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Abstract—As a promising dimensionality reduction and data 
visualization technique, ISOMAP is usually used for data 
preprocessing to avoid “the curse of dimensionality” and 
select more suitable algorithms or improve the performance 
of algorithms used in data mining process according to No 
Free Lunch (NFL) Theorem. ISOMAP has only one 
parameter, i.e. the neighborhood size, upon which the 
success of ISOMAP depends greatly. However, it’s an open 
problem how to select a suitable neighborhood size 
efficiently. Based on the unique feature of shortcut edges, 
introduced into the neighborhood graph by using the 
unsuitable neighborhood size, this paper presents an 
efficient method to select a suitable neighborhood size 
according to the decrement of the sum of all the shortest 
path distances. In contrast with the straightforward method 
with residual variance, our method only requires running 
the former part of ISOMAP (shortest path computation) 
incrementally, which makes it less time-consuming, while 
yielding the same results. Finally, the feasibility and 
robustness of this method can be verified by experimental 
results well. 
 
Index Terms—data visualization, ISOMAP, geodesic 
distance, shortest path distance, neighborhood size, residual 
variance 
 

I.  INTRODUCTION 

Nowadays, the explosive growth in the amount of data 
and their dimensionality makes data visualization more 
and more important in data mining process. According to 
No Free Lunch (NFL) Theorem, the data information 
should be taken into account to select more suitable data 
analysis/processing algorithms for data mining. For high-
dimensional data, the useful distribution and structure 
information cannot be seen by eyes directly, but it can be 
obtained by data visualization approaches easily. 

During the last hundreds of years, lots of approaches to 
visualize high-dimensional data have been emerged, most 
of which fall into the following five categories: 1) use 
several sub-windows to represent visually different 
subsets of the dimensions respectively, such as scatterplot 
matrices[1] and pixel-oriented techniques[2]; 2) rearrange 
the dimension axes in the low-dimensional space, such as 
parallel coordinates[3] and star coordinates[4]; 3) embed 

the dimensions to partition the low-dimensional space 
hierarchically, such as dimensional stacking[5] and 
treemap[6]; 4) use certain objects with several visual 
features, each of which stands for one dimension, such as 
Chernoff-faces[7] and stick figures[8]; 5) reduce the 
dimensionality of the data to two or three dimensions 
using dimensionality reduction techniques, such as PCA 
(Principal Component Analysis)[9], MDS 
(Multidimensional Scaling)[10], SOM (Self-Organizing 
Map)[11], ISOMAP (Isometric Mapping)[12][13][14], 
LLE (Locally Linear Embedding)[15][16] and Laplacian 
Eigenmap[17], etc. 

Unlike other approaches, dimensionality reduction 
techniques try to preserve the high-dimensional 
relationship between the data in the low-dimensional 
space, which can represent visually the distribution and 
structure of the data very well. In addition, 
dimensionality reduction techniques can avoid “the curse 
of dimensionality” and improve the performance of 
algorithms used in data mining process. As one of non-
linear dimensionality reduction techniques, ISOMAP, a 
variant of MDS (Multi-dimensional Scaling)[12], 
preserves global geodesic distances between the data in 
the low-dimensional embedded space, and thus can 
visualize the convex but intrinsically flat manifolds such 
as the Swiss-roll and S-curve data sets nicely. Its ability 
to preserve the global geometric structure of  manifolds in 
the non-iterative way makes it more and more attractive 
in data preprocessing[16], in addition, one of its main 
advantages is that only one parameter, i.e. the 
neighborhood size upon which the success of ISOMAP 
depends greatly[18], is required. 

Like other manifold learning techniques such as 
LLE[15] and Laplacian Eigenmap[17], it’s very 
important for ISOMAP to select a suitable neighborhood 
size, which means a good trade-off between locality and 
globality, however, this is an open problem. It’s well 
known that the neighborhood size should be neither so 
large that the neighborhood graph contains shortcut edges 
(which connect two data points with rather large distance 
along the manifold but relatively small Euclidean 
distance and thus don’t lie on the manifold) so as not to 
represent the neighborhood structure of the data correctly, 
nor so small that the graph becomes disjoined or sparse 
so as not to approximate geodesic distances between the 
data accurately[18]. A straightforward method is to select 
a suitable neighborhood size through estimating the 
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“quality” of the corresponding mapping measured by 
residual variance[12]. So this method requires running 
the whole ISOMAP algorithm with every possible 
neighborhood size, which makes it very time-consuming. 
In this paper, we present an efficient method to select a 
suitable neighborhood size, in which only the former part 
of the ISOMAP algorithm, i.e. shortest path computation, 
is required to run incrementally. 

