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Abstract— Process algebra provides essential tools for study-
ing distributed and concurrent systems. Stochastic process
algebra (i.e., YAWN ) enhances the process algebra with
stochastic extensions which is perfect to analyze phenomena
of process with executing durations in the real world. What’s
more, in system runs, value passing is tightly bounded with
their processes. However, stochastic process algebras lack
value passing can limit their expressiveness. Based on this,
we propose a process algebra of stochastic process algebra
with value passing. This new process algebra can specify
the behaviors of systems in a more clear and accurate way.
In dealing with relationship of bisimulations, we introduce
a new policy of weak time comparison between processes
in bisimulation which is more convenient and doable in
practice.

Index Terms— stochastic process algebra, value passing,
equivalence, bisimulation, weak time restriction.

I. I NTRODUCTION

Process algebra is a widely accepted language of spec-
ifying distributed and concurrent systems. The fundamen-
tal work is done by Milner in CCS [23], Hoare in CSP
[13] and Hilston in ACP [2].

Stochastic Process Algebras (SPAs) [3], [6], [7], [16],
[18] have been invented in the early 90’s, the main idea of
stochastic process algebras is to incorporate quantitative
information in a qualitative process algebra model. In
these approaches proposed so far, the quantitative in-
formation is given in terms of distribution functions or
random variables. These variables denote the duration of
actions, and these durations are specified together with
actions.

The basic activity of a process isaction. In stochastic
process algebras, actions are equipped with stochastic
distribution functions which describes theexecution time
of the actions stochastically. SPAs are suitable to describe
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functional as well as stochastic behaviors in one single
specification.

The actions in SPA give the framework specification
of system’s behaviors. During the execution of SPAs,
value passing occurs intuitively and naturally. Processes
cooperate with each other by exchanging messages [10],
[11], [27], it can be happened in typical operators like:

• Sequential composition, where the prefix action
might pass the value to the following action for fur-
ther execution. This happens commonly in programs;

• Parallel composition, where a synchronous commu-
nication event can be executed. This is the type of
communication in SPAs;

• Recursive operation, this operator is useful in dealing
with repeated actions with certain rules.

SPAs can be models for describing phenomena of the
real world in an abstract level.Value passingcan enhance
SPAs with the abilities to describing phenomena in a
more detailed level, more intuitive to understand and more
doable to put into use. This can be demonstrated by the
above examples. In other systems, (for example, traffic
control, weather forecasting, scientific calculation, and
stock markets), there are values passing with all processes
running all time long. Value passing exists at any moment
in system runs. With value passing, we can get a inner
sight into the phenomena (e.g., under certain situation,
values are final results). So, it isnecessaryand intuitively
for us to equip the language of SPAs with value passing.
By doing this, we can get a better understanding of the
phenomena described in SPAs.

The main idea of SPA with value passing is to enhance
actions with notions ofdurationandvalue passingduring
their executions. Durations are described stochasticallyby
means of distribution functions. Values passing during
executions can simulate the key parameters in system
runs. In Markovian SPA, only exponential distributions
are considered as delay parameters. As for value passing,
we assume that only valid values are permitted during the
execution, and the invalid values will trigger an exception.

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 769

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.5.769-782



An exponential distributions isλ and its mean value is
1/λ.

One of the most attractive features of process algebras
is their compositional nature. But it is not the only one,
another important aspect of the formalism is the definition
of equivalence relations i.e., strong and weak bisimulation
[22], [23]. These equivalence relations can be used to
compare agents (model verification) and to replace one
agent by another which exhibits an equivalent behavior
but has a simpler representation (model simplification).
Such notions of equivalence are considered part of the
semantics of the language, and therefore their definition
is an integral part of its development.

One important class of equivalence relations in process
algebras are bisimulations. Most SPAs [3], [6], [7], [16],
[18] provide bisimulation relations both on action and
time. They are characterized by the exponential distri-
butions, i.e.,λ, µ and so on. Bisimulations of this kind
is an extension of the classic bisimulations (strong and
weak). However, in practice, even weak bisimulation is
too strict. In real world, under certain situations, we might
be more tolerant in the execution time under bisimulation
relations. Based on this, we propose a weak time re-
striction bisimulation calledtime restricted bisimulation.
This bisimulation relationship is more tolerant in time
restrictions when comparing two processes with criterion
of bisimulations. We will prove that thistime restricted
bisimulation relationship can be preserved over all the
operators in the language of SPA.

Another use of equivalence relations is over the states
within a model. When a set of states are found to
have equivalent behaviors, we can analyze them by these
relationships to partition the state space and considering
only one representative of relation to partition these states.
Then, only compare one representative of each partition
(model aggregation). This is an important way in state
space reduction.

This paper is organized as follows. Section 2 introduces
the language ofYAWN with value passing, including
syntax and its meanings. Section 3 introduces generalized
Markovian transition systems with value passing which
can be used as models to express the semantics of the
languageYAWN with value passing. Section 4 shows
operational semantics of the languageYAWN with value
passing. Section 5 introduces the axioms of operators
in YAWN with value passing. Section 6 shows some
equivalence relations of the languageYAWN with value
passing, including strong bisimulation, weak bisimulation,
expansion law and time restricted bisimulations. Section
7 concludes the paper. Section 8 lists the acknowledge-
ments.

II. L ANGUAGE OFYAWN WITH VALUE

Now, we define the language in the style ofYAMN
with value passing. We first define the setL of all process
algebra expressions with value passing. An expression
P ∈ L is said to be closed if and only if every process
variable, sayX , occurring inP occurs within the scope

of the recX operator, and if every process constant is
defined by a defining equation.

Definition 2.1 (LYAMN ) Let L be the language with
value passingdefined by the following grammar:

P :: = 0
∣

∣ X
∣

∣ A
∣

∣ av.P
∣

∣ [λ].P
∣

∣ if b then P
∣

∣ P ;P
∣

∣

P + P
∣

∣ recX : P
∣

∣ P \H
∣

∣ P ||SP

av :: = i
∣

∣ c?x
∣

∣ c!e

We useav to stand for the generalized form of actions
with value in situation no more specification is needed.i

is un-observable actions which likes theτ in CCS; c?x
for input action with valuex on channelc; andc!e stands
for output action with valuee on channelc. When it is
necessary, we will usei, c?x and c!e to specify actions
under different situations.
0 is an empty process which cannot perform any

actions. It can also be taken as “STOP” in some literature.
av.P is action prefixing. After executing value passing

actionav, the processav.P will behave asP .
[λ].P is prefix delay. This term means there is a

time delay before the execution of processP . The time
is characterized by the stochastic variableλ. λ is an
exponential distribution parameter, and the mean time of
λ is 1/λ. We uset = 1/λ as the label to stand for the
time transition, then we have transition in the form of
[λ].P

i
−→ P .

P ;Q is thesequential compositionof two processesP
andQ. After the execution of processP , the systemP ;Q
behaves asQ.
P + Q is the choice compositionof two processesP

andQ. If processP is selected for execution, then process
Q is dropped and have no chance for further execution.
A is used to expressCONST . We useCONST to

express process constants. A constantC ∈ CONST is
assigned a process with value by means of a defining

equationC
def
= av.C

′. The defining equationA
def
= av.A

is an example. Intuitively,A is supposed to be the process
that can execute infinite number of actiona with valuev.
recX : P stands forrecursive expressionof processes.

