five high-level requirements, 
which represent the overall objectives of SEJ software 
system. The high-level requirements of SEJ software 
system is to reduce loss of costumers, maximize use of 
limited floor space, minimize unsold perishable goods, 
shorten inventory turnover time and stock products 
according to changing consumer needs. In this paper, we 
will consider two high-level requirements, namely, HLR 
4 - shorten inventory turnover time; and HLR 5 - stock 
products according to changing consumer needs. 

Figure 5 shows requirements elicitation for the HLR4. 
The HLR4-goal ‘shorten inventory turnover’ describes a 
method of fulfilling the SEJ business objective. The 
associated HLR4–scenario describes the flow of 
interactions among the SEJ entities to achieve the HLR4–
goal. Based on refinement rules defined in [22], we 
identify that HLR4–scenario consists of three basic 
interactions: (i) ‘co-ordinate supply chain network’; (ii) 
‘provide stock ordering decision support’; and (iii) 
‘control store inventory’. Next, we consider each HLR–
scenario interaction as a CLR-goal and elicit an 
associated CLR–scenario to help achieve the goal.  CLR–
scenario actions or events are identified by considering 
the interactions between the system and its users. For 
example, the CLR-goal to ‘provide stock ordering 
decision support to stores’ is realized by three events: 
‘display sale performance reports’, ‘display SEJ stock 
order recommendations’ and ‘accept or update stock 
order recommendation’. 

Similarly, HLR5 ‘stock products according to 
changing customer needs’ is another method of fulfilling 
overall SEJ business objectives. We identify that the 
HLR5–scenario consists of three basic interactions: (i) 
‘correlate purchase data with customer profile’; (ii) 
‘deliver stocks to store in time’; and (iii) ‘update store 
inventory in real time’. In this paper, we consider only 
the first HLR–scenario interaction to show the conflicting 
requirements situations. The first HLR5–scenario 
interaction is considered as a CLR–goal and we elicit 
associated CLR–scenario to help achieve the goal. The 
CLR–goal to ‘correlate purchase data with customer 
profile’ is realized by two events: ‘store customer 
profile’; (ii) ‘maintain customer privacy’; and (iii) 
‘update customer profile information’. 
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Figure 5.  Requirements Elicitation for the SEJ System 

In the second stage of requirements characterization, 
we rank each interaction of the CLR scenario. Each CLR 
scenario interaction is assigned priority, matching 
potential and view. For example, CLR 42.1 has priority, 
matching potential and view as ‘very important’, ’15.52’ 
and ‘system’, respectively. The priority and view is 
assigned by a domain expert. Furthermore, we identify 
that CLR 42.1 can be matched by the components 
classified in ‘reporting’, ‘database reporting’, ‘charting 
and graphics’, ‘spreadsheet’ and ‘database management’ 
categories of component source repository. The number 
of components in these categories is 38, 49, 82, 42 and 
53, respectively.  We calculate ‘matching potential’ of 
CLR 42.1 as ((38 + 49 + 82 + 42 + 53)/ 1700) * 100) = 
15.52, where 1700 is the total number of components in 
the repository. Similarly, all the remaining CLR scenario 
interactions are assigned priority, matching potential and 
view values, as shown in Table 3. 

TABLE III.   
REQUIREMENTS CLASSIFICATIONS FOR THE SEJ SYSTEM 

HLR CLR Description Priority Matching Potential View 
 
HLR 41 

CLR 41.1 Send product order to supplier Important 16.82 Actor 
CLR41.2 Send shipping requests to delivery center. Important 16.82 Actor 

HLR 42 
CLR 42.1 Display sale person order reports. Very important 15.52 System 
CLR42.2 Display SEJ stock order recommendation. Very important 8.25 System 
CLR 42.3 Accept or update stock order recommendation. Important 11.47 System 

HLR 43 

CLR 43.1 Scan product shipments as received. Mandatory 13.76 Actor 
CLR 43.2 Scanner remits inventory data to store computer. Mandatory 8.35 System 

CLR 43.3 Store computer regularly updates SEJ host computer with 
inventory data. Mandatory 16.52 System 

HLR 51 
CLR 51.1 Store customer profile  Mandatory 5.58 Actor 
CLR 51.2 Maintain customer privacy Mandatory 5.58 Actor 
CLR 51.3 Update customer profile information Mandatory 16.52 System 

 
Table 4 shows CLR scenario interactions ranking 

based on the ranking rules defined in section 5. For 
example, CLR 43.1, CLR 43.2 and CLR 43.3 are all 
mandatory requirements; hence, the ranking process starts 
with these requirements. Since CLR 43.1 has ‘actor’ 
view, it is ranked higher than CLR 43.2 and CLR 43.3. 
CLR 43.2 and CLR 43.3 are both mandatory and system 
specific requirements, so we take their ‘matching 
potential’ into account to rank them. Since ‘matching 
potential’ of CLR 43.2 is lower than CLR 43.3, we rank 
CLR 43.2 higher than CLR 43.3. Requirements with 
lower ‘matching potential’ are ranked higher than 
requirements with lower ‘matching potential’ because we 
first want to select components for a requirement that has 
more limited choices than those with a higher number of 
choices. We argue that selecting components for 
requirements with larger choices provides a better chance 
of providing alternatives in cases of conflict. 

