
Unified Service Platform for Accessing Grid
Resources

Shaochong Feng
Dept. 2, Mechanical Engineering College, Shijiazhuang, China

Email: fscsat@gmail.com

Yuanchang Zhu and Yanqiang Di

Dept. 2, Mechanical Engineering College, Shijiazhuang, China

Email: {YuanchangZ, YanDi}@gmail.com

Abstract Web Services Resource Framework (WSRF)

redefines Grid Services standards and extends Web Services

by adding stateful resources. Using GT4 to develop WSRF

Grid Services is a taxing work, and it is difficult to build and

deploy these services dynamically. Addressing these issues,

this paper proposes a unified service platform which can

provide a series of unified service interfaces for accessing

kinds of different Grid resources. On the platform, Grid

resources are independent of the service interfaces. The

platform provides unified service interfaces to access different

Grid resources on server, so Grid services developers only pay

attentions to realizing the native methods of Grid resources

and configuring necessary resource database. The remainder

work of composing typical Grid Services such as mapping the

resources into the service interfaces would be automatically

finished by the platform. It means that Grid Services

development becomes native application development. What is

more, there are no needs to restart the service container when

deploying/undeploying Grid resources, so it does not affect

other resources. The platform provides service-users with two

types of clients, one is for directly invoking the unified

interfaces and the other is a proxy client associating to the

specific Grid resource. Finally, the test shows that the service

development and deployment is much easier on this platform
and the service performs well.

Index Terms WSRF, GT4, Grid resources, Web Services

I. INTRODUCTION

Web Services Resource Framework (WSRF) specifies

stateful services by adding stateful resources to stateless

Web Services. The Globus Toolkit (GT) is a software toolkit

can use to program Grid-based applications. The Globus

Toolkit 4(GT4), in fact, includes a complete implementation

of the WSRF specification. GT4 Java WS Core is the

common runtime component provides a set of Java libraries
and tools which are needed to build both WS and non-WS

services. This paper discusses the issue that using GT4 to

build WSRF Grid Services [1] [2].

Developer may encounter some problems using GT4 Java

WS Core to developing Grid Services and Grid-based

applications.

1) Heavy coding workload to generate a WSRF service.

Generating Grid Services Using GT4 is different to

developing native applications. Besides the kernel code of
the services and resources, many other configuration files,

build files and scripts must be finished manually. As Fig.1

shows, writing a simple stateful web service that uses

WSRF to keep state information needs at least 4 steps:

 Define the service's interface. This is done with

WSDL.

 Implement the service. This is done with Java.

 Define the deployment parameters. This is done

with WSDD and JNDI.

 Compile everything and generate a GAR file. This

is done with Ant.

Figure 1. Generating a WSRF service GAR file

It is a great block for the newer, and is a load for the

trained programmer.

930 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.5.930-936

2) Difficult to dynamically deploy and undeploy. The

final work of deploy a WSRF Grid Service is placing the

generated GAR files to services container. Although GT4.2

supports dynamic deployment in standalone container, the

third party Web services containers such as Tomcat are not

supported. If developers want to deploy or undeploy Grid

Services, they have to stop the services container first,

executing the deploying or undeploying, and then restart the

services container. The other active stateful services and

resources running in the container would be consequentially

affected. What is more, services modifying and transferring
cannot be achieved dynamically.

Addressing these issues, this paper proposes a Unified

Service Platform (USP) for accessing Grid resources based

on GT4 Java WS Core. Under USP, the main workload of

developing Grid applications is realizing the native methods

of the Grid resources, just like developing native application.

The Grid resources can be dynamically deployed and

undeployed under USP regardless what kind of Web

services container is used.

The remainder of the paper is organized as follows:

Section II briefly summarizes the related researches and
works. Section III analyzes the modes of accessing the Grid

resources. Section IV describes the architecture of USP.

Section V presents the experiment on USP. Conclusions and

future work are presented in Section VI.