With the sequential and choice operators, only finite
behavior can be described. As for some reactive systems
that generally never terminate, there should be a way to
describe them.recX : P is selected to stands for it.
In the above example,recX : P behaves asP [recX :
P/X ], whereP [recX : P/X ] is the process term where
simultaneously all occurrences ofX in P are syntactically
replaced byrecX : P .
P ||SQ is parallel compositionof processP and process

Q. Actions in P or Q which are not in setS can
be executed independently at the same time without
synchronization. However, actions ofP or Q that are in
setS can only be executed by synchronization.

Example 2.2 Consider the processes ofP
def
=

ava.bvb.cvc.0 and Q
def
= dvd.bvb.eve.0, we know that

R
def
= P ||bQ denotes a process in which bothP andQ can

perform the actionsava and dvd independently. What’s
more, actionbvb can only be proceed in the synchronize
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way. After the synchronization,P and Q can proceed
again independently, i.e., they can perform actions ofcvc
andeve respectively.

Example 2.3 If we consider the process(P ||bS)||bR,

where S
def
= R

def
= Q(Q in Example 2.2), then, all

three processes can start independently at the same time.
However,P , S, andR can only take part in the synchro-
nization overbvb before they can execute their respective
last action.
P \H is hiding operator. The purpose of this operator

is to mark the scope of actions which should never
again take part in synchronization. To do this, a special
action is introduced, which is often denoted asτ or i:
the internal action. Reconsider Example 2.3, we can see
that processR could be inhibited from participating in
the synchronization overbvb that P and S are already
involved in. The effect of the hiding operator is that all
actions inH are hidden away: they are no longer visible
from outside. Then, a process which is synchronized by
P andS can be executed, andR proceeds independently
from both can be expressed as(P ||bS) \ {b}||{∅}R.

if b then P is the one-armed conditionif b then in the
language. With the help of+, the conventional two-armed
if b then else expression can be defined by

if b then P else Q = if b then P + if ¬b then Q

In what follows, we will use theif b then else
construction freely without further comments.

We assume that the operators have the following prece-
dence: prefix> recursion> hiding > choice> parallel
composition, i.e., prefix has precedence over recursion,
recursion over hiding, etc. Parentheses can be used to cir-
cumvent these rules. If we have more than two processes
combined (i.e., for example, inP +Q+R or P ||SQ||S′R
for P,Q,R ∈ LYAWN ) then we assume a left-associative
evaluation order:P +Q+R andP ||SQ||S′R are assume
to be equal to(P+Q)+R and(P ||SQ)||S′R respectively.
These rules determine a unique evaluation order, which
later will become especially important for the application
of SOS rules.

Please note that theYAMN language comes with
bells and whistles: we allow to define recursion by means
of process constants, and byrecX operators with process
variables. The only reason for this is to have a more
convenient syntax forYAWN .

Frequently, we have to compare elements of the
YAWN language with value passing syntactically. For
two termsP,Q ∈ LYAWN , we defineP ≡ Q if and
only if P and Q are syntactically equal for the value
assignment for all executing actions with value passing
of the same equivalent class leading to the result also of
the same equivalent class.

III. O PERATIONAL SEMANTICS

In classic process algebras, Labeled Transition System
(LTS) is used to demonstrate the operational semantics of
the language. In this section, we will give out the defi-
nition of transition systems with value passing that will

demonstrate the operational semantics for theLYAWN

with value.

A. Transition Systems with Value

The semantics ofYAMN processes is given in terms
of transition systems. So, in order to introduce the op-
erational semantics of the language, we introduce the
generalized Markovian transition systems.

Definition 3.1 A generalized Markovian transition sys-
tem with value (GMTSV ) is a tuple(S,AV , T,R), where

• S is a set of states;
• AV is a set of labels with value;
• T ⊆ S ×AV × S is a set of labeled transitions;
• R : T → R ∪ {∞}

Typical elements ofS are s, s′, s′′, s1, s2, · · · , and
typical elements ofT are t, t′, t′′, t1, t2, · · · . Transitions
labeled witht are meant to be exponentially distributed
time delays. The functionR specifies the rates of the
distributions. A GMTS is said to beproperly timed, if
whenevert ∈ T with t = (s, a, s′) and a ∈ Act (i.e.,
∀a, a 6= t), thenR(t) = ∞. Hence, all internal or visible
actions are considered to have no durations, which is
expressed by assigning them infinite rates.

Definition 3.2 We define aGMTS with value passing
as (S,AV , T,R) together with a states ∈ S (starting
state) a generalized Markovian process (GMP). We denote
a GMP by a five-tuple(S,AV , T,R, s) whereAV is the
label of transition with value.

B. Operational semantics

Based on the language discussed in the previous section
and the informal explanation of the syntax, we know
that our language can describe the behavior of systems
with stochastic actions with value passing. Through the
Markovian Transition System (MTS), we know that it is
convenient to express the semantics of the behavior of
such systems. Now, it is ready for us to give out the
formalize rules of the languageLYAWN with operators
described in the previous section in table III-B.

Rule (1) expresses the action prefix. Process termav.P
executes actionav first, then behave asP .

Rule (2) expresses the delay prefix. Process term[λ].P
delays timet and then executes asP . As we restrict the
distribution ofλ as exponential distribution, it is clear that
the mean time of the delayt is 1/λ.

Rule (3a) and (3c) express the choice composition
between two processes with actions influenced by the
environment.

Rule (3b) and (3d) express the choice of two delays.
ProcessesP andQ have delays characterized byµ and
ν respectively. We do not compareµ and ν, and we
know that only if the delay reaches1/µ, and the process
P will continue its execution. Similar, when the delay
reaches1/ν, processQ will continue, we will have further
explanations later by example.
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(1)
av .P

av−−→ P
(2)

[λ].P
t
−→ P

t = 1/λ

(3a)
P

av−−→ P ′

P +Q
av−−→ P ′

(3b)
P

[µ]
−−→ P ′, Q

[ν]
−−→ Q′

P +Q
t
−→ P ′

t =
1

µ

(3c)
Q

av−−→ Q′

P +Q
av−−→ Q′

(3d)
P

[µ]
−−→ P ′, Q

[ν]
−−→ Q′

P +Q
t
−→ Q′

t =
1

ν

(3e)
P

a
−→ P ′, Q

[λ]
−−→ Q′

P +Q
av−−→ P ′

(3f)
P

[λ]
−−→ P ′, Q

av−−→ Q′

P +Q
av−−→ Q′

(4a)
P

av−−→ P ′

P ||SQ
av−−→ P ′||SQ

av 6∈ S (4b)
P

[ν]
−−→ P ′, Q

[µ]
−−→ Q′

P ||SQ
t
−→ P ′||SQ

t =
1

ν

(4c)
Q

av−−→ Q′

P ||SQ
av−−→ P ||SQ′

av 6∈ S (4d)
P

[ν]
−−→ P ′, Q

[µ]
−−→ Q′

P ||SQ
t
−→ P ||SQ′

t =
1

µ

(4e)
P

av−−→ P ′, Q
av−−→ Q′

P ||SQ
i
−→ P ′||SQ′

av ∈ S (4f)
P

[ν]
−−→ P ′, Q

[µ]
−−→ Q′

P ||SQ
t
−→ P ||SQ′

t = f(ν, µ)