This paper is organized as follows: In Section II, 
ISOMAP and the straightforward method with residual 
variance are recalled briefly. In Section III, our method is 
described in detail. In Section IV and Section V, 
experimental results and conclusions are given 
respectively. 

II.  ISOMAP AND THE STRAIGHTFORWARD METHOD WITH 
RESIDUAL VARIANCE 

A.  ISOMAP 
When the global geometric structure of high-

dimensional data is unknown, we are not sure that the 
Euclidean distance metric is suitable to represent the 
dissimilarity relationship between the data. Fortunately, 
the Euclidean distance metric is trustworthy enough to 
represent the dissimilarity relationship between the data 
within a small enough neighborhood, which is also called 
the local Euclidean nature of the manifold. So the global 
geometric structure can be approximated using the local 
Euclidean distance information, as ISOMAP[12] does. 

If the data lies on a single well-sampled manifold, it’s 
proved that the unknown global geodesic distances 
between the data can be well approximated by the 
corresponding shortest path distances in the suitable 
neighborhood graph which represents the right 
neighborhood structure of the data[20]. After using the 
geodesic distance metric instead of the Euclidean distance 
metric, ISOMAP uses the classical MDS algorithm to 
map the data into the low-dimensional embedded space. 
So ISOMAP can be described briefly as follows[12][13]: 

1) Select n representative data points randomly or 
using vector quantization (with better results[21]) for 
very large data sets to keep subsequent computation 
tractable; 

2) Construct a suitable neighborhood graph (connected 
for data visualization) using the K nearest neighbors 
method with a suitable neighborhood size K (K is more 
natural to choose than ε [22]); 

3) Compute all the shortest path distances in the 
neighborhood graph; 

4) Use the classical MDS algorithm to map the data 
into the low-dimensional embedded space. 

B.  The Straightforward Method with Residual Variance 
Given the data lying on a single well-sampled convex 

but intrinsically flat manifold such as the Swiss-roll and 
S-curve data sets, the success of ISOMAP depends upon 
selecting a suitable neighborhood size, with which the 
neighborhood graph can represent the right neighborhood 
structure of the data and thus geodesic distances can be 

approximated by the corresponding shortest path 
distances accurately[18]. 

A straightforward method is to find a suitable 
neighborhood size through estimating the “quality” of the 
corresponding mapping, i.e. how well the high-
dimensional structure is represented in the low-
dimensional embedded space[19], measured by residual 
variance[12]: 2

)(ˆ1
YX DKDρ− , where 

YX DKD )(ˆρ is the 

standard linear correlation coefficient, taken over all the 
entries of )(ˆ KDX and YD , and where )(ˆ KDX and YD are 
matrices of geodesic distances approximated by the 
shortest path distances in the high-dimensional data space 
X, which is the function of the neighborhood size K, and 
Euclidean distances in the low-dimensional embedded 
space Y, which is the low-dimensional mapping of 
ISOMAP, respectively. 

The lower residual variance is, the better the high-
dimensional structure is represented in the low-
dimensional embedded space, and thus the more suitable 
the neighborhood size is. So the optimal K can be defined 
as follows[19]: 

)1(minarg 2
)(ˆ

YX DKD
K

optK ρ−=                 (1) 

Due to residual variance’s use of Y, i.e. the low-
dimensional mapping of ISOMAP, and its multimodality, 
we must run the whole ISOMAP algorithm with every 
possible ],[ maxmin KKK ∈  ( minK  is the minimal K 
which can make the corresponding neighborhood graph 
connected and maxK  is the predefined maximal K which 
can be specified further in the next section), and select the 
optimal K with the minimal residual variance, which 
makes it very time-consuming. So, residual variance can 
only be used to estimate the intrinsic dimensionality of 
the data and compare the relative goodness of two 
neighborhood sizes, however, not to select a suitable 
neighborhood size practically. 

III.  OUR METHOD 

A suitable neighborhood size should be the one with 
which the neighborhood graph can represent the right 
neighborhood structure of the data and thus geodesic 
distances can be approximated by the corresponding 
shortest path distances accurately. To do this, the 
neighborhood graph should be connected and dense, but 
it cannot contain shortcut edges. Under these restrictions, 
the more the number of edges in the neighborhood graph 
is (that is, the denser the neighborhood graph is), the 
more accurately geodesic distances are approximated by 
the corresponding shortest path distances, which can be 
verified by experimental results in the next section. So, a 
suitable neighborhood size should be large enough, while 
not introducing shortcut edges into the neighborhood 
graph. 