II. RELATED WORKS

The research group form University of Marburg proposed

GDT (Grid Development Tools) which is part of the

Marburg Ad-hoc Grid Environment (MAGE). GDT is a

bundle of Eclipse Plugins useful for Service and Application

Development, Workflow Creation, Grid Management and

others in the Eclipse Integrated Development Environment
[5]. GDT greatly reduced the workload under Eclipse to

develop Grid applications. In [7], they modified the Axis

web service engine utilized by GT4 to allow dynamic

loading and unloading of Grid services. Hot Deployment

Service (HDS) was constructed to provide applications with

the capability to remotely deploy, undeploy and redeploy

services onto a running node. In [8] an approach to discover

Grid resources and to deploy Grid services based on

peer-to-peer technologies was presented.

Reference [9] and reference [10] specially researched the

dynamic services deployment. Eun-Kyu Byun developed

Universal Factory Service (UFS) that provided a dynamic
Grid service deployment mechanism and a resource broker

called Door service [9]. Jon B. Weissman proposed a

dynamic service architecture consists of several core

services and components, the kernel was the Adaptive Grid

Service (AGS) [10]. However, these researches are all based

on OGSI/GT3, and with the development of Grid

technology, OGSI/GT3 has been replaced by WSRF/GT4.

The OGSI services don t have states information, so the

proposed approaches in [9] and [10] are not compatible with

WSRF.

FuQiang Li presented an approach to deploy visualization

services dynamically in [11]. The Uniform Visualization

Service (UVS) is developed in this paper to provide

dynamic visualization services deployment on the Grid, and

a service named Agency Service, is used as a resource

broker/dispatcher and service states communicator. Service

users send requests to Agency Service. The Agency Service

find available or applicable services from service center,

retrieve the available service codes from the service codes
center, and find available resources from MDS. The Agency

Service can transfer the service codes to the available

resources. The UVS on the resources creates UVS instance

to create the service instance with the service codes. The

service instance has its own service resources, which can be

interacted and collaborated with the service users. In this

architecture, the service providers only concern on

developing the visualization service codes but not finding

available resources.

Addressing the issue that services container can only

accommodate language-special services, Pu Liu and
Michael J. Lewis described the implementation of an

approach that allows Grid services developers to write their

code in one language, and have the services running in

different service containers, namely GT4, WSRF.NET, and

gSOAP and ACE [12].

Li Qi and Doc. Hai Jin proposed a highly available

dynamic deployment infrastructure (HAND) in [13], which

addressed dynamic service deployment at both the container

level and the service level.

These researches are significative for this paper, but all of

them concerned the service itself, the service interfaces are
tightly bound to the resources. USP proposed in this paper

keeps the services interfaces and the resources completely

separated, users can access the Grid resources through the

same service interface. USP provides the unified service

interface and the mechanism of managing different

resources on server, so the Grid Service developing is

predigested to developing resources and configurating

database.

III. MODES OF ACCESSING GRID RESOURCES

WSRF adds stateful resources to stateless Web Services.

So the WSRF service interfaces usually bind the resources.

The kernel idea of this paper is thoroughly disparting the
service interfaces and Grid resources. USP publishes the

unified WSRF service interfaces which access Grid

terms are

listed as follows:

1) Proxy Resource (PR): PR is a Java class, and it is the

resource directly related to the published service interfaces

by USP. PR implements the defined functions in USP s

WSDL file, and provides access to the real resource.

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 931

© 2011 ACADEMY PUBLISHER

2) Real Resource (RR): RR also is a Java class, and it is

the resource with the final functions. RR is reserved in the

resource database.

3) Instance of Proxy Resource (IPR): IPR is an object of

class PR.

4) Instance of Real Resource (IRR): IRR is an object of

class RR.

USP takes the user-defined Grid resources as RR, and

publishes unified service interfaces for accessing the RRs.

The published service interfaces only retrieve PR, and they

know nothing about the RR. USP automatically maps the
access from client to

methods.