(4g)
P

av−−→ P ′, Q
[λ]
−−→ Q′

P ||SQ
av−−→ P ′||SQ

av 6∈ S (4h)
P

[λ]
−−→ P ′, Q

av−−→ Q′

P ||SQ
av−−→ P ||SQ′

av 6∈ S

(4i)
P

av−−→ P ′, Q
[λ]
−−→ Q′

P ||SQ
t
−→ P ||SQ′

(
av ∈ S,

t = 1
λ

) (4j)
P

[λ]
−−→ P ′, Q

av−−→ Q′

P ||SQ
t
−→ P ′||SQ

av ∈ S, t =
1

λ

(5a)
P

av−−→ P ′

P \H
av−−→ P ′ \H

av 6∈ H (5b)
P

[λ]
−−→ P ′

P \H
t
−→ P ′ \H

t =
1

λ

(5c)
P

av−−→ P ′

P \H
i
−→ P ′ \H

a ∈ H (5d)
P

[µ]
−−→ P ′, P ′

av−−→ P ′′, P ′′
[ν]
−−→ P ′′′

P
t
−→ P ′′′

( a ∈ H,

t = 1
µ
+ 1

ν

)

(6a)
P{recX : P/X}

av−−→ P ′

recX : P
av−−→ P ′

(6b)
P{recX : P/X}

[λ]
−−→ P ′

recX : P
t
−→ P ′

t =
1

λ

(7a)
P

av−−→ P ′

A
av−−→ P ′

A
def
= P (7b)

P
[λ]
−−→ P ′

A
t
−→ P ′

A
def
= P, t =

1

λ

TABLE I.
OPERATIONAL SEMANTICS OFYAWNV

Rule (3e) and (3f) express the choice between action
and delay proposed by two processes. Under the assump-
tion of maximal execution, we propose this rule to execute
action and left the delay alone.

Rule (4a) and (4c) express the execution of parallel
composition of processes where the executing action is
not within the scope of synchronization. Under this sit-
uation, the executing process just continues its execution
and the other processes just waiting for their turns.

Rule (4b) and (4d) express how the paralleled processes
trait their delays: each process waits for its time to end
the delay and continue its further executions.

Rule (4g) and (4h) express how the paralleled processes
with action (no synchronization with others) and delay
trait their behavior. The system executes the action, while

waiting for the delay at the same time.
Rule (4i) and (4j) express how the paralleled processes

with action (synchronize with other process) and delay
trait their behavior. The system can not execute the
synchronization, it just wait for the end of delay if
no synchronization available. Then continue its further
executions.

Rule (5a) express how a process with hiding actions
executes un-hidden actions, which is intuitive and do not
need further explanation.

Rule (5b) express how a process with hiding actions
traits delay: it just waits to the end of the delay and then
continues its executions.

Rule (5c) express how a process dealing with hiding
actions. It just executes the action, however, the execution
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cannot be observed from outside. So, according to the
definition, we name the action asi.

Rule (5d) tells us the delay of execution of a hiding
action. There can be a sum of two delays of the hiding
action:beforeµ andafter ν. So, we have the resultt =
1

µ
+

1

ν
.

Rule (6a) and (6b) express how the recursive terms
traits their actions and delays. It is rather intuitive base
on explanations of the rules above.

Rule (7a) and (7b) express how a process term assigns
to a constantA. They are also intuitive and easy to
understand.

Some literatures trait action in SPAs with duration
in the form of ([λ].av), which is rather intuitive in the
understanding of the execution. We separate them in
our language ofYAWN V as actionav which do not
have durations, and delay[λ] which characterize the time
between two actions. There is no difference in the essence
of the two kinds of expressions. The latter form is more
flexible and compact, so we adapt it here.

IV. A XIOMS

In this section, we propose the axioms of operators
in the SPA language with value passing. It is based on
the study of operational semantics and the equivalences
relations as strong bisimulation and weak bisimulation.

A. Value

As data play an important role in the language of
YAWN with value passing, axiomatization for such
process operators must involve dealing with data domain.
However, it turns out that, we can factor out data rea-
soning from process reasoning by employingconditional
equations[10] of the form

b⊲ P = Q

whereP and Q are process terms andb is a boolean
expression representing the condition on the data domain
under whichP andQ are equal. An example of a proof
rule is:

b′ ∧ b⊲ P = Q, b′ ∧ ¬b ⊲ 0 = Q

b′ ⊲ if b then P = Q

It captures the intuitive meaning of the conditional con-
struct: if b then P behaves likeP when b is true, and
like 0 otherwise. In this rule, all we need to know about is
constructif then when manipulating syntactical terms.
From a “goal-directed” point of view, it moves the parts
involving data(b) from the process term(if b then P ) to
the conditional guard part. Such conditions can be used
to discharge constructs involving data when some other
inference rules are applied.

Reasoning aboutYAWN with value passing will
inevitably involve the reasoning about data. However,
instead of inventing rules for all possible data domains,
we would like to factor out reasoning about data from
reasoning about processes as much as possible. Therefore

our proof system will be parameterized over data reason-
ing of the formb |= b′, with the intuitive meaning that
wheneverb is true then so isb′.

Now, we present the axioms of data in the language of
LYAWN in Table II:

This set of inference rules we put forward in Table II
can be taken as a natural generalization of pure equational
reasoning. For each construct in our language, there is a
corresponding introduction rule with a set of axioms.

In this paper, we introduce value passing into the lan-
guage ofLYAWN . We try to focus on the core meaning
of the value passing and not of the kind and quantity of
the value.

Example 4.1 There are two testing systems guarded
by scores. When the score is greater than60, the system
s1 would respond message “PASS”. For systems2 with
the same value, it shows color “GREEN” as a respond.
Both the systems obey the same rules, and output results
with different kinds of values, and this is very popular in
scoring systems in the real world. We treat them as equal
in our language for they obey the same rules which can
be described as

b |= rules1 = rules2 = if score ≥ 60 then true

and the result is also of the same equal class that can be
described as

b′ |=

{

trues1 = PASS

trues2 = GREEN

We omit the input action in the design of the systems
designed above. Systems1 and s2 are simple, they
can deal with value satisfying conditionif score ≥
60 then true. These systems ignore otherscore and
respond nothing according to the conditionb.

B. Sequential Composition

Essentially, axioms of prefix and sequential compo-
sition are of the same class. They are all sequential
operators, and they obey rules (1) and (2).

(S1) P.0 = P

(S2) P.0.Q = P

(S3) (P.Q).R = P.(Q.R)

Axioms of Sequential Composition:AS

A process willSTOP when it encounters with0. So, the
execution of process will stop at the point of0, and left
the other actions aside. Thus, we know thatS1 andS2
are right. As toS3, it is rather intuitive to understand, for
the parenthesis do not influence the execution sequences
of P.Q.R.