Finally, in the third step of requirements 
characterization, we construct the SEJ requirements 
graph, as shown in Figure 6. The SEJ requirements graph 
construction starts with inserting a root node, which 
represents the overall SEJ business objective. Next, we 
insert the HLR as first level nodes in the graph. Based on 
SEJ requirements ranking, as shown in Table 4, we start 
the component selection process for HLR 4, by 
considering  the  highest  ranked  requirement  CLR 43.1. 

TABLE IV.   
REQUIREMENTS RANKING FOR THE SEJ SYSTEM 

HLR CLR Rank 
 
 
 
 
HLR 4 

CLR 43.1 1 
CLR 43.2 2 
CLR 43.3 3 
CLR 42.2 4 
CLR 42.1 5 
CLR 41.1 6 
CLR 41.2 7 
CLR 42.3 8 

 
HLR 5 

CLR 51.1 1 
CLR 51.2 2 
CLR 51.3 3 

 
We identity that ‘SmartScan’ is the most suitable 
component to fulfill CLR 43.1. The component is 
identified using satisfaction and risk metrics, as discussed 
in section 6. Further, CLR 43.2 is selected for identifying 
suitable component. We analyze its relationship with 
CLR 43.1 to identify any potential conflicts between the 
requirements. Since there is no conflict between these 
two requirements, we identify ‘IPWorks’ as the suitable 
component for CLR 43.2. Similarly, ‘TrueDBInput’ 
component is identified as the suitable component for 
CLR 51.1. CLR 51.2 is the next highest ranked 
requirement and its relationship is analyzed with CLR 
51.1. Since there is a conflicting relationship between 
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CLR 51.1 and CLR 51.2, we identify 
‘PureComponentsEntrySet’ as a suitable component for 
CLR 51.2. This conflict identification and subsequent 
component selection is based on trade-off analysis which 
is discussed in detail in section 7. 

VI.  TOP DOWN ANALYSIS 

The top-down approach uses matching criteria between 
component features and requirements to calculate a 
component’s satisfaction degree and associated risk. The 
concrete-level requirements are analyzed against 
candidate component features to obtain satisfaction 
metrics.  We use severity analysis and complexity metrics 
to derive component risk assessment. We choose a 
suitable component from a range of candidate 
components at each level of RG by defining a decision 
metrics denoted by D (RG, i). Decision metrics value is 
defined as a percentage of component satisfaction degree 
and associated risk, as shown in equation 2. 

D (RG, i) = (Satisfaction (C) / Risk (C)) x 100   (2) 
where i is the depth number where a particular 

requirement occurs in the requirement graph. We discuss 
satisfaction degree and risk metrics in detail as follows. 

A. Statisfacation Degree 
A key challenge in CBS requirements engineering is to 

reconcile stakeholders’ demands against available 
component capabilities. The component matching 

involves an evaluation of the degree to which a 
component satisfies a requirement. The first step is to 
identify component attributes that contribute to the 
satisfaction assessment. A component is characterized 
according to its characteristics and context dependencies 
[27]. Fundamental to a component are its characteristics 
that specify the functionality provided. These 
characteristics define only the individual elements of a 
component, mainly in syntactic terms. However, a 
component is subject to configuration dependencies on its 
use. These dependencies are both on individual elements 
as well as on the relationship among the elements [28]. 
Thus, it is essential for a component user to understand 
the constraints so as to be able to use it properly. 

Recently, Cechich et al. [29] defined a measure for 
early detection of component functional suitability as a 
function of number of compatible functionality, missing 
functionality and additional functionality. We believe that 
in addition to these three attributes, it is important to 
consider the impact of missing and additional features 
introduced by candidate components. Further, 
configuration constraint is another primary attribute, 
which directly affects the satisfaction degree of a 
component with reference to a requirement. After a 
detailed analysis, we identify a set of attributes, as shown 
in Table 5, which need to be considered during 
satisfaction degree measurement.

TABLE V.   
CRITERIA FOR ASSESSING SUITABILITY OF A COMPONENT 

Item Criterion Measurement scale 
C1 Compatible features – CF {1,2….n} where n is the number of compatible features. 
C2 Missing features – MF {1,2….n} where n is the number of the CLR scenarios not met by a component.  
C3 Impact of missing features – IMF {negligible, little, moderate, considerable, great} 
C4 Additional features – AF {1,2….n} where n is the number of additional features provided by components and not required 

by the requirement. 
C5 Impact of additional features – IAF {negligible, little, moderate, considerable, great} 
C6 Adaptation effort required – AER {negligible, little, moderate, considerable, great} 
C7 Adhere to system architecture – ASA {poor, fair, good, very good, excellent} 
C8 Non development cost – NDC {within budget, <5%, 5 – 7 %, 7 – 10 %, > 10%} 

 
We commence the satisfaction measure by considering 

CLR.. The satisfaction of a requirement is realized at the 
CLR scenario level and each CLR scenario interaction is 
objectively measured against component features. 
Candidate component features are identified from their 
interface specification and information provided in 
information brochures, evaluation downloads, user 
documentation, tutorials and manuals. Table 5 shows the 
checklist of selection criteria that is used to measure the 
satisfaction degree of a component with respect to a 
requirement (CLR). 