Obviously, under the restriction that the neighborhood 
graph is connected, as the neighborhood size increases 
and new edges are added into the neighborhood graph, 
the involved shortest path distances decrease 
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monotonously due to triangular inequality of the 
Euclidean distance metric and the definition of shortest 
path distance as in (2), limited by the corresponding 
geodesic distances before shortcut edges are introduced 
into the neighborhood graph. 

,2,1),ˆˆ,ˆmin(ˆ =+= kdddd kjikijij         (2) 
So, the sum of all the shortest path distances is a 

monotonously descent function of the neighborhood size 
K: 

∑=
entriestheall

X KDKf )(ˆ)(                            (3) 

Before shortcut edges are introduced into the 
neighborhood graph (when the neighborhood size is 
suitable), as the neighborhood size increases, the 
neighborhood graph is denser along the manifold, new 
edges added into the neighborhood graph will be longer 
and their influences on the involved shortest path 
distances will be weaker, and thus the decrement of the 
sum of all the shortest path distances )(Kf  will 
decrease gradually. 

Once shortcut edges are introduced into the 
neighborhood graph (when the neighborhood size is 
unsuitable), the sum of all the shortest path distances 

)(Kf  will drop sharply in contrast with the former 
gradually decreasing downtrend, because shortcut edges 
can influence much more shortest paths than other edges 
in the neighborhood graph and make them be no longer 
along the manifold. 

Consequently, to select a suitable neighborhood size K, 
we can compute the sum of all the shortest path distances 

)(Kf , which only requires running the former path of 
ISOMAP (shortest path computation) incrementally 
beginning with minK , and select the first one at which 
the sum of all the shortest path distances )(Kf  begins 
to drop sharply in contrast with the former gradually 
decreasing downtrend as the suitable K (i.e. suitableK ) to 
be used in the subsequent ISOMAP algorithm. 

For example, we can select suitableK  as follows: 

END
FALSEfirst

KK
TRUEfirstAND

KfKfKfKfIF

suitable

;
;

))()1((*2)1()(

=
=

==
−−>+−

   (4) 

Where first is a boolean variable whose initial value is 
TRUE. 

So, our method is less time-consuming than the 
straightforward method with residual variance. In 
addition, shortcut edges will be introduced into the 
neighborhood graph if a bit larger K is used, so the 
selected suitableK  is also the maximal suitable K, which 
can also be used as the upper boundary of the suitable Ks, 
i.e. maxK , for the straightforward method with residual 
variance. 

Although our method doesn’t require running the latter 
part of ISOMAP, i.e. the classical MDS algorithm which 
includes the very time-consuming eigenvalue 
decomposition, our method still requires running the 
former part of ISOMAP, i.e. shortest path computation, 
which is still time-consuming. 

Note that weights of the edges in the neighborhood 
graph are specified as the corresponding Euclidean 
distances, and the Euclidean distance metric meets the 
symmetry and triangular inequality conditions, so we can 
greatly quicken Dijkstra’s shortest path algorithm based 
on these two characteristics of the Euclidean distance 
metric, and the corresponding time costs of these two 
shortest path algorithms with different neighborhood size 
K over the well-known Swiss-roll and S-curve data sets 
are given in Fig. 1(a) and Fig. 1(b) respectively (different 
neighborhood size K means different neighborhood 
graph). As a Dijkstra-like shortest path algorithm, its 
differences from Dijkstra’s shortest path algorithm are 
listed as follows: 

1) The shortest paths found previously needn’t be 
computed once again and can also be used to find other 
shortest paths (use the symmetry condition); 

2) For each vertex, its edges existing in the 
neighborhood graph are the shortest paths themselves, 
needn’t be computed once again, and can also be used to 
find other shortest paths (use the triangular inequality 
condition). 
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(a) The Swiss-roll data set. 
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(b) The S-curve data set. 

Figure 1.  Time costs of these two shortest path algorithms over 
different neighborhood graph of different data set. 