C. Choice Composition

In this section, we present the axioms of choice com-
position. They are based on the rules of (3a), (3b), (3c),
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(D1) α− Conversion
c?x.P = c?y.Q[y/x]

y 6∈ fv(t)

(D2) Premise
true⊲P=Q

P = Q

(D3) Input
b ⊲ P = Q

b ⊲ c?x.P = c?x.Q

(D4) Output
b |= e = e′, b ⊲ P = Q

b ⊲ c!e.P = c!e′.Q

(D5) Choice
b ⊲ P = Q

b ⊲ P + R = Q+R

(D6) Partition
b |= b1 ∨ b2, b1 ⊲ P = Q, b2 ⊲ P = Q

b ⊲ P = Q

(D7) Condition
b′ ∧ b ⊲ P = Q, b′ ∧ ¬b ⊲ 0 = Q

b′ ⊲ if b then P = Q

(D7) Parallel
b ⊲ P = Q

b ⊲ P ||SR = Q||SR

(D8) Hiding
b ⊲ P = Q

b ⊲ P \H = Q \H

TABLE II.
AXIOMS OF VALUE UNDER CONDITION AD

and (3d).

(C1) α.P + β.Q = β.Q + α.P

(C2) α.P + [λ].Q = α.P

(C3) [µ].P + [ν].P = 1/(µ+ ν).P

(C4) P + (Q +R) = (P +Q) +R

(C5) P + 0 = P

Axioms of Choice Composition:AC

The axioms of choice composition deal with actions
and delays separately.C1 shows that the exchange of
position in choice composition does not affect the exe-
cution. C1 left the choice for the outside environment.
C2 shows that the execution policy ofmaximalprocesses
during the execution of choice composition: the system
does not wait if there is an action ready for execution.C3
shows that when there is a choice between two identical
processes with different (exponential) delays, the system
would delay as the sum of the two stochastic variables.
C4 shows that the choice composition among processes
with parenthesis does not affect the executing policy of
choices.C5 shows that the system would selectP under
the situation ofP + 0, which means the system can do
nothing butP . This is intuitive, for0 meansSTOP of
the execution. IfP + 0 = 0 means the system is out of
control, andSTOPs at wrong point.

D. Internal Actioni

We present axioms ofinternal action (i.e.,τ in classic
process algebra). They are based on the rules of (5c) and

(5d).

(I1) α.i.P = α.P

(I2) P + i.P = i.P

(I3) α.(P + i.Q) + i.Q = α.(P + i.Q)

Axioms of Internal Action:Ai

The axioms of internal actions are designed for the
observable equivalences. When the system is executing
an internal action, the action being executed cannot be
observed from outside. This is whatI1 means.I2 andI3
are rather intuitive: as we cannot tell if there are internal
actions being executed, we assume there areinternal
executions in system runs.

E. Parallel Composition

We present axioms of parallel composition here. They
are based on the rules of (4a), (4b), (4c), (4d), (4e), and
(4f ).

(P1) P ||S0 = P

(P2) P ||SQ = Q||SP

(P3) (P ||SQ)||TR = P ||S(Q||TR)

Axioms of Parallel Composition:AP

Axiom P1 means the same asC5 ( P +0 = P ): when
a processP is paralleled with an empty process, it just
executes asP . P2 shows that the execution of paralleled
processes do not care about the position under parallel
composition. That is, communication under parallel com-
position is preserved.P3 shows that the parenthesis of
paralleled processes do not affect the execution when it
is paralleled with other processes.

774 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



F. Hiding Operation

We present axioms of hiding operation here. They are
based on the rules of (5a), (5b), (5c), and (5d).

(H1) P \ L = P if Act(P ) 6∈ L

(H2) P \K \ L = P \ (K ∪ L)

(H3) (P ||SQ) \ L = P ||S∪LQ

(H4) (P +Q) \ L = P \ L+Q \ L

Axioms of Hiding Operation:AH

Hiding operator is useful in the software engineer-
ing. We can take single programs as processes, and the
composition of all associated programs so as to form
a system which can complete designed functions. The
program/process with certain sub-functions usually with
input, output, and some other kind of control. When they
are compiled into one system (sometime one executive
file), most of the programs’ input, output, and control are
transformed into internal communications which cannot
be observed outside.
H1 means processP with hiding action setL which

contains no action during the execution ofP , so the hiding
operator cannot affects theP . H2 means the function
of composition of more than one sets of hiding actions
into one hiding action set.H3 means that hiding set in
parallel composition can be added to the synchronization
set. In this rule, the hiding action set is the set that process
P and Q will synchronized.H4 means that the hiding
operator can distribute through the choice composition of
processes.

G. Recursive Operation

We present axioms of recursive operator here, which
are based on the rules of (6a), (6b), (7a), and (7b).

(R1) rec(X : P ) = P{recX : P/X}

(R2) If P = E{P/X} then P = recX : E/X

(R3) recX : (X = X + P ) = recX : P

(R4) recX : (X = i.X + P ) = recX : (i.P )

(R5) recX : (X = i.(X + P ) +Q =

recX : (i.X + P +Q)

Axioms of Recursive operator:AR

R1 is rather intuitive, the unwind ofrec(X : P )
is the substitution of variableX with P such form
the recursive expression.R2 shows how to define the
recursive expression.R3, R4, andR5 are rather intuitive
based on the understanding of the rules.

V. EQUIVALENT RELATIONS

From the very beginning, an essential part of pro-
cess algebra theory has been devoted to the develop-
ment of equivalence notions. The starting point of all
process algebraic equivalences is the observation that
different processes may exhibit the same behavior. R.J.
van Glabbeek has extensively studies different notions of

an experiment that interacts with an interactive process in
order to determine its behavior [8], [9]. We consider so
called “strong” equivalence, where internal and external
actions are treated in the same way. Afterward, we discuss
“weak” equivalence, which aims to abstract away internal
state/action as much as possible.

In this section, we defineYAMN processes to be
equivalent (and substitutive) and their requirements. Since
GMP are very similar to IMC transition systems, we adopt
the definitions from [14].

The congruences we are going to define are strong
Markovian bisimulation and weak Markovian congruence.

A. Strong Markovian Bisimulation

To define strong Markovian bisimulation, we first need
a functionγM that sums up all rates from transitions that
start in a single states and end in some state in a setC.

Definition 5.1 (γM ) Let (S,AV , T,R) be a GMTS and
for s ∈ S andC ⊆ S, let

T s
C = {t|t ∈ {s} × {t} × C}.