We classify our checklist into two main groups: 
component characteristics and configuration constraints. 
The first group measures the suitability of a component 
from the perspective of its characteristics. It consists of 
five selection criteria: Compatible Features (CF), Missing 
Features (MF), Impact of Missing Features (IMF), 
Additional Features (AF) and Impact of Additional 
Features (IAF). CF measures the number of component 
features that contribute to fulfilling the requirement. 

Table 6 shows matching metrics where CLR scenario 
interactions are listed in rows and component features are 
arranged in columns. A ‘ ’ at the intersection of a CLR 
scenario interaction and a component feature indicates 
that the corresponding component feature satisfies it. 
Similarly, MF and AF are the number of CLR scenario 
interactions not fulfilled by a component and the number 
of additional features introduced by the component, 
respectively. We introduce the notion of IMF, which 
quantifies the impact of the missing features as 
‘negligible, little, moderate, considerable or great’. 
Similarly, IAF quantifies the impact of extra features 
introduced by the component as “negligible”, “little”, 
“moderate”, “considerable” or “great’. However, it is 
important to note that due to human-centric nature of 
requirements engineering, a domain expert will play a 
key role in determining how requirements are perceived 
and how component information are analyzed. 
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TABLE VI.   
MATCHING METRICS 

 Interaction 
1 

Interaction 
2 

Interaction 
….. 

Interaction 
n 

Feature A1     
Feature A2     
…….     
Feature An     

 
The second group evaluates the compatibility of a 

component from the perspective of context dependency.  
First, we consider Adaptation Effort Required (AER), 
which quantifies the amount of adaptation development 
required to use the component. It is important to consider 
adaptation cost as, although it usually accounts for less 
than half the total CBS development effort, the effort per 
line of adaptation averages three times the effort per line 
of traditional development code [30]. Adhere to System 
Architecture (ASA) analyses the compatibility of a 
component regarding its operating system for 
development, architecture of product and pre-requires. 
Non Development Cost (NDC) assesses the cost 
associated with licensing administration [30]. 

TABLE VII.   
UTILITY FUNCTION FOR IMF, IAF AND AER 

 Great Considerable Moderate Little negligible 
IMF -5 -3 1 3 5 
IAF -5 -3 1 3 5 
AER -5 -3 1 3 5 

TABLE VIII.   
UTILITY FUNCTION FOR ASA 

 Poor Fair Good Very 
Good 

Excellent 

ASA -5 -3 1 3 5 

TABLE IX.   
UTILITY FUNCTION FOR NDC 

 Within 
Budget 

< 5% 5 – 7 % 7 – 10 % > 10 % 

NDC 5 3 1 -3 -5 
 
First, we define a utility function uf1, based on multi-

attribute utility theory [31] to classify IMF, IAF and 
AER. The function uf1 is transformed into the unit 
interval {-5, 5}, as shown in Table 7. Similarly, we define 
utility function uf2 to classify ASA. The function uf2 is 
transformed into the unit interval {-5, 5}, as shown in 
Table 8. Finally, we define utility function uf3 based on 
US Department of Defense (DOD) risk management 
guide [32] to classify NDC. The function uf3 is 
transformed into the unit interval {-5, 5} , as shown in 
Table 9. We define characterizes measure for a 
component c, denoted as CM (c), as: 

   CM (c) = CF + (MF x IMF) + (AF x IAF) (3)  
We define configuration constraints measure for a 

component c, denoted as CCM (c), as: 
 CCM (c) = AER + ASA + NDC  (4) 
Finally, the degree of satisfaction of a component c, 

denoted by SD (c), is defined as: 
 SD (c) = CM(c) + CCM (c)   (5) 

B. Risk Assessment 
We use risk assessment to quantify the degree of 

uncertainty associated with the selection of a component 
during a CBS development. Goseva-Popstojanova et al. 
[33] defines risk as a combination of probability of 
malfunctioning (failure) and the consequence of 
malfunctioning (severity). The probability of failure 
depends on the probability of occurrence of a fault 
combined with the likelihood of exercising that fault in a 
scenario in which a failure will be triggered [33].  Since it 
is difficult to find exact estimates for the probability of 
failure of a component in the early phases of CBS 
development, we use complexity to estimate the fault 
proneness of a component. Component complexity is 
chosen as a quantitative factor because it has a proven 
impact on fault proneness [33, 34]. Further, we perform 
severity analysis to quantify the impact of the probable 
failure. Thus, we define the risk for a component c as: 

 
  Risk (c) = Complexity (c) x Severity_Index (c) (6) 

 
Complexity Analysis 
We propose to perform a complexity assessment for a 

CBS from the perspective of a system analyst. 
Fundamental to a component is its interface, which 
characterizes the functionality provided. The interface 
defines the services provided by a component and acts as 
a basis for its use and implementation. Ideally, an 
interface specification describes the functional properties 
of a component. Function properties include a signature 
part to describe the operations, and a behavior part to 
address the overall behavior of a component. The 
interface signature delineates the individual elements of a 
component in a syntactic manner. 