We represent the i-th data point and its K nearest 
neighbors by ix  and )(iN K  respectively, and then the 
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adjacent matrix of the corresponding neighborhood graph 
can be represented by nnijpP ×= )( , where 

⎪⎩

⎪
⎨

⎧

∞+
∈∈−

=
=

else
jNioriNjxx

ij
p KKjiij

,
)()(,

,0
      (5) 

Consequently, our Dijkstra-like shortest path algorithm 
can be described as follows: 

Initialize nnjiX dKD ×= )ˆ()(ˆ  to be identical with 

nnijpP ×= )( ; 

For each data point i  

}ˆ|{ +∞<= ijdjS ; ( }{iS =  in Dijkstra’s 
shortest path algorithm) 

SnT −= },,1{ ; 
For each data point Tj∈  

}ˆˆ{min ljilSlj ddd +=
∈

; ( ijj dd ˆ=  in Dijkstra’s 

 shortest path algorithm) 
End 
While Φ≠T  

}{minarg l
Tl

dj
∈

= ; 

jij dd =ˆ ; jji dd =ˆ ; (This two shortest paths 
can also be used to find 
other shortest paths) 

}{ jSS += ; }{ jTT −= ; 
For each data point Tl∈  

If jlijl ddd ˆˆ +>  

jlijl ddd ˆˆ += ; 
End 

End 
End 

End 

IV. EXPERIMENTAL RESULTS 

To contrast our method with the straightforward 
method with residual variance, we run ISOMAP, which 
uses our faster Dijkstra-like shortest path algorithm, with 
different neighborhood size K over two widely-used data 
sets, i.e. Swiss-roll and S-curve, with 2000 data points 
sampled uniformly from the corresponding intrinsic 
manifolds given in Fig. 2(a) and Fig. 2(b) respectively. In 
the experiments, we use the k-means algorithm in Matlab 
v6.5 toolboxes to select n=500 representative data points 
from these two data sets respectively. Residual variance 
and our function )(Kf , i.e. the sum of all the shortest 
path distances obtained by our faster Dijkstra-like 
shortest path algorithm, with different K over these two 
data sets are given in Fig. 3 and Fig. 4 respectively. 

 

 
(a) The intrinsic manifold of the Swiss-roll data set. 

 
 (b) The intrinsic manifold of the S-curve data set. 

Figure 2.  Two manifolds used in the experiments. 

In the experiments, we specify the first K at which the 
next decrement of our function is one times larger than 
the last one as the suitable K to be used in the subsequent 
ISOMAP algorithm, as in (4). 

From Fig. 3 and Fig. 4, We can see that our method 
selects the same neighborhood size with the 
straightforward method with residual variance, which 
means what our method selects, i.e. suitableK , is also 

optimal, for example, suitableK =7 over the Swiss-roll data 
set, represented by five-pointed stars in Fig. 3(a) and Fig. 
3(b), but with 144.156 seconds in our method vs. 292.204 
seconds in the straightforward method with residual 
variance, and suitableK =18 over the S-curve data set, 
represented by five-pointed stars in Fig. 4(a) and Fig. 
4(b), but with 314.031 seconds in our method vs. 668.266 
seconds in the straightforward method with residual 
variance. 

To verify the suitability of the selected suitableK , the 
neighborhood graphs and low-dimensional mappings of 
ISOMAP with the corresponding suitableK  over these two 
data sets are given in Fig. 5 and Fig. 6 respectively, from 
which we can see that the intrinsic manifold structures of 
these two data sets are recovered nicely, which means 
that the selected K is suitable. 
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(a) Residual variance with different K. 
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(b) The sum of all the shortest path distances ( )(Kf ) with different K. 

Figure 3.  The contrast of these two methods over the Swiss-roll data 
set ( suitableK  is represented by the five-pointed star). 
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(a) Residual variance with different K. 
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(b) The sum of all the shortest path distances ( )(Kf ) with different K. 

Figure 4.  The contrast of these two methods over the S-curve data set 
( suitableK  is represented by the five-pointed star). 

 
(a) The Swiss-roll data set, K=7. 

 
(b) The S-curve data set, K=18. 

Figure 5.  The neighborhood graphs with the corresponding suitableK  

over different data set. 

 
(a) The Swiss-roll data set, K=7. 

 
(b) The S-curve data set, K=18. 

Figure 6.  The low-dimensional mappings of ISOMAP with the 
corresponding suitableK  over different data set. 
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When we increase suitableK  by one correspondingly, 
shortcut edges (represented by dashed lines in Fig. 7(a) 
and Fig. 7(b) respectively) are introduced into the 
corresponding neighborhood graphs, and thus the 
corresponding low-dimensional mappings of ISOMAP 
worsen badly, as given in Fig. 8, which means what our 
method selects, i.e. suitableK , is also the maximal suitable 
K.  

 
(a) The Swiss-roll data set, K=8. 

 
(b) The S-curve data set, K=19. 

Figure 7.  The neighborhood graphs with the corresponding 

suitableK +1 over different data set (shortcut edges are represented by 

dashed lines). 