Then the functionγM is defined as

γM :











S × 2S → R

(s, C) 7→
∑

t∈T s
C

R(t)

Example 5.2Consider a GMTS with statess, s1, s2,
s3, s4, s5 and states sets ofC1 = {s1, s2, s4} andC2 =
{s3, s5}. In Fig.1 (a), we see transitions going froms to
si for i = 1, · · · , 5. Then, after the cumulative rate of (a),
we get

γM (s, C1) = 2λ+ ν andγM (s, C2) = µ+ κ.

which is (b).
Definition 5.3 An equivalence relationR ⊆ LYAWN ×

LYAWN is astrong Markovian bisimulation. It is a family
of symmetric relationsR = {Rb | b ∈ BExp} which
satisfies: if and only ifPRbQ implies for all a ∈ Actt
and all equivalence classesC of Rb:

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is a b ∧ b1-partition B with
fv(B) ⊆ fv(b, P,Q) such that for eachb′ ∈ B
there existb2, a′ and u′ with b′ |= b2, a =b′ a′,

Q
b2,a

′

−−−→ Q′′ andP ′RbQ′;

2) If P 6
i
−→ thenγM (P,C) = γM (Q,C).

bv(a) is the variable through which the value can be
carried for execution by actiona, i.e., bv(c?x) = {x}
and bv(i) = bv(c!e) = ∅. fv(a) is the value which can
be used by actiona during its execution.

Two processesP andQ are strongly bisimilar (P ∼ Q)
if they are contained instrong bisimulation.

This definition amalgamates strong bisimilarity for
stochastic processes with value passing during their ex-
ecutions. In order to compare the stochastic timing be-
havior, the cumulative rate functionγM is used. What’s
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Figure 1. Illustration of Example 5.2
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µ3,Logfp

  
S2
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88qqqqqqq
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µ5,MsgAgainiiiii
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Figure 2. Illustration ofSysfp

more, maximal progress is realized because the stochastic
timing behavior is irrelevant for unstable expressions.

Example 5.4 We assume that under certain situation,
people have to register themselves either with a card
or with their fingerprint to identify their identity so as
to get their permissions. There are two register systems
available, one system is equipped with a fingerprint reader
(short forSysfp), and the other is equipped with a card
reader (short forSyscrd). The systemsSysfp can be
specified as:

And the formalized description of theSysfp is:

[µ0].Sysfp := ([µ1].Readfp).Sys
′
fp

Sys′fp := (([µ2].Identifyfp)||([µ3].Logfp)).Sys
′′
fp

Sys′′fp := ((true).([µ4].MsgOK) +

(¬true).([µ5].MsgAgain)).Sys
′′′
fp

Sys′′′fp := ([µ6].Done).[µ7].Sysfp

The systemsSyscrd can be specified in Figure 1.
And the formalized description of theSyscrd is:

[ν0].Syscrd := ([ν1].Readcrd).Sys
′
crd

Sys′crd := (([ν2].Identifycrd)||([ν3].Logcrd)).Sys
′′
crd

Sys′′crd := ((true).([ν4].MsgPASS) +

(¬true).([ν5].MsgWrongCard)).Sys
′′′
crd

Sys′′′crd := ([ν6].Done).[ν7].Syscrd

From the Fig.2 and Fig.3, it is intuitive thatSyscrd ∼
Syscrd during their execution whenνi = νi for i =
0, 1, ..., 7.

This example also show us that the data of the same ac-
tion can be different in systems which in the equivalence
relation of strong bisimulation, i.e.,Readcrd can take

value passing ofcard while theReadfp can take value
passing offingerprint. They belong to different kinds of
data, however, they identify the same person and achieve
the same goal as well.

Check executing actions, it is clear that
Sysfp ∼ Syscrd. What’s more, from the point of
value passing under condition ofvalue(Readfp)/bfp
and value(Readcrd)/bcrd, we know that the core
“value” of them are equal:value(Readfp)/bfp =
value(Readcrd)/bcrd.

B. Expansion Law

The following law expresses the most basic principle
of the operational semantics of process algebras. It states
that for each parallel composition of “sums” of processes
P (where the choice operator takes the role of the sum
here) there exists a processP ′ such thatP ∼ P ′ andP ′

is the “sum” of parallel compositions. This means that
parallelism is not represented explicitly, but encoded by
the choice operator.

Definition 5.5 (Expansion Law)
Let

P =
∑

I

[λi].Pi +
∑

J

(bj , pj).Pj

and

Q =
∑

K

[µk].Qk +
∑

L

(bl, ql).Ql

where i, j, k, l range over the respective index sets
I, J,K, L, bj and bl stands for the condition of value
under which the actionpj and ql can perform their
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Figure 3. Illustration ofSyscrd

executions. LetS ⊆ Act. Then

P ||SQ ∼
∑

I

[λi].Pi +
∑

J

(bj , pj).Pj +

∑

K

[µk].Qk +
∑

L

(bl, ql).Ql +

∑

A∩B∩S
(bj,pj)=(bl,ql)

(bj , pj).(Pj ||SQl)

where A = {(bj, pj)|j ∈ J}, B = {(bl, ql)|l ∈ L}

Example 5.6Revisit Example 5.3, we assume that

P = (true).([ν4].MsgPASS) +

(¬true).([ν5].MsgWrongCard))

and

Q = (true).([ν4].MsgOK) +

(¬true).([ν5].MsgAgain))

as time delays characterized byµ4, µ5, ν4 andν5 have no
influences with boolean expressiontrue and¬true. We
can exchange the position betweendelaysand boolean
expressionsby shorten true to bp and bq, MsgPASS

to MP , MsgWrongCard to MW , MsgOK to MO and
MsgAgain to MA. Then, we have

P = [ν4].(bp,MP ) + [ν5].(¬bp,MW )

and

Q = [µ4].(bq,MO) + [µ5].(¬bq,MA)

as there is no action forP andQ to synchronize, then it
can be expanded as

P ||∅Q = ([ν4].(bp,MP ) + [ν5].(¬bp,MW ))||∅

([µ4].(bq,MO) + [µ5].(¬bq,MA))

∼ [ν4].(bp,MP ) + [ν5].(¬bp,MW ) +

[µ4].(bq,MO) + [µ5].(¬bq,MA)

We know thatν4, ν5, µ4 andµ5 are variables of ex-
ponential distributions, by the “memoryless” property of
Markovian process, at any time point, the time passed can-
not influence them. So it is reasonable for[ν4].(bp,MP )+
[ν5].(¬bp,MW )+[µ4].(bq,MO)+[µ5].(¬bq,MA) to sim-
ulate the execution ofP ||∅Q.

C. Weak Markovian Congruence

The weak Markovian congruence abstracts away inter-
nal actions. To treat internal transitions properly, we need
the following definition.

Definition 5.7 (Weak Markovian Bisimulation) An
equivalence relationR with R = LYAWN × LYAWN

is called weak Markovian bisimulation is a family of
symmetric relationsR = {Rb | b ∈ BExp}, and satisfies:
iff PRbQ implies for all a ∈ Act and all equivalence
classesC of Rb:

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is a b ∧ b1-partition B with
fv(B) ⊆ fv(b, P,Q) such that for eachb′ ∈ B
there existb2, a′ and u′ with b′ |= b2, a =b′ a′,

Q
b2,â

′

−−−→ Q′′ and such that

• If a ≡ c?x then there is ab′-partitionB′ such
that for eachb′′ ∈ B there areb′2 andQ′′ with

b′′ |= b′2, Q′ b′2,i−−→ Q′′ andP ′Rb′′Q′′;
• otherwiseP ′Rb′Q′.

2) P
i
−→ P ′ andP ′ 6

i
−→ imply γM (p, Ci) = γM (q, Ci)

P andQ are calledweakly Markovian bisimulationequiv-
alent(P ≈ Q) if there is a weak Markovian bisimulation
R such thatPRQ.