TABLE X.   
NO/NP COMPLEXITY METRICS 

NO/NP 1 – 19 20 – 50 51 + 
1 Low Low Average 
2 - 5  Low Average High 
6 + Average High High 

 
We present a measure of interface complexity based on 

the IFPUG [35] function point count (an international 
standard -ISO/IEC 20926:2003). In IFPUG, data 
functions are defined as functionality provided to a user 
to meet internal and external data requirements and are 
classified into two types: (i) internal logical file (ILF) and 
(ii) external input file (EIF).  The complexities of the ILF 
and EIF are determined by the data element type (DET) 
and the record element type (RET). We classify the 
interfaces that have the same operations and also 
exchange data with their environment as candidates for 
function count. For each of the selected candidates, we 
classify them as either ILF or EIF. Interfaces that have 
operations that change the attributes of other interfaces in 
the data exchange are classified as ILF. All the remaining 
interfaces are classified as EIF. 
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TABLE XI.   
COMPONENT INTERFACE COMPLEXITY METRICS 

Data Type Low Average High 
ILFi --- x 7  --- x 10 --- x 15 
EIFi --- x 5 --- x 7 --- x 10 

 
In IFPUG, each identified ILF and EIF is ranked based 

on the number of DET and RET using RET/DET metrics 
[35]. Since RET is a user recognizable subgroup, we 
count the number of operations (NO) in an interface. 
Similarly, DET is a unique user recognizable field; we 
count the number of parameters (NP) in an interface. By 
analogy with RET/DET metrics [35], we propose NO/NP 
complexity metrics, shown in Table 10, to rank candidate 
interface. Ranked interfaces are assigned weights based 
on IFPUG standard weights, shown in Table 11. Finally, 
we define an interface complexity measure of a 
component i, denoted by ICi, as 

                                        n                 n 
ICi = ∑    ILFi + ∑    EIFi    (7) 

            i = 1            j = 1   
 
where ILFi and EIFi are the weighted values for a 

component interface classified based on its complexity. 
An example showing the approach to measuring the 
complexity of a CBS specification can be found in  [27]. 

Severity Analysis - In addition to the estimate of the 
fault proneness of each of the components based on the 
interface  complexities, we need to consider the severity 
of the consequences of potential failures [33]. For 
example, a component may have low complexity, but its 
failure may lead to catastrophic consequences. Therefore, 
our risk assessment takes into consideration the severity 
associated with each component, based on how its failure 
affects the requirement satisfaction. We identify that 
Volatility of Component (VC) and Supplier Creditability 
(SC) help to estimate consequence of the malfunction of a 
component. We use VC and SC to estimate the severity 
of the component, based on the experience recorded by 
other users of the component, and stored in component 
repositories. 

TABLE XII.   
VC SEVERITY CLASSIFICATION 

Volatility of component – VC Severity Index (VC) 
VC <= 1.22 versions per year 1 
1.22 < VC <= 1.38 versions per 
year 

2 

1.38 < VC < 1.54 3 
1.54 < VC <=1.7 versions per 
year 

4 

> 1.7 versions per year 5 
 
We calculate VC of a component as the ratio of the 

number of component releases to the total number of 
years from the first release. For example, ‘Rapid Spell’2 
component has had five releases since its launch in 2003. 
Therefore, its VC value is 1.25 (five divided by four). We 
classify and calculate the severity index of VC by 
calculating confidence interval [36] based on a sample 

                                                           
2 www.componentsource.com 

size of 80 components available in the component source 
repository.  We calculate the confidence interval of VC 
with the confidence coefficient of 95%. Further, we 
assumed that the severity index of a component c with the 
VC (c) >= mean is positive. The results of the analysis 
indicated that, for 95% of components, their VC value 
was in the interval [1.22, 1.54]. The mean value of VC 
was 1.38 releases per year. Table 12 shows the severity 
index for VC based on our confidence interval analysis. 

TABLE XIII.   
SC SEVERITY CLASSIFICATION 

Supplier creditability – SC Severity Index (SC) 
1 5 
2 4 
3 3 
4 2 
5 1 

 
SC is the ranking given by the reviewers of the 

component. The rating reflects the creditability of the 
component. Component source repository provides a 
rating of components, based on the reviews, by rating 
components on the scale of one to five. A component 
with rating five indicates that the customers of the 
component are completely satisfied with its functionality, 
provided documentation and support. A component with 
rating one indicates that the customer is not satisfied with 
the provided functionality. Table 13 shows the severity 
index for a component on a scale of one to five. We 
propose to assign a severity index (SC) of five to a 
component, which has a rating of one. This indicates that 
the component is less credible and thus, will have a high 
degree of severity of consequences associated with its 
use. Finally, we define the overall severity index of a 
component c, denoted by Severity_Index (c) as: 

 
  Severity_Index (c) = Severity Index (VC) + Severity Index (SC) (8) 

 

C. Applying Top-Down Analysis to the SEJ System 
We illustrate our top-down analysis based on CLR 

43.2. We identify that CLR 43.2 is achieved as follows: 
converting scanner data into a network element, building 
network document, processing the request/response and, 
finally, writing the network document to an output 
stream. We start the satisfaction degree measure of 
candidate components for CLR 43.2 by developing 
matching metrics, as shown in Table 14. For example, we 
identity that the IPWorks component provides the overall 
required functionality using XML parsers and file transfer 
support. Table 14 shows that there are four compatible 
features provided by IPWork and zero missing features. 
IPWorks also provides three additional features and they 
have ‘little’ effect on the overall CLR 43.2 satisfaction. 
Similarly, it requires ‘moderate’ adaptation effort and the 
system architecture requirements match to the overall SEJ 
software system development platform. However, non-
development cost associated with IPWorks is moderate 
(less than 5% over the budget). Therefore, we calculate 
satisfaction degree for IPWorks, based on equation 3, 4 
and 5, as follows: 
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SD (IPWorks) = (4 + (0x5) + (3 x 1)) + (1 + 3 + 3) = 7 + 7 = 14 (9) 