 
(a) The Swiss-roll data set, K=8. 

 
(b) The S-curve data set, K=19. 

Figure 8.  The low-dimensional mappings of ISOMAP with the 
corresponding suitableK +1 over different data set. 

To verify the robustness of our method, we run 
ISOMAP with different neighborhood size K over the 
noisy Swiss-roll and the noisy S-curve data sets, with 
zero-mean normally distributed noise added to each data 
point of the corresponding data set, where the standard 
deviation of the noise is chosen to be 2% of smallest 
dimension of the bounding box enclosing the data. 
Residual variance and our function )(Kf  with different 
K over these two noisy data sets are given in Fig. 9 and 
Fig. 10 respectively. 
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(a) Residual variance with different K. 
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(b) The sum of all the shortest path distances ( )(Kf ) with different K. 

Figure 9.  The contrast of these two methods over the noisy Swiss-roll 
data set ( suitableK  is represented by the five-pointed star). 
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(a) Residual variance with different K. 
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(b) The sum of all the shortest path distances ( )(Kf ) with different K. 

Figure 10.  The contrast of these two methods over the noisy S-curve 
data set ( suitableK  is represented by the five-pointed star). 

From Fig. 9 and Fig. 10, We can see that our method 
still can select the same neighborhood size with the 
straightforward method with residual variance over the 
noisy data sets, that is, what we selects is still the 
maximal suitable K. 

From Fig. 3(a) and Fig. 4(a), under the restriction that 
shortcut edges are not introduced into the neighborhood 
graph (that is, K is less than or equal to the selected 

suitableK ), as more edges are introduced into the 
neighborhood graph, indicated by the larger K, geodesic 
distances can be approximated more accurately, indicated 
by the smaller residual variance. This fact can also be 
verified by the comparison among three methods to 
construct the neighborhood graph in ISOMAP: ISOMAP 
with the K nearest neighbors method[12], ISOMAP with 
the K-edge connected neighborhood graph[23], and 
ISOMAP with the K mutual neighborhood graph[24]. In 
these three methods with the same suitable neighborhood 
sizes K=6 and K=7 respectively over the Swiss-roll data 
set, ISOMAP with the K-edge connected neighborhood 
graph has the most edges in the corresponding 
neighborhood graph and the smallest residual variance, 
and ISOMAP with the K mutual neighborhood graph has 
the least edges in the corresponding neighborhood graph 
and the largest residual variance, as given in Table I. 

 
 
 

TABLE I.   THE RESIDUAL VARIANCE AND THE NUMBER OF EDGES IN 
THE CORRESPONDING NEIGHBORHOOD GRAPH OBTAINED BY THREE 

METHODS WITH K=6 AND K=7 OVER THE SWISS-ROLL DATA SET 

Three methods Residual 
variance 

The number of edges in 
the corresponding 

neighborhood graph 

ISOMAP with the 
K nearest 

neighbors method 

K=6 0.0006 3432 

K=7 0.0004 3970 

ISOMAP with the 
K-edge connected 

neighborhood 
graph 

K=6 0.0002 5988 

K=7 0.0001 6986 

ISOMAP with the 
K mutual 

neighborhood 
graph 

K=6 0.0010 2568 

K=7 0.0008 3030 

 
In this sense, what our method selects, i.e. the maximal 

suitable K, is optimal, which can also be proved by the 
fact that what our method selects is same to the one with 
the minimal residual variance, as given in Fig. 3-4 and 
Fig. 9-10. 

In addition, from Fig. 3-4 and Fig. 9-10, we can see 
that the sum of all the shortest path distances ( )(Kf ) 
decreases monotonously and its decrement decreases 
gradually until a sharp drop emerges, at which shortcut 
edges begin to emerge in the neighborhood graph and the 
corresponding low-dimensional mapping of ISOMAP 
begins to worsen badly, represented by Fig. 5-8 
respectively, by which the feasibility and effectiveness of 
our method can be verified. 

V. CONCLUSIONS 

It's an open problem for those manifold learning 
techniques such as ISOMAP and LLE to select a suitable 
neighborhood size, with which a right local connectivity 
can be constructed and thus these techniques can be 
applied successfully. In this paper, we present an efficient 
and robust method to select the suitable neighborhood 
size K according to the decrement of the sum of all the 
shortest path distances. Our method is less time-
consuming than the straightforward method with residual 
variance, while yielding the same results. What’s more, 
what our method selects is also the maximal suitable K, 
which can be provided as the upper boundary of the 
suitable Ks, i.e. maxK , for the straightforward method 
with residual variance. 
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