When client invokes the service published by USP, the

PR and RR on server may interact with each other in three

modes:

A. Singleness IPR mode

As Fig.2 shows, in the singleness IPR mode, there is only

one instance of proxy resource. All clients access IRRs

through the Singleness IPR, so the invoked service interface

should include the parameters to indicate the invoking RR,

the specified IRR and the exact method with all of the

B. IPR-RR mode

As Fig.3 shows, in the IPR-RR mode, USP maintains an

instance of proxy resource for each real resource class, and

one IPR may contain several instances of real resource. The

clients access the different instances of the same RR class

through the same IPR. It means the invoked RR can be

judged by the IPR, so the invoked service interface should

include the parameters to indicate the specified IRR and the

exact method with all of the

C. IPR-IRR mode

As Fig.4 shows, in this mode, instance of proxy resource

and instance of real resource are peer to peer. The clients

access the IPR-IRR pairs. So the invoked service interface

parameters.

R
ea

l
R

eso
u

rce
B

R
ea

l
R

eso
u

rce
A

Client1

Instance of

Proxy

Resource

Client2

Client3

Client4

Instan

ce1_A

Instan

ce2_A

Instan

ce1_B

Instan

ce2_B

Service

Interface

Figure 2. Singleness IPR mode

R
ea

l
R

eso
u

rce
B

Instance2 of

Proxy

Resource

Client1

Instance1 of

Proxy

ResourceClient2

Client3

Client4

R
ea

l
R

eso
u

rce
A

Instan

ce1_A

Instan

ce2_A

Instan

ce1_B

Instan

ce2_B

Service

Interface

Figure 3. IPR-RR mode

R
ea

l
R

eso
u

rce
B

Client1

Service

Interface

Instance1 of Proxy

Resource

Client2

Client3

Client4

Instance4 of Proxy

Resource

Instance2 of Proxy

Resource

Instance3 of Proxy

Resource

R
ea

l
R

eso
u

rce
A

Instan

ce1_A

Instan

ce2_A

Instan

ce1_B

Instan

ce2_B

Figure 4. IPR-IRR mode

Obviously, in the first two modes, it is probable that

client access different IRRs through the same IPR, and the

fault in one IRR accessing may fail several of the other

IRRs. What is more, in view of GT4, the IPR and IRR could

not be created together with these two modes, extra

attentions must be paid to manage the IRR, and it may

increase the complexity of the system. Anyway, this paper

adopts the IPR-IRR mode.

IV. IMPLEMENT OF THE MAIN COMPONENTS

Resource database

UIS IPR IRR

RQDS

SLQS
Server load

monitor

Resource

manager

UIS: Unified invoking Service

RQDS: Resource Query&Deploy Service

SLQS: Server Load Query Service
Figure 5. Structure of USP server

Besides IPR and IRR, USP server is composed of three

WSRF services and several backup modules like Fig.5

shows.

932 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

A. Resource database

Resource database maintains the RR class information,

such as the full class name (including class package), public

class methods and so on. The information of the active IRR

is also recorded here.

B. Resource manager

This module takes responsibility to map IPR to IRR. The

functions are listed as following:

 Queries and configures the resource database.

 Obtains the RR class according to the queried RR
name utilizing Java reflection/introspection

mechanism. Farther, all of the RR class native

methods can be achieved.

 Maps the access to IPR to corresponding IRR

according to the necessary parameter provided by

the UIS.

C. Server load monitor

The performance parameters such as CPU type, CPU

utilization, memory size, memory utilization and bandwidth

are gained by server load monitor module.

D. Unified Invoking Service(UIS)

As the kernel part of USP, UIS is a WSRF service, and it
provides clients with the unified invocation interfaces to

requesting the RR on server. IPR-IRR mode described in

Fig.3 is adopted here. The main interfaces published by UIS

are listed as follows:

1) Service interface for resource instantiation: The service

interface CreateResource(Sting strRRName)can create an

IPR-IRR pair. The strRRName parameter specified the

identity of the accessed RR. Receiving the invoking on this

interface, server creates an instance of PR, then queries the

resource database, obtains the RR by strRRName, and

creates the object of it. So an IPR-IRR pair is maintained on
server for each client.

2) Service interface for accessing the RR: Because the

native methods are different between different RRs, the

service interface for accessing

designed to be unique, and it is WSRFFunc(String strParam,
String strFuncName). The strFuncName parameter specifies

included in the strParam parameter. Receiving the request

on this interface, server invokes IPR, and then maps this

invoking to the IRR through resource manager module.