TABLE XIV.   
CLR 43.2 MATCHING METRICS 

 Convert 
data to 
network 
element 

Build 
network 
document to 
be 
transferred 

Process the 
request/res
ponse 

Write 
the 
networ
k data 
to an 
output 
stream 

Network 
communication 

    

XML parser     
SOAP support     
File transfer     
Email     
Network 
monitor 

    

Authentication     
 
The IPWorks component has eleven interfaces, which 

are identified from the evaluation version of the 

component. From eleven interfaces, five qualify as EIF 
because operations of these interfaces do not change the 
attributes of other interfaces in exchanging the 
information. The remaining six are classified as ILF 
because they affect the attributes of other interfaces 
during the message exchange. Further, functional 
complexity of both EIF and ILF interfaces is low and 
their weighted complexity value is (5 x 7 = 35) and (6 x 5 
= 30), respectively. For a detailed discussion of the way 
to classify interfaces and calculate complexity, please 
refer to our previous work [27]. Further, we assign a 
value of 3 to the volatility of IPWorks because it had six 
versions in the last four years (1.5 versions per year), 
using Table 12. IPWorks has been assigned rating 3 on 
the component source website, thus its SC value is 1. 
Finally, we calculate decision metrics value for IPWorks 
using equation 2, as shown in Table 15. Similarly, we 
calculate decision metrics values for all the candidate 
components for CLR 43.2. 

TABLE XV.   
CLR 43.2 MATCHING METRICS 

Component Satisfaction Degree Risk D (RG, i) 
CF MF IMF AF IAF AER ASA NDC IC VC SC 

IPWorks 4 0 5 3 1 1 3 3 65 3 1 5.38% 
PowerTCP 2 2 -2 2 3 -2 3 1 36 2 3 3.33% 
SocketTools 2 2 -5 3 1 -5 3 5 58 4 3 -0.49% 
SuperCom 2 2 -5 2 1 -5 3 -2 43 1 1 -11.63% 
SocketWrench 2 2 -5 0 0 1 -2 3 45 1 1 -6.67% 
ComponentSpace 3 1 -5 0 0 -2 3 3 48 5 3 0.52% 

 

VII.  TRADE-OFF ANALYSIS 

Trade-off analysis aims at balancing the conflicting 
interests between stakeholder requirements and 
negotiating resolutions during component selection. In 
this paper, we consider only interaction conflicts. 
Requirements are said to be in interaction conflict if the 
satisfaction of one requirement may impair or eliminate 
the satisfaction of another requirement [26]. The key 
feature of trade-off analysis in our approach is a shift 
from a requirements-driven conflict analysis to a 
collaborative process in which both requirements and 
component features balance the conflicting interests. 
Traditionally, interaction conflict analysis [37, 38] has 
been achieved by conflict detection, resolution generation 
and resolution selection. Conflict between requirements is 
detected by matching requirements and potential 
resolutions are generated using analytic compromise and 
heuristic compensation. Finally, resolutions are selected 
based on a set of guidelines. 

In CBS development, there is a need to find a balance 
between requirements and available component features. 
Requirement-driven approaches alone are usually not 
sufficient as they do not support a collaborative process 
of negotiating individual interests of stakeholders against 
a component’s features. We propose a trade-off analysis, 
which attempts to find a mutually acceptable resolution to 
a conflicting situation by providing an opportunity for 

stakeholders to trade-off individual interests. The trade-
off analysis consists of four stages: conflict identification, 
potential resolution generation, measuring the 
component’s relevance to each potential resolution and 
selection of suitable resolution. In the first step, 
interaction conflict is identified among requirements. In 
the second step, we propose a set of rules to generate 
potential resolution to a conflict. In the third step, we 
calculate the relevance index for each component with 
reference to the potential resolutions. Finally, a suitable 
resolution and components are selected using the 
relevance measure. 

Step 1: Conflict Identification 
For a given requirement, trade-off analysis starts with 

investigating its relationships with other requirements. 
We adopt the concept of  Generic Relationship Question 
(GRQ) [21] to represent the relationships between 
requirements and identify possible conflicts. Suppose we 
want to investigate the relationship between two 
concrete-level requirements, (1) CLR - X with ranking i 
and (2) CLR - Y with ranking i + 1. Since CLR - Y has a 
higher ranking than requirement X, we assume that a 
suitable component (Component A) has already been 
identified and it is represented as a leaf node <CLR - Y, 
Component A> in RG. We develop the following GRQ to 
represent the relationship between CLR - X and CLR – 
Y: 
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How does ‘Requirement X’ relate to ‘Component A’? (10) 
 
where ‘Requirement X’ defines a set of interactions 

associated with CLR X–scenario. Similarly, ‘Component 
A’ represents a set of component features, which specify 
the functionality of the component selected for CLR – Y. 