Example 5.8 Revisit Example 5.3, we can abstract
away some internal actions to form a system as which can
be observed by the outside observers. First we simplify
Sysfp in Figure 4.

Based on Definition 5.7, we know that systemSysfp
andSyscrd in the relation of weakly Markovian bisimu-
lation in Fig.4 iff they satisfy:µi = νi for i = 1, 2, 3, 4.

In [14], Hermanns proved that≈ is a congruence for
all IMC operators (and hence also forYAMN ) except
choice operator. The reasons for this are well known due
to Milner [23], and the deficiency is fixed with the follow
definition:

Definition 5.9 (Weak Markovian Congruence)P and
Q are said to beweakly Markovian congruent(P ≃ Q) is
a family of symmetric relationsR = {Rb | b ∈ BExp},
if and only if for all a ∈ Act, all C ∈ YAMN / ≈:
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Figure 4. Illustration of simplifiedSysfp andSyscrd

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is ab ∧ b1-partition B with fv(B) ⊆
fv(b, P,Q) such that for eachb′ ∈ B there exist

b2, a′ andu′ with b′ |= b2, a =b′ a′, Q
b2,â

′

−−−→ Q′′

and such that

• If a ≡ c?x then there is ab′-partitionB′ such
that for eachb′′ ∈ B there areb′2 andQ′′ with

b′′ |= b′2, Q′ b′2,i−−→ Q′′ andP ′Rb′′Q′′;
• otherwiseP ′Rb′Q′.

2) P stable⇒ γM (P,C) = γM (Q,C);
3) P stable⇔ Q stable.

We useP ∼= Q to stands for the weak Markovian
congruence.

Lemma 5.10If P , Q, andR are processes, andP ∼= Q,
then:

1) a.P ∼= a.Q, and [λ].P ∼= [λ].Q;
2) P +R ∼= Q+R, andR+ P ∼= R+Q;
3) P ||SR ∼= Q||SR, andR||SP ∼= R||SQ;
4) recX : P ∼= recX : Q.

Proof: All the proofs are alike, and we prove the
parallel composition as representation of them.

We all know that the weak bisimulation of CCS [10],
[22], which only restrict the bisimulation with pure action
and states during the execution. In the definition above,
we add another restriction based on the exponential dis-
tribution. The restricted exponential distribution can be
used to calculate the mean time of the delay or duration
of executions.
⇒: FromP ∼= Q to P ||SR ∼= Q||SR, there are several

action types available, and we will discuss them one by
one:

• For actiona ∈ S, thena ∈ Act(P ) anda ∈ Act(Q)
are changed into internal actioni, and we know that
(P ||SR ∼= Q||SR) \ a is still P ||SR ∼= Q||SR for
a ∈ S;

• For a ∈ Act(R), R ∼= R andR
b⊲av−−−→ R′, it is easy

to know thatP ||SR′ ∼= Q||SR′;
• For actiona 6∈ S ∪ Act(R):

– For input action, asa?x.P ′ ∼= i.a?x.i.Q′ and
P ′ ∼= Q′, we know thatγ(P, P ′) = γ(Q,Q′),
though there are internal actionis duration the
execution ofQ, there is no difference between
the execution ofa?x both inP andQ, then, we
know thatP ||SR ∼= Q||SR;

– For output action, asc!e.P ′ ∼= i.c!e′.i.Q′ and
P ′ ∼= Q′, we know thatγ(P, P ′) = γ(Q,Q′),
though there are internal actionis duration the
execution ofQ, there is no difference between
the execution ofc!e in P and c!e′ in Q, then,
we know thatP ||SR ∼= Q||SR;

– For internal actioni, it could not be observed
from outside, and there is no change inP ||SR ∼=
Q||SR, and of course it equals with itself.

⇐: We know thatP ||SR ∼= Q||SR, and there are
several kinds of actions during their execution. We also
figure them out one by one:

• For actiona ∈ Act(R) andR
b⊲av−−−→ R′, the situation

have nothing to do withP ∼= Q;
• For action a ∈ S, it is an internal actioni, and

P ||SR ∼= Q||SR evolves intoP ′||SR′ ∼= Q′||SR′,
as we know that(P, P ′) ∈ C and(Q,Q′) ∈ C, and
there is no way to calculate the delay or duration,
so, it is still unable to know thatP ∼= Q on action
i;

• For actiona 6∈ S ∪ Act(R)

– For input action, as a?x.P ′||SR ∼=
i.a?x.i.Q′||SR, we know that
γ(P ||SR,P ′||SR) = γ(Q||SR,Q′||SR),
though there are internal actionis duration the
execution ofQ, there is no difference between
the execution ofa?x both inP ||SR andQ||SR,
then, get ride ofR, we get thatP ∼= Q;

– For output action, as c!e.P ′||SR ∼=
i.c!e′.i.Q′||SR, we know that
γ(P ||SR,P ′||SR) = γ(Q||SR,Q′||SR),
though there are internal actionis duration the
execution ofQ, there is no difference between
the execution ofc!e in P and c!e′ in Q, then,
we know thatP ′||SR ∼= Q′||SR, since there is
no change onR, we haveP ∼= Q;

– For internal actioni, it could not be observed
from outside, and there is no change inP ||SR ∼=
Q||SR, and of course it equals with itself.

Based on the analyze above, we complete the proof.
�

Example 5.11 Revisit Example 5.8. We know that
under the condition thatµi = νi < ∞ for i = 1, 2, 3, 4,
systemSysfp is in weak congruence withSyscrd accord-
ing to the definition 5.7.
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D. Time Restricted Markovian Bisimulation

For bisimulation relationships, we think that Examples
of 5.3 and 5.8 are perfect for it. Even though, it is hard
to keep the system in bisimulation relations in real world
systems. We have reason to assume that the subprocess
Identifyfp in Sysfp does not have the same time as
Identifycrd in Syscrd, because they use different kinds
of devices to get their information. So, it is reasonable
for us to assume thatµ2 in Figure 2 does not equal with
ν2 in Figure 3. From this point of view, it is hard to build
even a weak bisimulation overSysfp andSyscrd.

In real world systems, we do not distinguish the two
systems if they function well. Then, what makes the dis-
tance between bisimulation relations from the real world?
The key reason istime, which appears in the definition
of bisimulations both strong and weak in Markovian
relations.

Here, we give out another definition of bisimulation. It
is built on the opinion oftime restriction tr. tr means
there is a time restriction/limitation for the execution
of certain kind of actions. Usually, we usetr(P,Q) to
show the time restriction for processP to involve into

Q duration a serial action(s). Use formula
1

γM (P,Q)
to describe the mean time of processP involves into
Q during a serial action(s). If the execution time is
within the restriction, we call itnormal. Otherwise, we
call it abnormal. If two systems constructed with the
same description of actions, but with different execution
durations, we call them bisimulation if their execution
times are all within the restriction. In other words, both of
the systems can satisfy the requirements on both actions
and ontime restrictions.

According to the bisimulations equivalences of strong
and weak, we give out the definitions of strong and weak
bisimulation equivalences with time restrictions.