3) Interface for the notification: in GT4, resource exposes

a resource property (RP) as a topic for client to subscribing,
a notification would be triggered each time the value of the

RP changes, and then client subscribing the topic receives

the notification. The topic published by RR are also

uncertain, so the USP implies a unified methods

WSRFNoty(String str)in UIS. PR publishes one topic for

client subscribing, and all the message of the notification

such as the real topic of RR and the value of RP is encoded

in the str parameter.

E. Resource Query&Deploy Service(RQDS)

RQDS provides WSRF services facilitating users to

program under USP.

1) Service interface for querying RR information: the

service interface QueryAllClass() queries all of the RRs, and
generates a text file for client. The text file lists all the class

names of RRs.

2) Service interface for querying the pointed RR

information: the service interface QueryClass(String
strRRName) queries detailed information of pointed RR

specified by the strRRNamer parameter, and generates three

file for client. The first file lists all the public methods with

parameters of the class. The second file shows an example

of invoking the unified service interfaces published by UIS.

The third file is a Java file, it is the proxy client, and

sometimes a proxy notifier is also generated if the pointed
RR can notify the client. UIS publishes only one service

interface WSRFFunc

Although client may invoke this interface follow the

example in first file, the client program would be very

complex, because clients have to make sure the

strFuncName and

encode the strParam parameter according to the achieved

second text file generated by QueryClass interface. So, the

QueryClass interface can build new Java classes based on

the queried RR class and the client stubs, and they are the

proxy client and proxy notifier. The proxy client

encapsulates the client stubs and provides same public
methods with the pointed remote RR; analogously the proxy

notifier provides the same interfaces with the pointed remote

RR. So if client instantiates the proxy client, and invokes its

methods, the proxy client would map the invoking to the

WSRFFunc request, and finally the request would be sent to

corresponding method on server. It greatly

advantages the USP users.

3) Service interface for deploying Grid resource: the

service interface DeployingRR(String strConfgFile, String
strRR) is for users to remotely deploy the RR and configure

the resource database. The strConfgFile parameter specifies
a local text file, which should define the following elements:

RR full class name, location on the server, and dependence

relationship. The other strRR parameter refers the native

Java class file to be deployed as RR. The file transmission

from client to server is based on GridFTP.

All of the interfaces of the RQDS are related to the

resource manager module which reads and writes the

resource database.

F. Server Load Query Service(SLQS)

information such as the CPU type, CPU utilization, memory

size, memory utilization and bandwidth.

G. Process of accessing the resources

Under USP, the process of accessing the Grid resources is

described in Fig.5 (it is supposed that client has invoked

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 933

© 2011 ACADEMY PUBLISHER

RQDS, generated the proxy client, and instantiated the

IPR-IRR pair by calling CreateResource).

1) Client invokes the native method Func(String str) of

the proxy client.

2) Proxy client transforms Func(String str) to

WSRFFunc(String strParam, String strFuncName), and

invoke the client stub. The parameter of Func is encoded to

be the strParam parameter, and proxy client also specifies

the invoking method by strFuncName parameter.

3) Client stub sends the request WSRFFunc to UIS.

4) UIS finds the corresponding IPR of the client.

5) USP invokes WSRFFunc method.

6) 7) Resource manager queries resource database and

Func method according to the strFuncName

parameter.

8) UIS decodes the strParam parameter, and call the

Func method.

Finally, client receives the responds from server.

The implement of the notification is a converse process.

Figure 6. Consequent diagram of accessing Grid resources based on USP

V. PERFORMANCE TEST

The proposed unified service platform is based on GT4

Java WS Core, it provides unified WSRF service interfaces

to accessing the resources on server through the IPR-IRR

pair, and reduces the workload in service development and

configuration. USP adds middleware to the interaction

between service interfaces and the real resources, so the

service performance would be affected consequentially.