After establishing the GRQ, we propose to start the 
conflict identification by doing a pair-wise comparison 
between ‘Requirement X’ and ‘Component A’. The set of 
interactions identified for ‘Requirement X’ are mapped to 
the component features identified for ‘Component A’. 
Further, impact of each ‘Requirement X’ interaction is 
analyzed against all features associated with ‘Component 
A’. This impact can be neutral or negative. A neutral 
impact indicates that the component feature does not 
influence satisfaction of the interaction. The negative 
impact indicates that the component feature does 
influence satisfaction of the interaction. We believe this 
pair-wise comparison reduces the importance of intuition 
in detecting conflicts [39] since it forces the comparison 
of all possible interactions. 

Table 16 shows conflict identification metrics where 
all the interaction steps associated with ‘Requirement X’ 
are listed in rows, and all the features associated with 
‘Component A’ are arranged in columns. We define that 
two requirements have a conflicting relationship if there 
is at least one negative impact between them. A ‘X‘ at the 
interaction of a component feature and CLR scenario 
interaction indicates that the interaction has a negative 
impact on the component feature. We acknowledge the 
fact that a domain expert will play a key role in 
identifying the conflicts between requirements. 

 

 
Figure 6.  Requirements Graph for the SEJ System 

TABLE XVI.   
CONFLICT IDENTIFICATION METRICS 

 Feature 1 Feature 2 …. Feature n 
Interaction 
1 

 X   

Interaction 
2 

X X   

….     
Interaction 
n 

    

 
 

Step 2: Resolution Generation 
The next step in trade-off analysis is to generate 

potential resolutions to a conflict. We adopt the concept 
of knowledge-based negotiation [40] to propose a set of 
rules for resolution generation. Knowledge-based 
negotiation proposes concepts of compensation and 
dissolution. For compensation, the strategy is to satisfy 
requirements outside the conflict to increase the overall 
desirability of the resolution by adding new issues to 
negotiations. For dissolution, the strategy is to allow 
conflicting designs to be part of the specification, but 
remove their negative interaction. Dissolution replaces 
conflicting items with potentially less contentious items. 
In our approach, we propose the following heuristics as a 
guideline to generate resolutions. 

Rule1: For each conflict, introduce one or a group of 
new interactions for the scenario associated with a 
requirement with lowest priority in the conflict, such that 
it applies a set of constraints, which result in conflict 
resolution. 

Rule2: Delete an interaction or group of interactions 
from the scenario associated with a requirement with 
lowest priority in the conflict such that it removes the 
conflict. 

Rule3: Write an adaptation code for interoperability 
between selected components such that it masks the 
conflict. 

Step 3: Relevance Index 
In order to effectively select a suitable resolution to a 

conflict, there is a need to analyze the impact of each 
resolution and quantify candidate components relevance 
with respect to each resolution.  We introduce the notion 
of a relevance index, which provides a mechanism for 
understanding and balancing the satisfaction and risk 
associated with each resolution. The relevance index of a 
component is defined as a function of a component’s 
satisfaction degree, associated risk and impact of each 
resolution. We calculate relevance index as follows: 
• Calculating satisfaction and risk metrics for the 

requirements. We use the set of metrics defined in 
section 6 to measure candidate components 
satisfaction degree and associated risk with 
reference to the requirement.  These measures 
indicate the potential value for each metrics in the 
case where there is no conflict between the 
requirement and its predecessor requirements. We 
calculate these values to help us in identifying the 
impact on component satisfaction and risk caused 
by the conflict. We propose to denote these values 
as SP and RP respectively. 

• Calculating component satisfaction degree and 
risk for each resolution. Similarly, we use the set 
of metrics defined in section 6 to measure 
component satisfaction and associated risk with 
reference to each conflict resolution. These 
measures indicate the actual value for each metrics 
with reference to a conflict resolution. We propose 
to denote these values as SA and RA respectively. 

• Calculating impact of resolution for each metrics. 
Whenever a conflict is detected and a set of 
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resolutions is generated, it is necessary to take into 
account the impact of the resolutions on the 
candidate component’s satisfaction. When a 
satisfaction metric value decreases against its 
potential value, we assign an impact factor to the 
component’s satisfaction degree to quantify the 
impact introduced by the conflict resolution. We 
define the Satisfaction Impact Factor  (SIF) as 

if (SA < 0) then SIF = (SA – SP) / SA 
else if (SA >= 0)  then SIF = (SP – SA) / SA  (11) 

• Calculating the relevance index (RIc) for each 
component. Relevance percentage for a 
component in a resolution is defined as the ratio of 
a component’s satisfaction degree and risk 
subtracted by the associated impact factor. 

           RIc = ((SA / RA) – SIF) x 100 (12) 

Step 4: Situable Resolution Selection 
The last step of trade-off analysis is to identify 
suitable resolution and select relevant components. 
We propose to identify suitable resolutions and 
select relevant components by comparing the 
relevance index measures. However, it is 
important to note that the final figures of the 
relevance index cannot be used as the sole 
criterion for selecting suitable resolutions and 
relevant components. For example, the same 
relevance measure may be achieved for two 
components, but the individual attributes that 
contribute to the measure may be different from 
one another. Hence, we define the following steps 
as a guide on selecting suitable resolutions and 
components. 
Rule 1: Calculating the suitability of each 
resolution, with the suitability of each resolution 
defined as the sum of relevance indexes of all 
components for the resolution divided by the total 
number of components. 

       C 
Suitability = ∑     RIc / C (13) 

                                                  i = 0  
where C is the total number of components. 
Rule 2: Identifying the most suitable resolution by 
selecting the one with highest value of suitability. 
Rule 3: Formulating the most suitable resolution 
and selecting the component with the highest 
value of relevance index. 
Rule 4: If two, or more than two, components 
have the same relevance index, select the 
component with the highest value of satisfaction. 
Rule 5: If two, or more than two, components 
have the same value for relevance index and 
satisfaction, then select the component with the 
lowest value of risk. 
 

A. Applying Trade-off Anlysis to the SEJ System 
The first step in trade-off analysis is to analyze the 

relationship between requirements and identify potential 
conflicts. Figure 6 shows an example of a negative 

relationship between CLR 51.1 - ‘Store customer profile’ 
and CLR 51.2 – ‘Maintain customer privacy’. Since, CLR 
51.1 is the highest ranked requirement for HLR 5, the 
‘TrueDBInput’ component has already been selected 
using top-down analysis. We represent the relationship 
between CLR 51.1 and CLR 51.2 by defining the 
following GRQ template. 

 
How does ‘Requirement 51.2’ relate to ‘Component 

TrueDBInput’?  (14) 
 
We identify that ‘Component TrueDBInput’ consists 

of three features, namely, ‘data validation’, ‘data storage 
and ‘support of user friendly data entry’. Similarly, 
‘Requirement 51.2’ consists of two interactions which 
help achieve CLR 51.2 – scenario. These interactions are: 
(i) control access to customer data and (ii) protect 
customer data. 

TABLE XVII.   
CONFLICT IDENTIFICATION METRICS FOR CLR51.1 & CLR 52.1 

 Data validation Data storage User friendly 
data entry 

Control access 
to customer 
data 

   

Protect 
customer data 

 X  

 
We start the trade-off analysis by developing conflict 

identification metrics, as shown in Table 17, to perform a 
pair-wise comparison between ‘Requirement 51.2’ and 
‘Component TrueDBInput’.  We select the first 
‘Requirement 51.2’ interaction and analyze its impact on 
all the ‘Component TrueDBInput’ features. This 
interaction has a neutral impact on all the three features. 
For example, the ‘data validation’ feature does not 
influence the satisfaction of ‘control access to customer 
data’.  Next, we select the second ‘Requirement 51.2’ 
interaction and analyze its impact on all the ‘Component 
TrueDBInput’ features. This interaction has a neutral 
impact on ‘data validation’ and ‘user friendly data entry’ 
features. However, it has a negative impact on ‘data 
storage’ feature because stakeholders of the SEJ system 
wants to obtain all customer’s consent before data 
storage. Therefore, it is important to resolve this conflict 
before selecting a suitable component for CLR 51.2. 

TABLE XVIII.   
RELEVANCE INDEX METRICS 

Component SA Risk SP SIF RI1 
PureComponents 
EntrySet 

14 130 17 0.214286 -10.66% 

ComponentOne 
Input 

12 190 15 0.25 -18.68% 

Xceed  -10 315 -2 0.8 -83.17% 
AspLib 4 258 9 1.25 -

123.45% 
Input Pro -7 220 -6 0.142857 -17.47% 
Dxperience -10 565 -8 0.2 -21.77% 

 
The second step in trade-off analysis is to generate 

resolutions to a conflict. We identify the following 
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potential resolutions for the abovementioned conflict 
based on the resolution generation rules just defined. 
• Resolution 1: Add a new interaction ‘notify 

customer before data entry’ in CLR 51.2 - 
scenario to provide a compromise for the 
identified conflict. 

• Resolution 2: Add a new interaction ‘collect 
information only if customer agrees to data 
collection’ in CLR 51.2 - scenario to provide a 
compromise for the identified conflict. 

TABLE XIX.   
RESOLUTION SELECTION METRICS 

Component RI1 RI2 
PureComponents 
EntrySet 

-10.66% -10.95% 

ComponentOne Input -18.68% -17.86% 
Xceed  -83.17% -83.94% 
AspLib -123.45% -124.10% 
Input Pro -17.47% -18.23% 
Dxperience -21.77% -20.96% 
 
Suitability -45.87% -46.01% 

 
For each resolution, we calculate the relevance index 

for the candidate components, as shown in Table 18. For 
example, we calculate the relevance index for 
‘PureComponentsEntrySet’. Firstly, we calculate 
components satisfaction degree and risk with reference to 
original CLR 51.2. The ‘PureComponentsEntrySet’ 
component has two CF, zero MF with ‘great’ impact; and 
three AF with negligible impact. Thus, its potential 
satisfaction value is measured as 17. Next, we calculate 
its satisfaction degree with reference to resolution 1 
which modified CLR 51.2 by adding a new interaction. 
Since, ‘PureComponentsEntrySet’ component does not 
support the new interaction; it now has two CF, one MF 
with considerable impact and three AF with negligible 
impact. Thus, its actual satisfaction value is measured as 
14. It is important to note that the risk value remains the 
same because it does not depend on the set of CLR 
interactions. Finally, we calculate the impact factor for 
the component ‘PureComponents EntrySet’, based on 
equation 11, as .21 ((17 – 14) /17). Similarly, the 
relevance index of the component is calculated, based on 
equation 12, as -10.66% ((14/130) - .21)) x 100. 

Similarly, we calculate the suitability of each 
resolution based on equation 13. Finally, based on rules 
defined in step 4 of section 7, we identify that a suitable 
resolution for the conflict is resolution 1 and 
‘PureComponents EntrySet’ is the component which best 
satisfies the requirement CLR 51.2, as shown in Table 19. 
It is important to note that the suitability values for both 
resolutions are very similar because one new interaction 
was introduced for both resolutions and both of them 
were not directly supported by candidate components. 
Further, all components have negative relevance index 
values which also highlights the fact that some sort of 
tailoring code is required by the components in order to 
meet stakeholder requirements. 

VIII.  CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented RAAP, a 
Requirements Analysis and Assessment Process 
framework for CBS that can provide quantitative 
information and guidelines for stakeholders to evaluate 
the suitability of the components for a given set of 
requirements. RAAP guides stakeholders through a 
collaborative process of requirements elicitation, 
matching and trade-off analyses. This collaborative 
process involves continuous requirements analysis by 
providing a set of metrics for balancing the stakeholder 
expectations against potential risks. We propose the 
notation of a relevance index and identify suitable 
resolutions to a conflicting scenario. RAAP investigates 
proposed resolutions and evaluates the risk associated 
with each proposal. It also helps in assessing types of 
conflicts that may arise when different components are 
integrated into a CBS. Using the SEJ system as a case 
study, we demonstrated the usefulness RAAP. This SEJ 
case study consists of eleven requirements, two 
conflicting requirements situation and a RG containing 
fourteen nodes. 

In this work, we have gained a few insights. The 
collaborative assessment of requirements provides a road 
map for identifying risks and improving the quality of the 
process by selecting suitable components. Our 
requirements analysis algorithm evaluates requirements 
in a descending order from high priority to low priority 
requirements, thus, first selecting components which 
satisfy high priority requirements. It helps in developing a 
CBS with high stakeholder satisfaction. One of the 
limitations of RAAP is that we consider only the 
functional requirements. An important aspect of a CBS is 
its non-functional requirements, like security and 
performance. It is important to incorporate these non-
functional requirements during CBS development 
because the non-functional requirements can also conflict 
with one another and need to be represented and 
analyzed. Furthermore, in the course of applying RAAP 
to the SEJ software system, we observed the following 
points. 
• Comprehensive assessment of candidate 

components helps in making informed decisions 
during component selection. Our case study shows 
that satisfaction and risk measures aid in making 
informed decisions about component selections. 
Furthermore, they provide a mechanism for 
understanding and measuring the impact of 
changes during conflict resolution. For example, 
Table 15 indicates how candidate components 
match a requirement by quantifying their 
satisfaction degrees and associated risks. 

• Development of CBS with likelihood of high 
priority requirements satisfaction. Our process 
starts selecting components by ranking 
requirements based on their priority, view and 
matching potential. Selecting components based 
on this ranking helps CBS satisfy at least the actor 
specific and high priority requirements. 
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• Early detection of components that will require 
adaptation effort. As shown in our case study, 
during the top-down and trade-off analysis, a 
component can have a negative satisfaction 
measure, which indicates that the component will 
need some sort of wrapper code to either satisfy 
the requirement or avoid the conflict. Thus, these 
satisfaction numbers enable a system analyst to 
identify these components early in the 
requirements and specification phases of a CBS 
life cycle. 

• Easy back tracking of risks. Our process also 
develops a requirements graph, as shown in Figure 
6, which can be used as a possible way to 
backtrack any earlier decisions regarding 
component selections and required adaptation 
efforts. 

• The Need for a standard notation. Component 
information in a component source repository is 
available in a number of formats ranging from 
natural language descriptions; help files, to sample 
evaluation copies. A domain expert plays a role in 
how requirements are perceived and component 
information is analyzed. Thus, there is a need to 
extend Unified Modeling Language (UML) [41], 
an industry de-facto standard, to describe the 
RAAP specifications.  For example, Hussein et al. 
[42]  proposed a UML profile to specify intrusion 
detection facilities during CBS development. 

• The Need for developing an automated tool. An 
apparent obstacle to the use of the RAAP is the 
effort and time required to collect the relevant 
metrics. In our case study, on average five 
candidate components were evaluated for each 
CLR; and it involved on average thirty 
computations for matching between CLR 
scenarios and component features. We plan to 
develop an automated tool for RAAP. The tool 
will consist of six modules: namely, requirements 
elicitor, component analyzer, graph generator, 
metrics collectors, conflict resolver and user 
interface. The requirements elicitor module will be 
used for eliciting stakeholder requirements, which 
contain high-level and concrete-level 
requirements. The requirements elicitor module 
will rank requirements based on priority, matching 
potential and view. The component analyzer 
module will extract component feature 
information contained in a repository. The graph 
generator module will construct a directed graph 
to represent the requirements, the selected 
components and the relationship between different 
requirements. The metrics collector module will 
compute the satisfaction and risk metrics for each 
requirement of the system. The conflict resolver 
module will describe the conflicts between 
requirements, generate the resolutions and 
calculate the relevance indexes to help software 
designers select a suitable resolution for a given 
conflicting requirements situation. Finally, the 

user interface module will facilitate users to 
interactively enquire about the selected 
components. 

For our future work, we plan to investigate the benefits 
of satisfaction, risk, resolution selection metrics; and 
relevance index for a CBS. We also aim to extend UML 
so that a CBS using RAAP can be specified in UML. 
This will help the automation as both stakeholder 
requirements and component specifications can be based 
on machine-readable UML. 
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