Definition 5.12 (Time Restricted Strong Bisimula-
tion with Value) An equivalence relationR ⊆ LYAWN×
LYAWN is a time restricted strong Markovian bisimula-
tion, is a family of symmetric relationsR = {Rb | b ∈
BExp}, and satisfies: iffPRbQ implies for alla ∈ Actt,
time restrictiontr and all equivalence classesC of Rb:

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is a b ∧ b1-partition B with
fv(B) ⊆ fv(b, P,Q) such that for eachb′ ∈ B
there existb2, a′ and u′ with b′ |= b2, a =b′ a′,

Q
b2,a

′

−−−→ Q′′ andP ′RbQ′;

2) If P 6
i
−→ then

1

γM (P,C)
≤ tr(P,C) and

1

γM (Q,C)
≤ tr(Q,C).

Two processP andQ are strongly bisimilar (P ∼tr Q)
if they are contained in somestrong bisimulation.

Example 5.13 Revisit Example 5.3. We know that
for i = 0, 1, ..., 7, strong bisimulationSysfp ∼ Syscrd
meansµi = νi. From the point of practice, we know
that this condition is too hard to satisfy. However, to full

fill the design requirements of these two systems, we can
restrict the total responding time to no more thanTR.
That is, systems can accomplish its requirements. Thus,
we might specify the systems step by step to splitTR
into tri (i ∈ N). Then, we might designSysfp (Syscrd)
under condition thatµi ≤ tri (νi ≤ tri) for i = 0, 1, ..., 7.
The time restriction of the two systems can be illustrated
by Fig.5 wheretri for i = 0, 1, ..., 7 are time restrictions
for the action above the arrow.

Under the time restrictions specified by Fig.5, we know
that Sysfp ∼tr Syscrd iff µi ≤ tri and νi ≤ tri for
i = 0, 1, ..., 7 (which means that(µi, νi) ∈ Ci where
Ci is a serious of equivalent class). This might loosen
the definition of strong Markovian bisimulation 5.1 as
µi = νi for i = 0, 1, ..., 7. However, this change can meet
the needs in practice, and it is more practical and easy to
control.

This definition can also be explained as follows: all
the systems satisfying their design requirements can be
taken as equal. When systemSysfp andsyscrd working
independently, all of them can function well according
to the design requirements. That is, one system can
take the place of another in practice according to the
design requirements, this can also be taken as a kind of
equivalence in both algebra and practice.

Definition 5.14 (Time Restricted Weak Markovian
Bisimulation) An equivalence relationR with R ⊆
LYAWN ×LYAWN is calledtime restricted weak Marko-
vian bisimulation, is a family of symmetric relations
R = {Rb | b ∈ BExp}. It satisfies: iffPRbQ implies
for all a ∈ Act, time restrictiontr and all equivalence
classesC of Rb

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is ab ∧ b1-partition B with fv(B) ⊆
fv(b, P,Q) such that for eachb′ ∈ B there exist

b2, a′ andu′ with b′ |= b2, a =b′ a′, Q
b2,â

′

−−−→ Q′′

and such that
• If a ≡ c?x then there is ab′-partitionB′ such

that for eachb′′ ∈ B there areb′2 andQ′′ with

b′′ |= b′2, Q′ b′2,i−−→ Q′′ andP ′Rb′′Q′′;
• otherwiseP ′Rb′Q′.

2) P
i
−→ P ′ andP ′ 6

i
−→ imply

1

γM (p, Ci)
≤ tr(p, Ci)

and
1

γM (q, Ci)
≤ tr(p, Ci).

P and Q are called time restricted weak Markovian
bisimulation equivalent(P ≈tr Q) if there is a weak
Markovian bisimulationR such thatPRQ.

Example 5.15When we make clear of the Example
5.13, it is easy to understand this one. Time restricted
weak Markovian bisimulation takeinput actionReadfp
andReadcrd as a special case. It is easy to understand
in Fig.4 of Example 5.8.Fingerprint might take different
steps in number to get its information ascard reader. It is
reasonable to assume thatcard readertakes less steps to
get its value thanfingerprint. Because it might take more
steps to calculate the value of fingerprint, thusfingerprint
has more internal actioni thancard reader. As we know
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Figure 5. Illustration ofSysfp

that eitherReadfp in Sysfp or Readcrd in Syscrd is
restricted by executing time to less thantr1 (Fig.5). This
satisfies condition 2 in definition 5.14.

Checking the execution ofSysfp andSyscrd step by
step, we know that they belong to the time restricted weak
Markovian bisimulation.

For any different abstract levels of the description of
systems, there are different atomic actions. The higher
the abstract level, the more abstract atomic actions are
required for that level. Thus, atomic actions of higher
abstract level contain more internal actions. Another way
to turn normal action (observable) into internal action is
the composition of compositions into a larger system.
The output of one component is theinput of another,
thus, at least two normal actions are abstracted away by
composition.

Lemma 5.16Time restricted congruence is a congru-
ence with respect to all operators ofLYAWN . If P , Q
andR are expressions ofLYAWN anda ∈ Act, λ ∈ R

andX ∈ V ar, then

• P ≈tr Q implies a.P ≈tr a.Q;
• P ≈tr Q implies [λ].P ≈tr [λ].Q;
• P ≈tr Q impliesP +R ≈tr Q+R andR+P ≈tr

R+Q;
• P ≈tr Q impliesP ||SR ≈tr Q||SR andR||SP ≈tr

R||SQ;
• P ≈tr Q implies rexX : P ≈tr rexX : Q.

Proof: All the proofs are alike, and we prove the choice
composition as representation of them.
⇒: We suggest that the executing time ofP as trP ≤

trP , Q as trQ ≤ trQ, and R as trR as we know
that P ≈tr Q. So, we get trP = trQ, according
to the definition 5.14. We have the executing time of
P + Q is max(trP , trQ), the executing time ofR +
Q is max(trR, trQ). Then, we getmax(trR, trP ) =
max(trR, trQ). As to the pure actions, it is easy to know
thatP = Q. Then we haveP+R = Q+R. As the choice
composition does not distinguish the position under the
summation, then we haveR + P = R + Q. Put the
executing time of actions and pure action together, we
haveP +R ≈tr Q+ R.
⇐: We suggest that the executing time ofP + Q

is max(trP , trQ). The executing time ofR + Q is
max(trR, trQ). As we know thatP +R ≈tr Q+R, then
we havemax(trR, trP ) = max(trR, trQ). Now, there

are four situations:

1) max(trP , trR) = trP andmax(trQ, trR) = trQ,
then we havetrP = trQ, i.e., we haveP ≈tr Q as
needed;

2) max(trP , trR) = trP andmax(trQ, trR) = trR,
then we havetrP ≥ trR and trR ≥ trQ which is
conflict withmax(trR, trP ) = max(trR, trQ). So,
this condition is impossible;

3) max(trP , trR) = trR andmax(trQ, trR) = trQ,
then we havetrR ≥ trP and trQ ≥ trR, which is
conflict with max(trR, trP ) = max(trR, trQ). So
this condition is impossible;

4) max(trP , trR) = trR andmax(trQ, trR) = trR.
We know thatmax(trP , trQ) ≤ trR, this means
that the executing time ofP andQ are less than
trR. As we know thattrR is assumed to be under
the time restriction of the requirements, so we have
P ≈tr Q.

Based on the above analyze, we get the proof done.
�

Based on the assumption that
1

µi

≤ tri (
1

νi
≤ tri)

for i = 0, 1, ..., 7. We know that either thetime delay
before next action or thedurationof an action is no more
than the design requirements which is a serious of real

numbers. That is
1

µi

≤ tri < ∞ (
1

νi
≤ tri < ∞) for

i = 0, 1, ..., 7. In other words, the variables characterizing
executing time in processes cannot be infinite. From the
point of Markovian chains, all the chains of this kind is
stable. This is a bridge to fill the gap between time re-
stricted weak Markovian bisimulation and time restricted
weak Markovian congruence which will be defined in the
following.

Definition 5.17 (Time Restricted Weak Markovian
Congruence)P andQ are said to beweakly Markovian
congruent(P ≃tr Q) is a family of symmetric relations
R = {Rb | b ∈ BExp}. If and only if ∀a ∈ Act, time
restrictiontr and allC ∈ YAMN / ≈tr:

1) If P
b1,av
−−−→ P ′ with bv(a) ∩ fv(b, P,Q) = ∅,

then there is ab ∧ b1-partition B with fv(B) ⊆
fv(b, P,Q) such that for eachb′ ∈ B there exist

b2, a′ andu′ with b′ |= b2, a =b′ a′, Q
b2,â

′

−−−→ Q′′

and such that

• If a ≡ c?x then there is ab′-partitionB′ such
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that for eachb′′ ∈ B there areb′2 andQ′′ with

b′′ |= b′2, Q′ b′2,i−−→ Q′′ andP ′Rb′′Q′′;
• otherwiseP ′Rb′Q′.

2)
1

γM (P,C)
≤ tr(P,C), andP is stable;

3)
1

γM (Q,C)
≤ tr(P,C), andQ is stable.

Example 5.18Revisit Example 5.8 and 5.11, we know
that systemSysfp and Syscrd obey the same time re-
striction which can be illustrated in Fig.6.

Fig.6 illustrates the observable actions and durations
of the execution of systemSysfp andSyscrd. We know
that systemSysfp ≈ Syscrd in Example 5.8.Sysfp ≈tr

Syscrd satisfies the conditionmax(
1

µi

,
1

νi
) ≤ tri for i =

1, 2, 3, 4.
Example 5.19If we take the Example 5.8, 5.11, 5.15

and 5.18 as the abstract levels of observations. Take
Example 5.3 as a refined level of observation, we can
build a time restriction on execution between these two
different levels.

If we want Fig. 1 in Example 5.3 to obey the time
restriction in Fig. 6, it is intuitive for us to know that for
Sysfp as Fig.2 with time restriction as Fig.6 satisfy the
following conditions:

max(
1

µ0
,
1

µ6
+

1

µ7
, ν0,

1

ν6
+

1

ν7
) ≤ tr4;

max(µ1, ν1) ≤ tr1;

max(
1

µ3
,
1

ν2
+

1

ν4
) ≤ tr2;

max(
1

µ3
,
1

ν2
+

1

ν5
) ≤ tr3.

and forSyscrd as Fig.3 with time restriction in Fig.6
satisfies the following conditions:

max(
1

ν0
,
1

ν6
+

1

ν7
, ν0,

1

ν6
+

1

ν7
) ≤ tr4;

max(ν1, ν1) ≤ tr1;

max(
1

ν3
,
1

ν2
+

1

ν4
) ≤ tr2;

max(
1

ν3
,
1

ν2
+

1

ν5
) ≤ tr3.

Based on the above conditions, we know that
Sysfp ∼=tr Syscrd and Sysfp ≈tr Syscrd. It is intu-
itive that ∼=tr and ≈tr under the time restricted weak
Markovian bisimulation and congruence are of the same
equivalence class(∼=tr,≈tr) ∈≡.

Theorem 5.20P ≈tr Q ⇔ P ∼=tr Q.

Proof sketch: The only difference betweenP ≈tr Q
andP ∼=tr Q lies in the definitions of 5.14 and 5.17. It
is based on whether the Markovian chain is stable or not.
Based on the assumption that the mean time ofdelays
and executingdurationsare no more than time restriction
tr and tr < ∞, we know that all actions in Markovian
chains can full fill their time restrictions. They terminate
within time limitations (i.e., no more thantr). Both
time restricted Markovian bisimulationandtime restricted
Markovian congruenceare based on the assumption that
executing time is no more than time restriction.

�

Lemma 5.21Time restricted congruence is a congru-
ence with respect to all operators ofLYAWN . If P , Q
andR are expressions ofLYAWN anda ∈ Act, λ ∈ R

andX ∈ V ar, then
• P ∼=tr Q implies a.P ∼=tr a.Q;
• P ∼=tr Q implies [λ].P ∼=tr [λ].Q;
• P ∼=tr Q impliesP +R ∼=tr Q+R andR+P ∼=tr

R+Q;
• P ∼=tr Q impliesP ||SR ∼=tr Q||SR andR||SP ∼=tr

R||SQ;
• P ∼=tr Q implies rexX : P ∼=tr rexX : Q.
Proof: Similar with the proof of Lemma 5.16.

�

VI. CONCLUSION

In this paper, we introduced the language ofYAWN
with value passing which is perfect to describe the
stochastic phenomena in real world. The supporting
model ofYAWN is continuous time Markovian chains,
which are frequently used in modeling manufacturing
system, computer networks, communication systems and
so on.

In analyzing the behaviors of complex systems, i.e.,
computer networks and operating systems, it is inevitable
to deal with value passing (i.e., data of all kinds and forms
and control based on values). During the analyzing of
actions in processes, we introduced value passing into
the language ofYAWN with value passing. Thus, there
are several kinds of actions with value passing including
input, output, internal action, and generalized form.

After we had a general view of the language dealing
with stochastic processes, we gave out the syntax of
YAWN with its informal descriptions. In order to define
the semantics more clearly, we gave out the formal mean-
ing of the languageYAWN . Then, we introduced gener-
alized Markovian transition system (short for GMTS) as
the model ofLYAWN . Based on GMTS, we gave out the
operational semantics of the languageYAWN with value
passing. Based on the theory of classic process algebras,
we showed axioms of the operators in the language of
YAWN .

The axioms gave out the basic equivalence relations
of the basic operators inYAWN with value passing.
One important task for process algebras is to build the
equivalent relationships between processes. We treated
them in two different ways: one way is to treat both action
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and time (delay or duration) strictly. This policy introduce
the equivalent relations as strong Markovian bisimulation,
weak Markovian congruence and expansion law.

Another way is to treat action and time with different
policy: treating action strictly while treating time loosely
with a duration (i.e., within time limitations). This means
that executing time within time limitation can be con-
sidered as equal in the comparison of two processes.
This policy produces time restricted strong bisimulation,
time restricted weak Markovian bisimulation, and time
restricted weak Markovian congruence.

When all the bisimulation relations are defined, we
proved that they can be applied to all the operators inside
the language ofYAMN with value passing.
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