The performance test is executed to examine the

performance lost and development efficiency increase. The
test mainly inspected the response time to finish a service

invoking. What is more, we compared the workload by

measuring time consumption for a trained GT4 programmer

to developing and deploying new Grid Service.

A. Response time test

We took a simple RR class ClassA with native method int
Func(String str) for example. The Func directly returns an

integer value, and does nothing else.

Using GT4, the ClassA is instantiated in hard code by

resource factory when Creating IPR, and service interface

directly calls Func method and get the returned value.

Under USP, the ClassA was recorded in resource database,

USP queries the database, gets ClassA and its Func method

utilizing Java reflection/introspection mechanism, and then

invokes its method. It is necessary to code and decode the

parameters in the interaction between IPR and instance of

ClassA.
The testing environment is described in Tab.1. We

separately carried out experiments in Windows and Linux,

and all the tests were executed in LAN connected by a

switch.

References [14] and [15] have mentioned that in

Windows environment, the service response time seemed to

be affiliated with the length of the parameters. If the data

length is about between 200 bytes and 3000 bytes, the

latency is relatively small, as long as out of this range,

longer or shorter, the latency would be much heavier. So in

Windows test, the length of str parameter was set to 500
bytes.

In Windows, we separately executed 50 tests under USP

and GT4. In each test, we continually invoked the service

interface for 100 times, measured the invoking response

time and in the end of each test, the mean of all the time

consumption values were calculated as the result of this test.

934 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

The test scheme in Linux was similar except that the

length of str parameter was 5 bytes.

TABLE I. TEST ENVIRONMENT

server

CPU Pentium(R)4 2.6G

memory 512M

Operation system
WinXP pro sp2

Ubuntu8.04

Grid toolkit GT4.0.8

JDK Java-1.5.0

Service container Tomcat5.5.29

Ethernet 100M

client

CPU Pentium(R)4 2.6G

memory 512M

Operation system
WinXP pro sp2

Ubuntu 8.04

JDK Java-1.5.0

Service container Tomcat5.5.29

Ethernet 100M

other switch DLink 100M

Fig.7 shows the test data in Windows, while Fig.8
indicates the test in Linux. Tab.2 analyses the data. From

these two figures, we can see that the values of service

response time under USP and GT4 are approximate. Tab.2

shows that under USP, the mean service time in Windows

rises from 19.27ms to 20.34ms, and the one in Linux rises

from 37.84ms to 38.56ms comparing to the service directly

utilizing GT4. The service performance loss is no more than

6%.

Figure 7. Service time consumption in Windows

Figure 8. Service time consumption in Linux

TABLE II. DATA IN WINDOWS

Windows(ms) Linux(ms)

max min mean max min mean

GT4 17.2 13.77 19.27 41.72 35.34 37.84

USP 29.09 14.82 20.34 43.26 36.32 38.56

In fact, the performance of GT4 service is not stable for

some reasons, just like what Fig.7 and Fig.8 have showed,

the service response time always floats in a certain range. So

a little service time rising is not meaningful to Grid

Services.
So, the negative effect on service performance taken by

USP is not evident.

B. Workload test

The performance can be ensured, how about the

workload? We separately measured the time consumption

for a trained programmer to finish new Grid Service
utilizing GT4, GDT and USP. The function of Grid Service

is same to the one used in response time test. The comparing

of time consumption is listed in Tab.3. We can see that the

developing efficiency increases a lot.

TABLE III. TIME CONSUMING COMPARE

Tools USP GDT GT4

Time 4.2 min 11.4min 37.8 min

C. Test conclusion

From the test, we can easily come to the conclusion that

Grid Service development under USP is efficient and the

outcome service performs almost as well as the service
directly generated by GT4.

VI. CONCLUSION

A unified service platform for accessing Grid recourses is

proposed in the paper. USP separates the service

development and resource development, and provides

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 935

© 2011 ACADEMY PUBLISHER

unified service interfaces to access different resources. The

main workload for a USP user willing to deploy Grid

resources is realizing the native methods and configuring the

resource database. The resources under USP can be

deloyed/undeployed dynamically. Besides the common

client stub which can directly invoke the unified service

published by USP, users can also achieve the proxy client

through resource query&deploy service. The proxy client

and proxy notifier could greatly facilitate the service users.

The final experiment proofs that the service performance

under USP is acceptable for Grid applications and
development workload reduce a lot.

This paper only proposes a prototype. The future works

include management of the third-party resources used by

RR, GUI for USP users, high QoS of USP, and so on.

ACKNOWLEDGMENT

The authors wish to thank Dr. Xianguo Meng from

Dept.2 of Mechanical Engineering College.

REFERENCE
[1] http://www.globus.org/toolkit/.(2010-10-11)

[2]
http://gdp.globus.org/gt4-tutorial/.(2010-2-5)

[3] http://tomcat.apache.org. (2010-2-5)

[4] Ken Arnold, Jams Gosling, David Holmes. The JavaTM

Programming Language, Fourth Edition. Pearson Education, Inc.

2006

[5] http://mage.uni-marburg.de/trac/gdt/wiki. (2009-12-3)

[6] T. Friese, M. Smith, and B. Freisleben. GDT:A Toolkit for Grid
Service Development. In Proc. of the 3rd International Conference

on Grid Service Engineering and Management, pages 131-148, 2006

[7] M. Smith, T. Friese, and B. Freisleben. Intra-Engine Service Security
for Grids Based on WSRF. In Proceedings of the 2005 IEEE

International Symposium on Cluster Computing and Grid
s 644-653, 2005.

[8] Kay Dornemann and Bernd Freisleben. Discovering Grid Resources

and Deploying Grid Services Using Peer-to-Peer Technologies. In
Proceedings of the 2009 International Conference on Advanced

Information Networking and Applications Workshops, pages
292-297, 2009

[9] Eun-Kyu Byunt, Jae-Wan Jangt, Wook Jungt et al. A Dynamic Grid
Services Deployment Mechanism for On-Demand Resource

Provisioning. In Proceedings of the 2005 IEEE International

Symposium on Cluster Computing and the Grid, pages 863-870,
2005

[10] Jon B. Weissman, Seonho Kim, and Darin England, Supporting the

Grid Service Dynamic Lifecycle. In Proceedings of the 2005 IEEE
International on Cluster Symposium and Computing the Grid, pages

808- 815,2005

[11] Fu Qiang Li, Bin Gong, Cheng Xing. Dynamic Visualization Service
Deployment in Grid Scientific Workflow. In Proceedings of the 2008

Seventh International Conference on Grid and Cooperative
Computing, pages 201-205, 2008

[12] Pu Liu, Michael J. Lewis. Unified Dynamic Deployment of Web and

Grid Services. In the Proceedings of 2007 IEEE Conference on Web
Service, pages 26-34, 2007

[13] L. Qi, H. Jin, I. Foster, and J. Gawor. HAND: Highly Available

Dynamic Deployment Infrastructure for Globus Toolkit 4. In the
Proceedings of 15th EUROMICRO International Conference on

Parallel, Distributed and Network-Based Processing, pages155-162,
2007

[14] Shaochong Feng, Yanqiang Di, Yuanchang Zhu, et al. Developing
WSRF-Based Web Service RTI Using GT4. In Proceedings of 2009

First International Workshop on Education Technology and
Computer Science, pages 1066-1069, 2009

[15] Feriese,Thomas. -

[Doctoral dissertation], Fachbereich Mathmatik und Informatik
Universit Marburg ,2006

Shaochong Feng was born in Hebei, China. He receives his

Master s degree in Guidance, Navigation and Control from

Mechanical Engineering College in 2007. His technical

interests include distributed modeling and simulation, Grid

computing and Cloud computing.

Yuanchang Zhu was born in Heilongjiang, China. He

received the B.A., M.A., and Ph.D in 1982, 1988 and 2005.
He is a professor at Mechanical Engineering College. His

study interests include M&S, Cloud Computing and so on.

Yanqiang Di was born in Hebei, China. He received the

B.A., M.A., and Ph.D in 1995, 1998 and 2009. He is a

teacher at Mechanical Engineering College. His study

interests include M&S, Grid Computing and database

system.

936 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER

