
User Requirements Notation:  
The First Ten Years, The Next Ten Years 

(Invited Paper) 
 

Daniel Amyot and Gunter Mussbacher 
University of Ottawa, Canada 

Email: {damyot, gunterm}@site.uottawa.ca 
 
 

Abstract—The User Requirements Notation (URN), 
standardized by the International Telecommunication 
Union in 2008, is used to model and analyze requirements 
with goals and scenarios. This paper describes the first ten 
years of development of URN, and discusses ongoing efforts 
targeting the next ten years. We did a study inspired by the 
systematic literature review approach, querying five major 
search engines and using the existing URN Virtual Library. 
Based on the 281 scientific publications related to URN we 
collected and analyzed, we observe a shift from a more 
conventional use of URN for telecommunications and 
reactive systems to business process management and 
aspect-oriented modeling, with relevant extensions to the 
language being proposed. URN also benefits from a global 
and active research community, although industrial 
contributions are still sparse. URN is now a leading 
language for goal-driven and scenario-oriented modeling 
with a promising future for many application domains. 
 
Index Terms—Goals, Goal-oriented Requirement Language 
(GRL), modeling, review, scenarios, tools, Use Case Maps 
(UCM), User Requirements Notation (URN) 

I. INTRODUCTION 

The User Requirements Notation (URN) is a modeling 
language that aims to support the elicitation, analysis, 
specification, and validation of requirements. URN is the 
first international standard to address explicitly, in a 
graphical way and in one unified language, goals and 
scenarios, and the links between them [106]. URN 
models can be used to specify and analyze various types 
of reactive systems as well as telecommunications 
standards and business processes. URN allows software 
and requirements engineers as well as business analysts 
to discover and specify requirements for a proposed 
system or process (or evolving ones), and analyze such 
requirements for correctness and completeness. 

The kind of modeling supported by URN is different 
from the detailed specification of “how” functionalities 
are to be supported, as described with languages such as 
UML [146]. Here the modeler is primarily concerned 
with exposing “why” certain choices for behavior and/or 
structure were introduced, combined with an abstract 
view of “what” capabilities and architecture are required. 
The modeler is not yet interested in the operational details 
of internal component behavior or component 
interactions. Omitting these kinds of details during early 
development allows working at a higher level of 
abstraction when modeling a current or future software 

system, business process, or standard, and its embedding 
environment. Modeling and answering “why” questions 
leads us to consider the opportunities stakeholders seek 
out and vulnerabilities they try to avoid within their 
environment, whereas modeling and answering “what” 
questions helps identify capabilities, services, and 
architectures required to satisfy stakeholder goals. 

Based on a systematic literature review, this paper 
provides a historical perspective on the development of 
URN together with trends related to future constructs and 
application domains for this notation. Such study is 
important at this point not only to appreciate the richness 
of URN and the substantial body of work that already 
exists, but also to step back, understand current trends, 
and anticipate future needs for evolving the notation in 
the right direction. 

Section II introduces URN’s basic concepts and 
notational elements, together with its standard analysis 
techniques. As it is important to understand why URN 
was created, a historical description of the origins of the 
notation is presented in Section III. Then, Section IV 
summarizes the main results of our literature survey, 
especially with regards to the sources of contributions to 
URN. In Section V, some of the main research 
contributions that have shaped URN in the past decade 
are categorized and reviewed, whereas section VI 
identifies current and future development activities and 
research areas related to URN for the next decade. 
Finally, section VII provides our conclusions. 

II.  OVERVIEW OF URN 

The User Requirements Notation standard combines 
two sub-languages [106]: the Goal-oriented Requirement 
Language for modeling actors and their intentions, and 
the Use Case Maps notation for describing scenarios and 
architectures. In this section, we give a brief overview of 
each of these sub-languages, supported by a simple URN 
model example that targets the evaluation of an 
architectural decision about where to put the data and the 
logic of the authorization service of a wireless system. 

A. Goal-oriented Requirement Language (GRL) 
GRL is a visual modeling notation for intentions, 

business goals, and non-functional requirements (NFR) of 
many stakeholders, for alternatives that have to be 
considered, for decisions that were made, and for 
rationales that helped make these decisions.  

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 747

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.5.747-768



A GRL goal graph is a connected graph of intentional 
elements that optionally reside within an actor. An actor 
( , e.g., Service Provider, Figure 1.a) represents a 
stakeholder of a system, or the system itself. A goal graph 
shows the non-functional requirements and business 
goals of interest to the system and its stakeholders, as 
well as the alternatives for achieving these high-level 
elements. Actors are holders of intentions; they are the 
active entities in the system or its environment who want 
goals to be achieved, tasks to be performed, resources to 
be available, and softgoals to be satisfied. Softgoals ( , 
e.g., Low Cost) differentiate themselves from goals ( , 
e.g., Determine Data Location) in that there is no clear, 
objective measure of satisfaction for a softgoal whereas a 
goal is quantifiable, often in a binary way. Softgoals are 
often more related to NFR, whereas goals are more 
related to functional requirements. Tasks ( , e.g., Install 
Service Node) represent solutions to (or 
operationalizations of) goals or softgoals. In order to be 
achieved or completed, softgoals, goals, and tasks may 
require resources ( , e.g., Service Node) to be available. 

Various kinds of links connect the elements in a goal 
graph. Decomposition links allow an element to be 
decomposed into sub-elements ( , e.g., High 
Performance is decomposed into Maximum Hardware 
Utilisation and High Throughput). AND, IOR, as well as 
XOR decompositions are supported. Contribution links 
indicate desired impacts of one element on another 
element (→, e.g., Minimum Changes to Infrastructure 
contributes to Low Cost). A contribution link has a 
qualitative contribution type (Figure 1.b) or a quantitative 
contribution (an integer value between -100 and 100). 
Correlation links ( ) are similar in nature, but describe 
side effects rather than desired impacts. Dependency 
links model relationships between actors ( , e.g., 
System depends on Vendor for Service Node). 

GRL supports reasoning about goals and requirements, 
especially NFR and quality attributes, as it shows the 
impact of often conflicting goals and various global 
alternative solutions proposed to achieve the goals. A 
GRL strategy describes a particular configuration of 
alternatives in the GRL model by assigning an initial 
qualitative satisfaction level (Figure 1.c) or a quantitative 
one (an integer value between -100 and 100) to some of 
the intentional elements in the model (indicated by a star 
(*) and a dashed outline), often leaves in the GRL graph. 
An evaluation mechanism propagates these low-level 
decisions regarding alternatives to satisfaction ratings of 
high-level stakeholder goals and NFR. Strategies can 
therefore be compared with each other to help reach the 
most appropriate trade-offs among often conflicting goals 
of stakeholders. A good strategy offers rationale and 
documentation for decisions leading to requirements, thus 
providing better context for systems and software 
engineers while avoiding unnecessary re-evaluations of 
worse alternative strategies. Color coding of the 
intentional elements also reflect their satisfaction level 
(the greener, the more satisfied). 

GRL takes into account that not all high-level goals 
and NFR are equally important to a stakeholder. 

Therefore, GRL supports the definition of an importance 
attribute for intentional elements inside actors (again 
quantitative or qualitative, and shown between 
parentheses, e.g., 50 for Low Cost). This attribute is also 
taken into account when evaluating strategies for the goal 
model, resulting in satisfaction levels measured at the 
actor level (e.g., 32 for the Service Provider). 

The current URN standard does not enforce a specific 
evaluation mechanism as GRL can be used in different 
ways by different modelers, e.g., for qualitative 
evaluations or quantitative ones, but provides three non-
normative examples of evaluation algorithms. A hybrid 
algorithm combining qualitative contributions and 
quantitative satisfaction levels is used for one strategy in 
Figure 1.a. A different strategy would lead to different 
results, enabling comparisons and documenting decisions. 

B. Use Case Maps (UCM) 
The UCM visual scenario notation focuses on the 

causal flow of behavior optionally superimposed on a 
structure of components. UCM depict the causal 
interaction of architectural entities while abstracting from 
message and data details.  

The basic elements of the UCM notation are shown 
in Figure 2. A map contains any number of paths and 
components. Paths express causal sequences and may 
contain several types of path nodes. Paths start at start 
points ( , e.g., StartConnection) and end at end points (▌, 
e.g., Done), which capture triggering and resulting 
conditions respectively. Responsibilities ( , e.g., 
LogReject) describe required actions or steps to fulfill a 
scenario. OR-forks ( ), possibly including guarding 
conditions such as [NotOk], and OR-joins ( ) are used 
to show alternatives, while AND-forks ( ) and AND-
joins ( ) depict concurrency. Loops can be modeled 
implicitly with OR-joins and OR-forks. As the UCM 
notation does not impose any nesting constraints, joins 
and forks may be freely combined and a fork does not 
need to be followed by a join. Waiting places ( ) and 
timers ( ) denote locations on the path where the 
scenario stops until a condition is satisfied.  

UCM models can be decomposed using stubs that 
contain sub-maps called plug-in maps (see Figure 2.b and 
c). Plug-in maps are reusable units of behavior and 
structure. Plug-in bindings define the continuation of a 
path on a plug-in map by connecting in-paths and out-
paths of a stub (IN1 and OUT1 in Figure 2) with start and 
end points of its plug-in maps, respectively. Plug-in 
bindings also describe the relationship of components on 
the parent map with the ones on the plug-in map (e.g., the 
parent component of the plug-in map in Figure 2.c refers 
to a component in the parent map, ControlFunction in this 
example). A stub may be static ( ), which means that it 
can have at most one plug-in map, whereas a dynamic 
stub ( , e.g., Authorization) may have many plug-in maps 
that can be selected at runtime according to a selection 
policy. In Figure 2, the two plug-in maps represent 
alternative ways of supporting authorization, with 
different locations for the data and the logic of the service 
(i.e., different allocations of responsibilities to 
components). 

748 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



  

SatisfiedWeakly
Satisfied

UnknownDenied Weakly
Denied

Conflict None

(c) GRL Satisfaction Levels

Make Help Some Positive Unknown Break HurtSome Negative

(b) GRL Contributions Types 

(a) GRL graph for a system with two stakeholders

 
Figure 1 GRL example: Where should the data and the service be located in the system? 

 

a) Top-level map: Connection request to a mobile switch

b) Plugin 1: Service in mobile switch, 
data in external service node

c) Plugin 2: Service and data in 
mobile switch  

Figure 2 UCM example: Connection scenario (a), with two potential architectural solutions (b and c) for the authorization service. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 749

© 2011 ACADEMY PUBLISHER



Components ( , e.g., MobileSwitch) are used to 
specify the structural aspects of a system. Map elements 
which reside inside a component are said to be bound to 
it. Components may contain sub-components and have 
various types and characteristics. For example, a 
component of kind object ( , e.g., LocationDB) does not 
have its own thread of control whereas a component of 
kind process ( , e.g., ControlFunction) does. A 
component of kind actor ( , e.g., MobileStation) 
represents someone or something interacting with the 
system under design. 

UCM support the definition of scenarios including pre- 
and postconditions. A scenario describes a specific path 
through the UCM model where only one alternative at 
any choice point is taken. The UCM notation supports a 
simple but formal data model that can be used to 
formalize the conditions at selection points (e.g., dynamic 
stubs and OR-forks). Responsibilities can also include 
code that modifies the values of the variables used in this 
data model. A scenario definition can hence be expressed 
with initial values for these variables, combined with a 
sequence of start points being triggered. 

 Given the definition of a scenario or combination of 
scenarios, a path traversal mechanism can highlight the 
scenario path being simulated. Figure 2 shows in red the 
paths traversed for the scenario where the service logic 
remains in the mobile switch but the service data is 
located in a new external service node (which 
corresponds to the strategy being evaluated for the GRL 
model in Figure 1.a), and where the authorization is OK. 
The traversal mechanism essentially provides the 
operational semantics of the UCM language. It also turns 
the scenario definitions into a test suite for the UCM 
model, which is especially useful for regression testing as 
the model evolves. 

Different elements in a UCM model can also be 
annotated with specific performance information, 
enabling early performance analysis at the requirements 
level. For example, resources can be defined and 
components assigned to them, selection points can 
include probabilities, responsibilities can specify 
demands on resources, and start points can include 
workload definitions. 

The UCM notation enables a seamless transition from 
the informal to the formal by bridging the modeling gap 
between goal models and natural language requirements 
(e.g., use cases) and design artefacts, in an explicit and 
visual way. 

C. Integration of Goals and Scenarios in URN 
Modeling goals and scenarios is complementary and 

may aid in identifying additional or spurious goals and 
scenarios, thus contributing to the completeness and 
accuracy of requirements. In the language, URN links 
( ) can connect any two URN model elements, 
establishing traceability links that further tighten the 
relationship between GRL and UCM models while 
enabling completeness and consistency analysis.  

The URN language also supports the concept of 
metadata in the form of name/value pairs that can be 
associated with any URN model element. This allows for 

domain-specific extensions to be added to URN and 
exploited by specialized tool support. 

III. PRE-URN HISTORY (1990-1999) 

The roots of URN go back to the early 90’s. Use Case 
Maps originate from Carleton University, where Buhr 
used them as a high-level notation in their project Design 
of Object-Oriented Real-time Systems (DOORS ― 
http://www.sce.carleton.ca/rads/doors.html). Vigder’s 
early work on design slices [186] used a scenario-like 
notation with a connection to the LOTOS formal 
specification language [99]. Buhr then coined the term 
timethread as a name for this graphical notation, which 
was used in a few papers and theses until the release, in 
1995, of a seminal book co-authored with Casselman 
where the term Use Case Maps emerged [52]. This book 
focused on the application of UCM to object-oriented 
systems, with an emphasis on role modeling concepts 
developed in Casselman’s thesis [56]. Another important 
milestone for the UCM notation was the publication of a 
revised and more powerful version of the language in a 
major journal [49]. In those years, typical applications 
that were explored with this notation included design 
activities [13][40] (including architecture [46][49] and 
patterns [47][50]), performance analysis [170], and the 
modeling of telecommunication [8][10], agent-
oriented [51][68], and e-commerce [79] systems. Miga 
provided tool support for the creation and analysis of 
UCM models [129], based on an earlier prototype from 
Carrière (UCMEdit, discussed in [113]). This multi-
platform UCM Navigator tool (UCMNAV) was used in 
academia and industry mainly between 1998 and 
2005 [181]. 

Work on goal modeling for requirements, agents, and 
organizations that was being done at that time at the 
University of Toronto guided the development of the 
GRL language. The syntax of GRL is in fact based on the 
i* framework described in Yu’s thesis [197], which was 
developed for describing strategic relationships in 
organization models. The reasoning mechanisms behind 
another goal-oriented notation, namely the Non-
Functional Requirements (NFR) Framework (best 
described in the seminal book of Chung, Mylopoulos, 
Nixon, and Yu [62]), also inspired the evaluation and 
propagation mechanisms now found in GRL. Tool 
support for modeling and analyzing goal models (in i*, 
the NFR Framework, and GRL) was then provided by the 
Java-based OME 3, Yu’s Organization Modelling 
Environment [198]. 

The idea of creating a new standard notation was first 
proposed in 1999 by Visser and Hodges from Nortel, as 
they were deeply involved in standardization activities 
with the International Telecommunication Union (ITU-T) 
and with the Wireless Intelligent Network initiative [96]. 
Through collaborative research projects with Logrippo 
(University of Ottawa) and his team [10][21], it was 
observed that UCMs would likely be more appropriate 
than natural language and Message Sequence Charts 
(MSC) [104] for early descriptions of wireless 
telecommunication features. Monkewich (also from 

750 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



Nortel) brought the idea of creating a Use Case Maps 
standard to the language experts at ITU-T, who then 
suggested renaming it to “User Requirements Notation”. 
This potential standard captured the attention of another 
Ottawa-based company, Mitel, where Pinard, Weiss, 
Gray, and Mankovski had also used UCM for modeling 
telecommunications features. However, they were also 
interested in i* and the NFR Framework for goal-oriented 
and agent-based modeling. They were collaborating with 
the University of Toronto on projects that led to the 
creation of a new goal modeling language by Yu and Liu, 
which became the first version of GRL [126]. 

Gray and the Mitel experts expected great benefits in 
combining goals with scenarios and regarded this 
combination essential for the understanding of highly 
dynamic and reflective systems, and for feature 
personalization. This potential integration led to the 
introduction of dynamic stubs in the UCM notation in the 
mid-90’s. Gray convinced the Nortel experts and other 
stakeholders to revise the URN proposal as a Canadian 
contribution to ITU-T that would include both GRL and 
UCM. This was then accepted as a new work item at 
ITU-T in 2000, and Hodges became the first Rapporteur 
for the URN question. 

IV. SYSTEMATIC LITERATURE REVIEW 

A. Methodology 
Inspired by the work of Kitchenham et al. [43][118], 

we did a systematic literature review targeting the 
following three questions:  

• Who contributed to the development of URN? 
• What research contributed to the development of 

URN? 
• What are the current and future development 

activities and research areas related to URN? 
In July 2010, we used five major search engines for 

publications in computer science and engineering (IEEE 
Xplore, ACM Digital Library, Google Scholar, 
SpringerLink, and Scopus). Our query was simply "User 
Requirements Notation" OR "Use Case Map" OR 
"Goal-oriented Requirement Language", which 
covered the essential keywords. The URN, GRL, and 
UCM acronyms were not included because an early 
assessment led us to believe they were polluting the 
results without really identifying more valid citations. 
Over 700 references were collected in the end, mostly 
coming from Google Scholar. These were combined with 
the references already present in the URN Virtual 
Library [182]. 

We restricted the results to scientific publications 
appearing in journals, conferences, workshops, books, 
and theses. Furthermore, we excluded papers that: 

• Only cited URN (or GRL/UCM) to acknowledge 
its existence or to discuss it in a comparison. 

• Simply used URN (or GRL/UCM) to illustrate 
some requirements or design (e.g., with a few 
diagrams), without discussing the usage of the 
language itself. 

• Focused on the “other” Use Case Map concept 
developed by Constantine and Lockwood [63], 
which is a variant of UML use case diagrams 
used to model the interrelationships among use 
cases (different from URN’s Use Case Maps). 

We finally included seminal work produced prior to 
the use of the terms UCM [56][186] and GRL [62][197]. 

B. Contributors and Contributions 
Our selection led to a total of 281 scientific 

publications related to research on and with URN. More 
specifically, we have found 38 journals papers, 183 
conference and workshop papers, 15 books and book 
chapters, as well as 45 theses (13 Ph.D., 31 Master’s, and 
1 B.Sc.) The URN Virtual Library was updated to include 
the 31 publications that were missing prior to this 
literature review. Figure 3 shows the distribution of our 
four types of publications over the years. 

 To answer our first question, this data shows that there 
were 263 different authors involved (with an average of 
2.7 authors per paper, often from different locations). 
Given the origins of URN, it is not surprising to see that 
the majority of the papers (66%) and theses (80%) 
published since 1992 include co-authors from Canada, 
especially from the University of Ottawa and from 
Carleton University (see Table I). Actually, all papers and 
theses prior to 1999 came from Canada.  

TABLE I.   
NUMBER OF CO-AUTHORS PER COUNTRY 

Country Papers Theses Total 
Canada 162 36 198 
 U. of Ottawa 103 21 124 
 Carleton U. 64 10 74 
 Concordia U. 15 4 19 
 U. of Toronto 7 1 8 
 Other places 19  19 
The Netherlands 10 4 14 
UK 11 1 12 
USA 9  9 
Japan 8  8 
Hungary 6  6 
Norway 4 1 5 
Italy 4  4 
Australia 4  4 
Brazil 4  4 
Germany 3 1 4 
Argentina 3 1 4 
Spain 3  3 
China 3  3 
Belgium 3  3 
Portugal 3  3 
Korea 2  2 
Viet-Nam 2  2 
South Africa 2  2 
United Arab Emirates 2  2 
Switzerland 1 1 2 
Serbia 1  1 
Latvia 1  1 
Poland 1  1 
Venezuela 1  1 
Libya 1  1 
Thailand 1  1 
Sweden 1  1 
Chile 1  1 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 751

© 2011 ACADEMY PUBLISHER



 

0

5

10

15

20

25

30

35

40

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

N
um

be
r o

f p
ub

lic
at
io
ns

Year

Journals Conf. & Workshops Books & Chapters Theses  
Figure 3 Number of URN-related scientific publications per year.

However, work on URN then started to draw 
international involvement. Between 1999 and July 2010, 
we observed that 43% of the papers had at least one co-
author from outside Canada, 34% of the papers had all 
their co-authors from outside Canada, and 23% of the 
theses were from outside Canada. Collaboration between 
Canadian and non-Canadian authors has also increased 
substantially over the past four years. As shown in 
Table I, researchers and industrial participants from over 
29 different countries on all continents have contributed 
publications on URN. Incidently, in our data set, we also 
detected papers written in seven languages other than 
English: Chinese (4), French (3), Spanish (3), Serbian (2), 
Japanese (2), Korean (1), and German (1). 

Although our results support that scientific 
contributions related to URN are numerous and 
international, industrial contributions are still sparse: only 
22 papers (9% of our data set) involved co-authors with 
industrial affiliations, mainly from the telecom industry 
(Nortel, Mitel, Cisco, and others). This may partially be 
explained by the fact that we excluded many papers 
where URN was simply used. 

C. Bias 
The content of the URN Virtual Library and our 

selection of papers are somewhat biased towards UCM 
because the work related on UCM is all included in 
URN’s, whereas prior and subsequent work on the NFR 
Framework and especially on i*, on which GRL is 
initially based, is not included. i* is different from GRL 
and has a community of its own (e.g., four i* workshops 
and 55 research teams are listed so far on the i* 
Wiki [97]). This is also reflected in the numbers of 
references we collected (e.g., from Google Scholar, we 
found 442 for UCM, 294 for URN, and 186 for GRL). 
Consequently, many of the topics discussed in the next 
two sections focus on UCM and fewer will address GRL 
exclusively. 

Note that we have done the collection and filtering of 
the papers ourselves. However, to mitigate internal bias, 
an exhaustive search using Google Scholar and other 
engines (see previous section) was performed. Given that 
we have been involved with URN since its inception, that 
we co-authored about a third of the scientific papers on 

URN, that we co-edited the standard and that we are 
responsible for its evolution at ITU-T, we believe we are 
uniquely positioned to perform a rigorous assessment of 
the past and future research on URN. 

V. THE FIRST TEN YEARS (2000-2009) 

After ITU-T’s approval of a new question on a User 
Requirements Notation, the URN standardization took 
another eight years. Cameron (Nortel) took over from 
Hodges as Rapporteur in 2001, followed by Amyot 
(University of Ottawa) in 2002. The first standard (Z.150, 
in 2003) described the goals and requirements for the 
URN language [105]. In 2008, the definition of the URN 
language itself (including a URN metamodel based on the 
new meta-metamodel of ITU-T Z.111 [103]) finally 
became available [106].  

This section summarizes some of the most important 
research contributions that have led to this standard, 
together with emerging application domains. 

A. Specification and Validation of Protocols and Services 
One of the main drivers behind the creation of URN 

was to enable standards bodies such as ITU-T to specify 
and perform early validation of new telecommunication 
protocols and services. UCM models, in particular, 
provide a view that abstracts from messages and 
potentially from component architectures, which 
simplifies the description of services. This view also 
helps multiple stakeholders such as vendors and carriers 
(with conflicting agendas and investments in different 
legacy networks) reach consensus on the essence of these 
services.  

There were indeed several services specified with 
UCM and proposed for standardization, in the early 
2000s, to ITU-T, the Telecommunications Industry 
Association (TIA), and the Internet Engineering Task 
Force (IETF). In the literature, we notice the International 
Mobile Telecommunications-2000 (IMT-2000) [27] and 
other mobile wireless protocols [25][26], the Open 
Shortest Path First (OSPF) routing protocol [132], Mobile 
IPv6 [187], Call Name Presentation (CNAP) [196], and 
GPRS mobile group call [20], among others. All of these 

752 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



specifications helped further shape the notation as well as 
stylistic guidelines for its application to telecom services. 

More recently, URN was revisited in a service 
engineering context. Amyot et al. [12] described a URN-
based approach for specifying Next Generation Network 
(NGN) services, where service models (combining GRL, 
UCM, and UML views) provide information and 
mechanisms that help dynamic composition and 
adaptation at runtime. In his thesis, Castejón focuses 
more on the concept of collaboration for compositional 
service descriptions, with both UML and UCM [58]. 
These two approaches to service engineering helped 
explore and understand the synergy between URN and 
UML collaborations. 

B. Multi-Agent Systems 
In the past decade, there was quite a bit of attention 

devoted to the use of URN in the domain of agent 
systems, beyond what was already done in the 90’s by 
Buhr and others as part of their High-Level Design and 
Prototyping of Agent Systems project [51][68].  

Bush et al. [53] introduced their Styx agent 
methodology, where UCM are used to capture high-level 
system processes. A similar use of UCM is discussed in 
the approaches proposed by Araya and Antillanca [28] 
and by Abdelaziz et al. [2], the latter with an interesting 
application to a medical diagnosis system. In his 
thesis [1], Abdelaziz further enhanced his Multi-Agent 
System Development approach by integrating UML use 
case, activity, and sequence diagrams (and to some extent 
GRL dependency models) with the UCM view. 
Lavendelis and Grunspenkis proposed the MASITS tool, 
similar in intent to Buhr’s [51], for capturing several 
views of agent systems, including goal and use case 
views à la URN. Saleh and Al-Zarouni [165] described 
the use of GRL for capturing non-functional requirements 
for mobile agent systems. Amyot et al. [14] specified and 
analyzed, with UCM, an agent-based telecommunication 
system being built by an industrial partner. 

While Billard captured a collection of eight agent 
interaction patterns with UCM, with an analysis of their 
performance [34], Weiss exploited the NFR Framework 
(at the basis of GRL) to describe and exploit the 
relationships between patterns used in the design of agent 
systems [188]. 

C. Web Applications and Web Services 
In the mid-2000s, URN was also used in the context of 

Web applications. Yu and Liu, following seminal work 
where they first proposed an iterative methodology that 
combines GRL and UCM and demonstrate the 
complementary nature of these two views [124], 
successfully specified a Web-based training application 
with URN [125]. Around the same period, Kaewkasi and 
Rivepiboon also proposed a methodology for Web 
application modeling, but this time based on a 
combination of UCM and UML [111]. Around 2005, 
Weiss started to describe patterns (partly with UCM) for 
Web applications [189], while also exploring with others 
the UCM-driven testing of Web applications [22]. 

Web services also captured the attention of URN 
contributors. Weiss and Esfandiari provided preliminary 
results on the analysis of personalized Web services 
where service goals are specified with GRL and service 
functionalities with UCM [191]. van der Raadt explored 
Web services from a business perspective with the 
Business-oriented Approach Supporting web Service Idea 
Exploration (BASSIE) methodology. BASSIE combines 
three types of models: a) i* (instead of GRL) for 
describing strategic goals and the impact of service 
realization alternatives, Gordijn’s e3value framework [77] 
(originating from UCM) for evaluating alternatives based 
on their profitability, and UCM for describing other 
details of the services.  

These two approaches to the development of Web 
applications and services helped clarify the relationships 
that exist between GRL and UCM views, with an impact 
on the inclusion of the concept of URN link in the 
standard. 

D. Formalization 
The URN standard describes the URN abstract and 

concrete syntaxes formally, together with well-
formedness constraints. However, the semantics is 
currently described more informally using traversal 
requirements for UCM (with which many algorithms 
could comply) and with propagation requirements for 
GRL (with, again, many potential evaluation algorithms). 
Hence, these textual requirements do not fully alleviate 
the risk that different tools could implement different 
semantics while still satisfying the standard’s 
requirements.  

It was judged premature to agree on a unique 
semantics to the notation in the standard, although many 
had already been proposed, especially for UCM. One of 
the first attempts was done by Amyot and Logrippo [8], 
and was based on the LOTOS process algebra [99]. The 
mapping from UCM to LOTOS was further explored by 
Guan [82], who also provided a compiler for UCMNav 
models. This mapping was used in 9 theses and 13 
publications, and contributed to the understanding of 
UCM behavior. 

van der Poll et al. proposed an initial, informal 
mapping from UCM to Z in order to formally analyze 
models capturing user interface scenarios [183]. This 
work was further extended by Dongmo [67], who defined 
a framework to derive Object-Z [176] class schemas from 
UCM models. Similarly, Truong et al. [180] proposed a 
mapping from UCM to the B formal method [171] in 
order to support the verification of component behavior 
against the UCM scenario requirements. To facilitate the 
analysis of component interfaces and composition, de 
Bruin explored a mapping from UCM models enhanced 
with interface information to the object-oriented 
programming language BCOOPL [64]. 

Hassine et al. also provided a formal semantics for 
UCM, but this time based on Abstract State Machines 
(ASM, [38]), with tool support for simulation [88]. They 
further investigated the use of quantitative time 
constraints in UCM models with a UCM extension called 
Timed Use Case Maps, for which they provided 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 753

© 2011 ACADEMY PUBLISHER



additional semantics based on more appropriate 
formalisms, namely timed automata [90], clocked 
transition systems [89], and again ASM [86]. Hassine’s 
thesis [85] is the best document where these extensions 
and semantics are used, and a recent survey provides a 
comparison with related timed scenario languages [92]. 

There is no formal semantics for GRL at this point. 
However, the initial description of GRL [126], which did 
not include a meta-model at the time, was evaluated by 
Heymans et al. [95] from an ontological perspective. 
Some of their conclusions were actually taken into 
consideration in the definition of the URN metamodel. 
Ayala et al. also provided an interesting analysis of GRL 
compared to other goal-oriented modeling languages, but 
again this is based on the original version proposed in 
2001 (not the standard definition). A comparison between 
i* and van Lamsweerde’s KAOS is offered by 
Matulevičius et al. [127] and also by [17] from an 
analysis point of view. The i* Wiki [97] is also an 
interesting source of information on formalization for 
related goal-oriented languages. For comparisons 
between UCM and other scenario languages (too 
numerous to mention them all here), the reader is referred 
to the studies of Saiedian et al. [164], Amyot and 
Eberlein [16], and Mussbacher and Amyot [136]. 

E. Transformations to Design Models 
Scenario models such as those specified with UCM 

represent a good basis for transformations to more 
detailed design representations. Such transformations 
enable the generation of design artifacts with less effort 
and, yet, higher consistency with the requirements. 

Bordeleau, Buhr, and Cameron were among the first to 
explore systematic relationships and transformation 
between UCM models and (High-level) Message 
Sequence Charts [41]. Miga et al. [130] have then 
demonstrated that lengthy scenarios resulting from UCM 
path traversals can be transformed to MSC in order to 
visualize them in a more scalable and linear form. They 
implemented this transformation in the UCMNAV 
tool [181]. The main challenges in this transformation is 
to infer or synthesize necessary messages ensuring that 
causal relationships between responsibilities in different 
components are correctly supported, and to handle the 
well-formedness rules of a linear scenario representation 
like MSC, which are stricter than the general graph 
representation of UCM. New results partly addressing 
these challenges were provided by Amyot et al. [15]. 
However, the best implementation so far is the one now 
found in the jUCMNav tool [110], as provided by Kealey 
in his thesis [114]. Along the way, Kealey redefined and 
greatly improved the power, flexibility, and robustness of 
the path traversal algorithm initially proposed by Miga, 
and this contribution had a major impact on the definition 
of the path traversal rules now found in the 
standard [114]. 

The synthesis of state machines from scenarios was a 
topic of high interest in the 2000’s [16][164]. Bordeleau, 
Corriveau, and Selic were among the first to provide 
guidelines for the transformation of UCM models to 
hierarchical state machines [42]. Sales and Probert also 

proposed transformation guidelines [165], only this time 
the target language was SDL [102]. He et al. [93] 
explored an automatic transformation from UCM to SDL 
via the intermediate generation of MSC from UCM and 
the synthesis of SDL models from these MSC (based on a 
commercial MSC-to-SDL synthesizer). Castajón also 
reported on an experiment on the synthesis of state 
machine behavior from UML collaborations whose 
dependencies are captured with UCM models [57]. 

On the goal side, we notice the combination of GRL 
and a security extension to UML (UMLsec) proposed by 
Saleh and Elshahry to model security requirements across 
goal and design views [166]. Abid et al. also proposed a 
UML profile for GRL, hence enabling the integration of a 
GRL view in UML design models [3]. 

F. Feature Interaction Analysis 
The various formalisms used to analyze URN models, 

as seen by the many transformations and formalizations 
discussed in the previous sections, are important to 
support the detection of undesirable interactions between 
features or service descriptions, a problem well known in 
telecommunications and other domains [55]. 

Amyot et al. used a mapping from UCM to LOTOS, 
combined with a testing approach, to support the rigorous 
detection of interactions between telecommunication 
features [8][14]. Due to the numerous test cases that have 
to be checked for large sets of features, the need for 
identifying situations where interaction tests are needed 
became apparent. Nakamura et al. hence proposed an 
interaction filtering approach based on the stub/plug-in 
structure of UCM models and formalized with stub 
configuration matrices [144]. This technique helped 
reduce the number of test cases needed to detect 
undesirable interactions by focusing on interaction-prone 
combinations. This seminal work led to various 
improvements by Cheng et al. [61] and Zhang and 
Liu [200] in terms of the required pre-conditions, and by 
Leelaprute et al. [121] who added a second phase for the 
generation of error-prone scenarios from the interaction-
prone configurations. Hassine also adapted this filtering 
technique to identify interaction-prone combinations 
targeting LOTOS specifications, which were then 
checked formally using tests and goal-oriented 
executions [84]. In his thesis, Gorse proposed a different 
filtering technique, this time based on a logic 
representation of the feature requirements in Prolog. The 
filtering results are used for testing a LOTOS 
specification that formalizes features modeled with 
UCM [80]. 

Shiri et al. [174] combined UCM with Birkoff’s 
Formal Concept Analysis [35] to assist maintainers in 
identifying feature modification impacts at the 
requirements level, and minimizing the need for 
regression testing. 

Weiss and Esfandiari studied the feature interaction 
problem in terms of functional and non-functional 
interactions [192]. They used GRL to analyze conflicting 
goals, tradeoffs between softgoals, inadequate interfaces, 
ownership and policy issues, and resource contention. 
They also used UCM to analyze concurrency issues, 

754 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



violations of assumptions, and incorrect invocation 
ordering. This work led to the first classification of 
undesirable interactions for Web services. 

More recently, Mussbacher et al. [143] studied 
semantic-based interactions in aspect-oriented models. 
Their approach differs from the syntactic approaches like 
filtering, and is more lightweight than detection methods 
that rely on the use of underlying formal languages. This 
approach requires the manual annotation of aspects with 
domain-specific markers, and a GRL model that specifies 
how markers from different domains influence each 
other. Automated analysis can then be used both to 
highlight semantic aspect conflicts and to trade-off 
aspects. This approach is demonstrated on academic and 
industrial examples that use aspect-oriented extensions of 
UCM [134] and other languages. 

G. Performance Analysis 
In URN, modelers may supplement UCM elements 

with standard performance annotations to describe 
resources associated with components, demands of 
responsibilities, workloads on scenario start points, 
allocations of UCM components to devices, and 
probabilistic behavior at selection points [106]. These 
annotations are not taken into consideration for the path 
traversal mechanism, but they can be used in 
transformations of UCM models to specialized 
performance models. This enables performance analysis 
from URN requirements models, before serious barriers 
to performance are frozen into the design and 
implementation. 

This part of the standard was strongly influenced by 
Woodside and his research team at Carleton University. 
In his PERFECT method, Scratchley used annotated 
UCM for evaluating concurrency architectures for a 
system that executes a given set of scenarios [169]. His 
annotations included timestamps and response-time 
requirements (implemented in the original UCMNAV 
tool), which were replaced in the URN standard by more 
generic metadata and URN links. 

The generation of Layered Queueing Network (LQN) 
performance models [177] directly from UCM models 
was first explored and prototyped by Petriu [152][153]. 
LQN performance models can be used as a basis for 
exploring the performance solution space of a system. 
Different kinds of analyses (e.g., sensitivity, scalability, 
concurrency, and configuration) can be performed 
through the use of LQN solver and simulation tools. 
Siddiqui et al. [175] improved upon this approach to 
consider the notions of budget and completions in the 
analysis of performance, while Liu focused on a multi-
level methodology, with application to large presence 
systems [123]. Wu and Woodside explored the hybrid use 
of LQN and generalized stochastic Petri Nets for the 
performance analysis of annotated UCM models [194]. A 
good summary of the UCM-LQN performance 
engineering vision is found in [154]. 

The original annotations influenced the early 
development of the UML profile for schedulability, 
performance, and time [147]. More recent work on the 
development of the Core Scenario Model (CSM) 

representation [155], led to new annotations that are now 
part of the URN standard. These annotations have also 
evolved in synergy with the creation of the new UML 
profile for real time and embedded systems 
(MARTE) [148].  

CSM’s purpose is to capture the essence of a range of 
scenario notations (e.g., from URN and UML) and enable 
simple transformations to various target formalisms (e.g., 
LQN, regular queueing networks, and stochastic Petri 
Nets), hence reducing the number and complexity of tools 
needed to analyze various aspects of the same system. 
Accordingly, newer URN-based approaches now target 
the generation of CSM models rather than LQN directly. 
A transformation from UCM to CSM was defined by 
Zeng in his thesis [199], with an implementation in 
UCMNAV. This transformation was adapted by 
Sincennes and others and is implemented in jUCMNav. 
One of the main benefits of this approach is that the 
acquisition and release of resources is inferred implicitly 
from UCM models rather than requiring them to be 
defined explicitly as in profiled UML models. This 
simplifies substantially the creation and maintenance of 
models. Transformations from CSM models to LQN 
models and other types of performance models are 
discussed in [155] and are now supported by prototype 
tools. 

Other types of software performance analysis based on 
UCM do not make use of the standard performance 
annotations. Billard used his own queueing simulator to 
analyze the UCM model of an object-oriented operating 
system [33], whereas Hassine used Timed Use Case 
Maps and a mapping to ASM to analyze resource 
allocation, worst-case time execution, and schedulability 
issues in an automatic protection switching feature [87]. 

Cai and Yu [54], on the other hand, investigated a 
GRL-based approach for qualitatively addressing and 
refining performance requirements. Operationalizations 
of such requirements are linked to UCM scenarios. 

H. Architecture Evaluation 
By combining goals with scenarios, URN provides a 

unique perspective on the evaluation of architectures. The 
previous section discussed performance-oriented 
approaches that often require the generation of 
mathematical performance models, where the quantitative 
parameters are difficult to choose and set. de Bruin and 
van Vliet explored a more qualitative approach to 
architecture evaluation, where a feature model describes 
the alternatives and refinements of the problem domain, 
whereas the solution domain is captured with a UCM 
model (with stubs and plug-ins) [65]. Links between the 
two models enables the evaluation and selection of an 
appropriate architecture, with its behavioral description. 
This approach shares similarities with the method of Liu 
and Yu [124], where a GRL goal model is used to capture 
actor intentions and coarse-grain alternatives, whose 
operationalizations are linked to the UCM view.  

Many surveyed approaches also focus on specific 
architectural qualities. For instance, Amyot describes an 
approach where alternative architectures can be evaluated 
on the complexity and cost of the resulting message 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 755

© 2011 ACADEMY PUBLISHER



exchanges [9] as in the UCM example in Section II. Wu 
and Kelly have explored architecture evaluation from a 
security angle. They proposed a negative scenario 
framework where they explore “deviations” of UCM 
scenarios as potential security issues that impact 
architectural design decisions. Similar work was done by 
Karpati et al. [112], who introduced Misuse Case Maps 
as a modeling technique that is the anti-behavioral 
complement to UCM, which is used to visualize how 
cyber attacks are performed in an architectural context. 
The work of Folmer et al. [70] focuses on the use of 
scenarios (described with UCM and other means) for 
evaluating the usability of architectures before their 
implementation.  

I. System Comprehension and Evolution 
URN models are not just useful in a forward 

engineering development cycle. They can also be used in 
reverse-engineering, program comprehension, and 
evolution contexts to describe existing systems, 
architectures, and services. 

Amyot et al. have proposed a static approach to 
recovering UCM scenarios from code, based on a manual 
tagging approach and a commercial tool [19]. A dynamic 
approach was explored by Hamou-Lhadj et al., where 
execution traces are transformed to UCM scenarios [83]. 
One key step is the identification of utility functions in 
the code, which can be eliminated in order to shorten the 
resulting scenarios without loss of understandability. 

Hewitt and Rilling proposed a lightweight approach to 
identify the impact of requirement changes on a system 
based on the dependencies and potential ripple effects 
that can be inferred from a UCM model [94]. Shiri’s 
thesis expanded on this work with UCM-based 
techniques for impact analysis at the requirements level, 
prediction of regression testing effort, and feature 
interaction analysis, in order to support system evolution 
activities [173]. 

In his thesis, Störmer proposed the Software Quality 
Attribute Analysis by Architecture Reconstruction 
(SQUA3RE) method, where architectures are recovered 
based on a combination of UCM scenarios and time-
performance models [179]. The UCM models are built 
manually based on interviews. His study highlights that 
the participants appreciated the intuitiveness of UCM for 
showing flows of events and mappings to architectural 
components, and for decomposing structure and behavior. 
Störmer developed his own UCM tool, called 
Architecture Explorer, with support for timestamps and 
response-time requirements similar to Scratchley’s [169]. 

More recently, Díaz-Pace et al. [66] presented an 
approach called ArchSync (supported by an Eclipse-
based UCM tool with the same name and initially 
developed by Blech) that helps architects synchronize 
architectural documentation expressed through UCM 
with Java source code, as modifications are being made 
on the code. Execution traces are used as an input, and 
inconsistencies with the architectural UCM model are 
then highlighted. ArchSync is actually complementing 
another tool (FLABot), discussed by Soria et al. [178]. 
FLABot is a fault-localization tool that uses a UCM 

specification and a set of architecture-to-code mappings 
in order to guide the architect in the identification of code 
regions with possible faults. UCMs were used as they “fit 
well with the exploration of cause-effect paths for faults”. 

Note that an interesting study by Ölvingson et al. 
evaluated UCM as a requirements engineering and 
system comprehension technique for the development of 
information systems in inter-organizational public health 
settings [149]. The UCM notation was found to be at a 
suitable level of abstraction and useful in generating 
intuitive requirements. At the time (2002), the authors 
also identified the absence of guidelines on how to use 
the notation as well as the difficulty in distinguishing as-
is models from to-be models as weaknesses that could 
benefit from further attention. 

J. Testing and Verification 
The availability of scenarios in URN models makes 

URN attractive for requirements-based testing. Beyond 
the various analysis techniques discussed so far in the 
sections on formalization, transformations, and feature 
interactions, we distinguish three main categories of 
approaches for the generation of test purposes from UCM 
models [23].  

The first category is based on the usage of UCM 
models as is. For example, Amyot’s thesis defines a 
collection of testing patterns that can be used to manually 
cover a UCM model [8]. Charfi’s thesis also proposes an 
approach that generates test goals (this time, as LOTOS 
processes) by automatically covering the paths in UCM 
models [59]. Feng and Lee take into consideration 
statistical usage at the UCM level in order to guide the 
selection of important test cases for frequent paths [69]. 

The second category exploits standard UCM scenario 
definitions and path traversal algorithms. The techniques 
used for generating MSC scenarios can be reused as is to 
generate test purposes in MSC or in other formats. For 
example, Amyot et al. have used scenario definitions and 
the UCMNAV tool to generate test cases automatically for 
a Web application [22]. 

The third category requires the transformation of the 
UCM model to a formal specification from which 
existing test generation methods can be used. All of the 
mappings discussed in the formalization section are hence 
useful in this context. 

In order to turn test purposes extracted from UCM 
models into executable test cases, several issues must be 
addressed. For instance: UCM models do not include 
domain data, implementation messages and interfaces are 
unknown as UCM abstract from inter-component 
communication, and unfeasible test purposes might be 
selected depending on the chosen coverage strategy. 
While these concepts currently are not first-class URN 
modeling entities, some of them might be modeled 
indirectly with URN metadata and links.  

Although Jaskó et al. suggest that GRL can be used to 
provide rationale for test purposes and test 
strategies [108], Arnold et al. observe that URN in 
general should be augmented with a testable model for 
functional and non-functional requirements, an 
implementation under test, and explicit bindings between 

756 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



the two views [29]. Through their experience in 
developing a model-based testing environment for .NET 
applications, they show the feasibility of having a URN-
based testing approach where a URN model can be 
transformed into a testable requirements model from 
which executable test cases can be generated and then 
tested against an instrumented implementation (from 
which additional information is generated at run-time to 
check compliance with non-functional requirements). 

Hassine et al. take a different angle and consider UCM 
as a property specification language rather than a source 
of test purposes [91]. The resulting pattern system is 
mapped to popular temporal logics such as CTL, TCTL 
and ArTCTL (architectural real-time temporal logic, an 
extension to TCTL that provides temporal logics with 
architectural scopes). Properties extracted from UCM 
models can then be verified against designs and 
implementations using model checkers. 

K. Patterns 
As anticipated by Buhr in the 90’s [50], URN had a 

positive impact on the pattern-oriented development 
community. URN also benefited directly from some work 
in that community as well.  

In her thesis, Andrade developed a substantial UCM-
based pattern language to describe common aspects of 
mobile telecommunication systems [25], whereas Billard 
used UCM to describe patterns of interactions in agent 
systems [34]. 

How to create UCM scenario models and exploit them 
are also the topics of several contributions. For example, 
Mussbacher and Amyot proposed a collection of UCM 
modeling patterns for describing and composing 
telecommunication features [135], whereas Amyot 
described a pattern language to derive test purposes from 
UCM models [8]. 

UCM can help describe the solution space of patterns, 
but GRL can also capture the various forces at play. This 
had already been observed for other goal-oriented 
languages such as the NFR framework, used by Gross 
and Yu to document pattern forces [81]. The GRL-UCM 
combination was exploited by Weiss in the description of 
various patterns for agent systems [188] and for Web 
applications [189]. 

GRL strategies can additionally be used to assess the 
qualitative impact of various solutions to a functional 
goal, in context, enabling users to select appropriate 
solutions. UCM level solutions can also be linked to each 
other with a proper use of stubs and plug-ins. This is at 
the basis of the URN-based formalization of patterns 
done by Mussbacher et al. and illustrated with an 
architectural pattern language [140]. Rather than using 
GRL strategies, Weiss and Mouratidis provided a 
mapping from GRL to Prolog to perform an evaluation of 
goal models describing the trade-offs that exist when 
selecting amongst a number of security patterns [193]. 

More recently, Behnam et al. used URN to formalize a 
pattern-based framework for goal-driven business process 
modeling, which can be used to derive suitable business 
processes (traceable to its objectives) for an organization 
whose context is also formalized with GRL. They 

illustrated the framework with a healthcare example. 
Pourshahid et al. [158] also explored business process 
reengineering patterns that require the combination of 
goals, scenarios (for processes), aspects, and indicators, 
as supported by the Aspect-oriented URN notation [134]. 
They demonstrated the potential of such patterns for 
evolving business processes at run-time. 

URN was also influenced by the literature on 
workflow patterns [162], which led directly to the 
introduction of new types of UCM stubs (synchronization 
and blocking) in the standard. The resulting 
expressiveness of UCM is compared to other scenario 
languages (i.e., BPMN, UML activity diagrams, and 
BPEL4WS) with the help of 43 workflow patterns 
in [136]. 

L. User Interface Engineering 
In our literature survey, we detected an original use of 

URN in the domain of user interface engineering, which 
was unforeseen when the standardization work was 
initiated. 

Folmer et al. [70] proposed a scenario-based usability 
assessment method to evaluate whether a given software 
architecture meets its usability requirements. Their 
Scenario-based Architecture Level UsabiliTy Assessment 
(SALUTA) makes use of UCM in its scenario evaluation 
step. One research issue they identified is the need for 
UCM to express static properties of usability. 

Such properties are actually proposed as UCM 
extensions in Alsumait’s thesis [6]. Alsumait et al. started 
investigating UCM as a medium for integrating task 
analysis (a topic already explored by Lethbridge and 
Singer [122]) and usability into a user-centered 
requirements engineering process [7]. The UCM notation 
was extended with concepts for supporting tasks, dialogs, 
and grouping/layout of user interface elements. They 
observed the potential of their extended UCM models for 
capturing user interface requirements. van der Poll et al. 
extended this work to provide a Z-based interpretation of 
UCM models, which enables formal usability 
analysis [183]. They provided an e-mail system as an 
example. 

Alsumait’s Scenario and Use Case-based for 
Requirements Engineering (SUCRE) framework provides 
the latest details on this work. The extended UCM 
notation for user interface modeling is presented together 
with examples as well as a set of analysis techniques 
based on metrics and on mappings to Z and LOTOS. 

These extensions were not included in the URN 
standard because usability engineering was not one of the 
original objectives. In addition, the extensibility of URN 
in terms of metadata and links enables the support of 
most of the extensions proposed here, except for their 
graphical representation. 

M. E-Business and Business Process Modeling  
For more than a decade, UCM have been used in the 

design of e-business applications. In particular, Gordijn 
and Akkermans, with the help of de Bruin and van Vliet, 
defined UCM extensions and ontological concepts for 
capturing (economic) value that became very successful 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 757

© 2011 ACADEMY PUBLISHER



over the years [77]. This work resulted in a framework 
for value-based requirements engineering known as e3-
value and detailed in Gordijn’s thesis [78]. e3-value, 
which has now become an independent language with its 
own tools and user community (see www.e3value.com), 
is used to model organizations in a value web, 
exchanging things of economic value with each other. 
Relationships between e3-value and goal modeling à la 
GRL are explored in [184]. 

Rather than focusing on value exchanges, Lethbridge 
and Singer [122] used UCM as one of their techniques for 
representing the work (i.e., the processes) of software 
engineers after observing it through shadowing. Later, 
Bleinstein et al. [36] proposed to use GRL combined with 
Jackson’s problem frames [107] and role activity 
diagrams in a requirements engineering approach that 
captures both business strategy and process requirements 
for e-business systems. In their approach, projections 
(rather than URN links) are used to connect the views. 
Additional work focusing on business process alignment 
was done in [37].  

The combination of GRL and UCM for describing 
business objectives and processes/workflows then 
became very apparent. Weiss and Amyot argued that 
URN is a suitable notation for business process modeling, 
business evolution, and business alignment, and they 
illustrated their case with a supply chain management 
example [190]. Pourshahid and Tran have also shown the 
usefulness of URN in the modeling and analysis of trust 
in e-commerce systems [159]. 

In order to better handle business management 
concepts and be able to capture quantities in terms of 
domain-specific units, Pourshahid and Chen have 
extended GRL with the concept of Key Performance 
Indicators (KPI) [157]. A KPI converts a value observed 
in a running business process or context to a satisfaction 
level in the [-100,100] range understood by GRL. Target, 
threshold, and worst-case values are defined in each KPI 
to assist this conversion. In jUCMNav, GRL strategy 
definitions were also extended to access external sources 
of information (e.g., data warehouses, sensors, business 
intelligence application, or performance management 
tools) for online monitoring, management, and runtime 
adaptation of business processes [60]. These extensions 
were used in methodologies applied to several real 
healthcare process examples by, e.g., Pourshahid [156] 
and Kuziemsky et al. [119]. 

N. URN Tools 
Several tools have been developed over the years to 

support GRL, UCM, or URN modeling. On the UCM 
side, the development of the C++, multi-platform 
UCMNav tool [181] ended around 2005 in favor of the 
new Eclipse-based jUCMNav [110][137], a Java tool that 
actually started as an undergraduate student project [117]. 
jUCMNav (see Figure 4) was originally a simple UCM 
tool that prevents the creation of syntactically incorrect 
URN models. As part of his thesis [161], Roy added a 
GRL editor and invented the concept of GRL strategy, 
supported by a hybrid propagation algorithm with color 
feedback, as seen in Figure 1 [160]. He also provided 

goal-scenario traceability management (via URN links) 
and support for GRL catalogues. Kealey, in his 
thesis [114], implemented a flexible UCM traversal 
mechanism with color highlight (see Figure 2), together 
with an MSC export feature [115]. Kealey developed a 
mechanism where GRL evaluation results can influence 
the traversal of UCM paths, and vice-versa. Numerous 
semantic variation points in UCM were also identified for 
further clarification. Many of the contributions by Roy 
and Kealey found their way into the URN standard. Yan 
added a mechanism for the verification of user-defined 
static semantic rules and constraints written in OCL [24], 
whereas Gao recently contributed support for the import 
and export of URN models in the XML-based standard 
interchange format [71]. Other features, some of which 
are discussed in the previous sections, from dozens of 
contributors are also present in this tool. 

 
Figure 4 Overview of the jUCMNav tool interface. 

jUCMNav is for the moment the only tool that 
supports both goal and scenario modeling and analysis. 
As discussed earlier, other tools with partial and 
specialized support for UCM also exist: Störmer’s 
Architecture Explorer for architecture recovery 
activities [179] and ArchSync for the documentation, 
maintenance and diagnosis of applications written in 
Java [66]. 

On the GRL side, Liu extended Yu’s Organization 
Modelling Environment (OME 3) to support an early 
version of the notation and an interactive propagation 
mechanism [198]. This was the only GRL tool available 
for a long time, and it helped shape GRL as it is known 
today. OME 3 was also deprecated in favor of an Eclipse-
based version called OpenOME [150], a project led by 
Yu whose major contributors include Ernst, Horkoff, Ng, 
Olinescu, and Y. Yu. OpenOME integrates with other 
platforms (such as Protégé and Visio) to support goal-
oriented and agent-oriented modeling. Strategy-based 
evaluation is not supported, but there are a variety of 
analysis features, including interactive propagation. 

There also exists a Visio-based tool, named Sandrila 
SDL [163], which supports GRL modeling, without 
analysis capabilities. Other goal-oriented modeling tools 
are discussed and evaluated on the i* Wiki [97]. 

758 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



O. Requirements Management and Compliance 
URN models capture only a fraction of the 

requirements of telecommunication standards and 
software products. Accordingly, such models need to be 
used in cooperation with complementary general 
requirements, and both views must be linked in a way 
that supports traceability, navigation, and analysis. The 
proposed URN standard ensures that model elements are 
uniquely identifiable inside a specification, which helps 
supporting such links. However, one important challenge 
that remains is the maintenance of these links as models 
and general requirements evolve. 

Jiang proposed an approach to export UCM scenario 
models to the IBM Rational DOORS requirements 
management system and to maintain relationships as both 
views evolve over time [109]. Originally developed for 
UCMNAV, this functionality is now supported as an 
export filter for jUCMNav, thanks to the efforts of Kim et 
al. [116]. The tool also provides a link auto-completion 
mechanism to minimize the possibly large number of 
links that have to be created manually by DOORS users 
between external and UCM requirements. Roy later 
extended this mechanism to support GRL and URN 
links [161]. 

Ghanavati built on this work to study the compliance 
of organization goals and business processes against laws 
and policies [73]. URN is used both to capture the goals 
and processes of the organization and to model 
legislation. Exporting and linking both views to DOORS 
enables one to assess the legal compliance of business 
processes, as well as maintain it when laws or processes 
evolve [74]. Her original framework was extended to 
exploit contributions of processes to the elements of the 
law/policy model, enabling the measure of partial 
compliance [76]. 

All of the above contributions convinced us that URN 
models can indeed be combined with other types of 
requirements and design artifacts in a requirements 
management context. 

P. Aspect-oriented Modeling 
Over the last decade, aspect-oriented modeling (AOM) 

techniques have been developed for many requirements 
and design notations in order to better address separation 
of concern issues found in complex models. 

The UCM notation’s ability to model aspects was 
identified in the late 90’s by Buhr [48] but received little 
attention since then with the exception of work by de 
Bruin and van Vliet [65]. The top-down approach by de 
Bruin and van Vliet explicitly added a “Pre” stub and a 
“Post” stub for each location on a map that requires a 
change. The stubs allowed behavior to be added before or 
after the location by plugging refinement maps into the 
stubs. 

In 2005, work started on the Aspect-oriented User 
Requirements Notation (AoURN), which is best 
described in Mussbacher’s thesis [134]. Mussbacher 
proposed aspect-oriented extensions to UCM and GRL 
models to unify goal-oriented, scenario-based, and 
aspect-oriented techniques in one modeling framework. 

AoURN allows a concern to be encapsulated even if it is 
crosscutting other concerns, thus leading to 
improvements in the modularity, maintainability, and 
reusability of URN models. The concept of a concern was 
deemed important enough to be included in the URN 
standard. In AoURN, patterns and composition rules are 
described with URN itself, thus allowing for a flexible 
and exhaustive approach that is not limited to a particular 
composition language but can harness the full expressive 
power of URN [141]. In AOM, patterns specify where an 
aspect is to be applied, and composition rules specify 
how an aspect is to be applied at the location identified by 
a pattern. The matching and composition mechanism of 
AoURN goes well beyond typical composition operators 
and includes among others concurrent, loop, and 
interleaved composition. AoURN’s mechanism is further 
enhanced by taking semantic equivalences of URN 
related to hierarchical structuring into account [142]. This 
approach allows common refactoring operations to be 
performed on an AoURN model without breaking 
aspectual specifications.  

AoURN has been used for various applications and 
some of them are discussed here as examples. A large 
challenge problem posed by the aspect-oriented modeling 
community involved a safety-critical, reactive 
system [139]. In the context of business process 
monitoring and improvement, AoURN enabled changes 
to business processes based on business process redesign 
patterns and an assessment of the shortcomings of the 
current business process with the help of goal 
models [158]. Crosscutting concerns were also described 
with AoURN for a SOA-based application and added to 
composite services based on an assessment of non-
functional properties modeled with URN [31]. Finally, 
AoURN has also been applied to model commonalities 
and variabilities in Software Product Lines [138]. 

Q. Support for Standardization 
Several authors have emphasized the role of URN in 

the development of standards and systems, beyond the 
vision described by Hodges and Visser in 1999 [96]. For 
instance, Sales described how UCM can fit in the 
development of IETF protocol standards [167]. Adamis et 
al. briefly compared ITU-T languages (including URN) 
with UML, and illustrated how the former can be used 
together to model systems [4]. Medve also studied the 
ITU-T languages (with an emphasis on UCM) and UML, 
this time in the context of system re-engineering [128]. 

From the perspective of ITU-T standardization 
processes, URN’s capability to model goals and scenarios 
fits well the so-called “stage 1” requirements descriptions 
described in Recommendation I.130 [100]. In the 
telecommunications networks management domain, 
Recommendation M.3020 proposes the description of 
various types of requirements (functional, non-functional, 
administrative, etc.) with textual use case and UML use 
case diagrams [101]. Again, URN models fit nicely in 
such a process as they bring formality and executability 
to the use cases while enabling concrete support for goal 
models, which are useful to derive and analyze non-
functional and administrative requirements. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 759

© 2011 ACADEMY PUBLISHER



More recently, the growing interest in standards for 
Next-Generation Networks (NGN) brought new needs for 
improved service description and engineering 
approaches. Ideally, one would like to specify and 
analyze services and standards at a high level of 
abstraction, using modeling concepts close to the user and 
problem domain rather than at the platform and 
implementation domain, and then be able to derive design 
components and implementations from service models 
with a high degree of automation. This is essentially the 
abstraction level targeted by URN, as discussed in [12]. 
GRL goal models offer a holistic view that integrates 
stakeholder goals, non-functional requirements, and 
alternative operational solutions for design time 
decisions, supplemented with indicators that enable 
adaptive behavior at runtime. UCM offer scenarios that 
express variability points explicitly while offering much 
flexibility in ordering activities, which may be bound to 
components or not. The integration of GRL and UCM, 
combined with strategies and scenario definitions, and 
possibly with aspect-oriented concepts, emphasizes the 
importance of enabling dynamic choices in the service 
modeling and design phases in order to take into account 
contextual information and differentiated service 
availability requirements in dynamic service composition, 
which are key aspects of NGN services. 

VI. THE NEXT TEN YEARS 

The previous section proved that much development 
related to URN has happened in the past ten years. Yet, 
we expect the next ten years to be even more exciting in 
terms of the diversity of application domains for URN, 
and of new modeling and analysis features that will be 
emerging. In particular, we predict major developments 
in the following eight areas. 

A. Domain-Specific Profiles 
There will be a need to tailor and extend URN for 

specific application domains. The need for extensions 
was already raised on several occasions in the previous 
section, for instance in the areas of user interface 
engineering and testing. It has been observed for other 
domains as well, including the popular area of software 
product lines [44], or emerging domains like home 
network systems [151]. 

The URN standard already offers mechanisms that, 
when combined, support the profiling of the language to a 
particular domain. 1) Metadata are name-value pairs that 
can be used to tag any URN element, similar to 
stereotypes in UML. 2) URN links can be used to specify 
relationships between any pair of URN elements. 3) URN 
concerns can be used to group any collection of URN 
elements (including other concerns). 4) OCL constraints 
can be defined to restrict the use of the language or of its 
extensions [24]. For example, a URN profile for i* is 
defined and implemented in [18], demonstrating that 
URN can represent concepts and constraints found in 
another language. 

ITU-T is also inviting contributions on the definition 
of UML profiles for all its languages. Abid et al. have 

already defined a tool-supported UML profile for 
GRL [3] (based on ITU-T guidelines). Molina et al. also 
proposed a UML profile for measurable goal modeling 
(i.e., with indicators), with the GRL syntax as its concrete 
notation [131]. However, much work remains to be done 
to cover URN entirely. Progress in this direction may also 
cause the URN standard to include the capability of 
creating profiles (including changing the shapes of some 
elements) as first-class entities. 

B. Enhanced Workflow Executions 
The URN standard defines advanced workflow 

operators (e.g., blocking stubs with threshold and 
replication factors) together with the corresponding 
traversal rules. However, at this time, no tool is currently 
supporting them at the analysis/simulation level. 

URN is also missing important constructs to specify 
properly cancellation scenarios and situations akin to 
exception handling. Mussbacher proposed the addition of 
failure points and failure start points, which would enable 
the concise representation and analysis of cancellation 
situations [134]. This topic was actually adopted in a 
revised version of Recommendation Z.150 in February 
2011. 

These new operators will require proper tool support to 
be useful. In addition, tools could consider supporting 
other execution modes like debuggers, which would be 
useful during the analysis of workflow models. 

C. Performance Management 
The concept of indicator (KPI) is another addition 

being considered in the short term for the URN standard 
and recently adopted in the revised Recommendation 
Z.150. We have had over three years of experience with 
KPI in jUCMNav and numerous models [60][157], and 
they have quickly become an essential part of any 
description of business process or adaptive system in a 
performance management context. 

Dynamic adaptation of systems based on KPI is an 
exciting area of research that is expected to benefit from 
URN’s simultaneous support for goal modeling and 
scenario modeling. With KPI, real-world values may 
influence the evaluation of goal models and drive the 
simulation of what-if scenarios to guide and inform 
dynamic adaptation at run-time. 

There might however be a need for a more flexible 
definition of what a KPI is at the metamodel level. For 
example, the mapping of an observed value to a GRL 
satisfaction level could be done differently than the 
current simple linear correspondence. KPI in a model 
could also influence or contribute to each other, enabling 
the computation of aggregate KPI. Trends computed from 
external data sources could also be integrated in GRL 
models. Such improved KPI definitions are actually being 
explored in the Business Intelligence Model 
language [30], inspired partly from URN. 

D. Compliance Management 
The assessment of compliance of business goals and 

processes with laws and policies is also a domain where 
URN is expected to have an impact in the next ten years. 

760 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



Following the initial work of Ghanavati et al. [76], there 
are still important challenges to be addressed, including 
the systematic extraction of URN models from textual 
laws and policies, and the prioritization of efforts to 
improve a partial degree of compliance. Other research 
questions include the potential need for deontic 
modalities (e.g., obligations, permissions, and 
interdictions) or Hohfeldian classes of rights in URN 
models of laws and policies [75], as well as the role of 
indicators for measuring compliance [172]. 

E. Formal Semantics 
URN has a formal description of its abstract syntax, 

but only a natural language description of its semantics in 
terms of rules constraining the propagation in GRL and 
the traversal of UCM paths. There is a need to reduce the 
number of semantic variation points (known and 
unknown) in the language. This could be done with a 
complete mapping to an underlying formalism. Many 
partial mappings were discussed in Section V.D, but 
complete mappings are much more difficult to achieve, 
especially if they are to span GRL and UCM. There 
might also be a way to provide a formal description in the 
form of a virtual machine describing the interpretation of 
URN models. 

F. Improved Analysis Techniques 
There are many opportunities to add to the set of 

analysis techniques currently used in URN. For example, 
the current GRL propagation algorithms based on 
strategies are mainly bottom-up, in a way similar to test 
cases. The availability of top-down algorithms would 
provide substantial benefits to many users, who would 
simply ask the model how to optimize one or several 
actors or intentional elements given an initial context. 
The main difficulty is usually that top-down algorithms 
correspond to a kind of search problem and are hence 
much more complex than bottom-up algorithms. Weiss 
and Mouratidis [193] have a mapping from GRL to 
Prolog that might help solve this issue. Okamura et 
al. [151] may also have elements of answers. 

The analysis of aspect-oriented GRL and UCM in 
AoURN is still an open issue [134], and this may even 
have an impact on how strategies and scenarios are 
defined in URN. 

Time extensions and analysis for UCM, as proposed by 
Hassine et al [85], are also relevant to URN and hence 
deserve some attention. 

Finally, from an analysis perspective, there is a need 
for a tighter integration between GRL and UCM, which 
could result in the combination of strategies and scenarios 
in one logical unit in the URN standard. 

G. Improved Model Representations 
Recent analyses of the graphical syntaxes of UCM by 

Genon et al. [72] and of i* by Moody et al. [133] reveal 
that there are many problems with the cognitive fitness of 
the symbols used, and with the completeness of the 
language’s concrete syntax. For instance, performance 
annotations and stub bindings do not have any visual 
representation in URN. The concrete visual syntaxes 

could be reviewed and completed in the standard. 
Additional concrete syntaxes, such as textual or tabular 
for GRL graphs, also deserve to be explored. 

H. Guidelines and Methodologies 
Last but not least, there is currently a lack of guidelines 

and methodologies for URN modeling, both in isolation 
and in combination with other modeling languages. This 
was already raised as an issue for UCM in 2002 by 
Ölvingson et al. [149], and this is unfortunately still true 
to some extent today. A related challenge is the 
automated or semi-automated transformation of URN 
models to other modeling techniques. While many 
transformations have already been investigated in Section 
V.E, there is a need to revisit some of these 
transformations and new transformations to emerging 
modeling techniques in the light of recent technologies 
and applications such as AOM, domain-specific 
languages, dynamic adaptation of systems, and SOA-
based systems. ITU-T also invites contributions to the 
definition of a URN-based methodology. Better 
guidelines and methodologies could have a strong impact 
on the adoption of URN in industry. 

VII. CONCLUSIONS 

This paper reports on a systematic literature survey 
about the development of the User Requirements 
Notation. Section II first gives an overview of the 
notation and typical analysis techniques, followed by a 
discussion of the origins of URN in the 1990’s. In 
Section IV, the analysis of the 281 papers selected for this 
study reveals that URN is a growing, global language, 
both in terms of contributors and users.  

In section V, we introduce and commented on 17 
categories of contributions to URN during its first ten 
years. This period is mainly characterized as follows: 

• Simple formalization of URN in terms of abstract 
and concrete syntaxes; 

• The definition of analysis techniques such as  
GRL strategies with forward propagation and 
UCM scenario definitions with a path traversal 
mechanism; 

• The completion of a first version of the URN 
standard; 

• Simple combinations of GRL and UCM in 
models, with traceability, completeness, and 
consistency analysis, and with GRL strategies 
and UCM scenarios that can influence each 
others; 

• Emerging techniques for the analysis of feature 
interactions, performance, and architectures; 

• The availability of open-source, Eclipse-based 
tool support (jUCMNav); 

• A multitude of application domains explored, 
mainly related to telecommunication systems and 
reactive systems at the beginning, and later 
mainly related to business processes and aspect-
oriented modeling; 

• Many formalizations and transformations also 
explored. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 761

© 2011 ACADEMY PUBLISHER



We believe that the next ten years of URN 
development will be even more active than the first ten 
and will focus on the major topics identified in Section 
VI, including domain-specific profiles, enhanced 
workflow executions, performance and compliance 
management, formal semantics, improved analysis 
techniques and model representations, and guidelines and 
methodologies. 

We hope this survey paper represents a useful one-stop 
document for URN beginners and experts alike. We also 
take the opportunity to invite users and other interested 
parties to get actively involved in future developments of 
the User Requirements Notation. 

ACKNOWLEDGMENT 

The authors wish to thank the many people who have 
contributed to the success of the User Requirements 
Notation over the years, with special thanks to C.M. 
Woodside and T. Gray for comments on an earlier draft 
of this paper. This work was supported in part by the 
Discovery grants and Postgraduate Scholarships 
programs from NSERC (Canada) and by the Ontario 
Graduate Scholarship Program. 

REFERENCES 

[1] T. Abdelaziz, Towards a Comprehensive Agent-Oriented 
Software Engineering Methodology, Doctoral 
Dissertation, Universität Duisburg-Essen, Germany, 
October 2008 

[2] T. Abdelaziz, M. Elammari, and R. Unland, “Visualizing 
a Multiagent-Based Medical Diagnosis System Using a 
Methodology Based on Use Case Maps”, in MATES 
2004: multiagent system technologies, LNCS 3187, 
Springer, pp. 198–212, 2004. doi:10.1007/978-3-540-
30082-3_15 

[3] M.R. Abid, D. Amyot, S.S. Somé, and G. Mussbacher, “A 
UML Profile for Goal-Oriented Modeling”, in SDL 2009: 
Design for Motes and Mobiles, 14th Int. SDL Forum, 
LNCS 5719, Springer, pp. 133–148, September 2009. 
doi:10.1007/978-3-642-04554-7_9 

[4] G. Adamis, R. Horváth, Z. Pap, and K. Tarnay, 
“Standardized languages for telecommunication systems”. 
Computer Standards & Interfaces, 27(3), Elsevier, pp. 
191–205, March 2005. doi:10.1016/j.csi.2004.09.005 

[5] C.P. Ayala, C. Cares, J.P. Carvallo, G. Grau, M. Haya, G. 
Salazar, X. Franch, E. Mayol, and C. Quer, “A 
Comparative Analysis of i*-Based Goal-Oriented 
Modelling Languages”, in Int. Workshop on Agent-
Oriented Software Development Methodologies (AOSDM 
@SEKE), Taipei, China, pp. 43–50, July 2005 

[6] A. Alsumait, User Interface Requirements Engineering: A 
Scenario-Based Framework. Ph.D. thesis, Concordia 
University, Canada, August 2004. 

[7] A. Alsumait, A. Seffah, and T. Radhakrishnan, “Use Case 
Maps: A Roadmap for Usability and Software Integrated 
Specification”, in 17th World Computer Congress - TC13 
Stream on Usability, IFIP, pp. 119–131, August 2002,  

[8] D. Amyot, Specification and Validation of Telecommuni-
cations Systems with Use Case Maps and LOTOS. Ph.D. 
thesis, SITE, University of Ottawa, Canada, Sept. 2001. 

[9] D. Amyot, “Introduction to the User Requirements 
Notation: Learning by Example”. Computer Networks, 

42(3), pp. 285–301, June 2003. doi:10.1016/S1389-
1286(03)00244-5 

[10] D. Amyot and R. Andrade, “Description of Wireless 
Intelligent Network Services with Use Case Maps”, in 
17th Brazilian Symposium on Computer Networks 
(SBRC'99), Salvador, Brazil, pp. 418–433, May 1999. 

[11] D. Amyot, R. Andrade, L. Logrippo, J. Sincennes, and Z. 
Yi, “Formal Methods for Mobility Standards”, in IEEE 
1999 Emerging Technology Symposium on Wireless 
Communications & Systems, Dallas, USA, pp. 14.1–14.7, 
April 1999. doi:10.1109/ETWCS.1999.897332 

[12] D. Amyot, H. Becha, R. Bræk, and J.E.Y. Rossebø, “Next 
Generation Service Engineering”, in ITU-T Innovations in 
NGN - Kaleidoscope Academic Conference, Geneva, 
Switzerland, pp. 195–202, May 2008. doi:10.1109/ 
KINGN.2008.4542266 

[13] D. Amyot, F. Bordeleau, R.J.A. Buhr, and L. Logrippo, 
“Formal support for design techniques: a Timethreads-
LOTOS approach”, in FORTE VIII, 8th Int. Conf. on 
Formal Description Techniques, Chapman & Hall, pp. 
57–72, 1995. 

[14] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. 
Sincennes, B. Stepien, and T. Ware, “Feature Description 
and Feature Interaction Analysis with Use Case Maps and 
LOTOS”, in Sixth International Workshop on Feature 
Interactions in Telecommunications and Software Systems 
(FIW'00), IOS Press, pp. 274–289, May 2000. 

[15] D. Amyot, D.Y. Cho, X. He, and Y. He, “Generating 
Scenarios from Use Case Map Specifications”, in Third 
Int. Conf. on Quality Software (QSIC'03), IEEE CS, pp. 
108–115, Nov. 2003. doi:10.1109/QSIC.2003.1319092 

[16] D. Amyot and A. Eberlein, “An Evaluation of Scenario 
Notations and Construction Approaches for 
Telecommunication”. Telecommunications Systems 
Journal, 24(1), Kluwer, pp. 61–94, September 2003. 
doi:10.1023/A:1025890110119 

[17] D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. 
Peyton, and E. Yu, “Evaluating Goal Models within the 
Goal-oriented Requirement Language”. Int. Journal of 
Intelligent Systems, 25(8), Wiley, pp. 841–877, August 
2010. doi:10.1002/int.20433 

[18] D. Amyot, J. Horkoff, D. Gross, and G. Mussbacher, “A 
Lightweight GRL Profile for i* Modeling”, in 3rd Int. 
Work. on Requirements, Intentions and Goals in 
Conceptual Modeling (RIGiM 2009), LNCS 5833, 
Springer, pp. 254–264, Nov. 2009. doi:10.1002/int.20433 

[19] D. Amyot, M. Mussbacher, and N. Mansurov, 
“Understanding Existing Software with Use Case Map 
Scenarios”, in 3rd SDL and MSC Workshop (SAM02), 
LNCS 2599, Springer, pp. 124–140, June 2002. 
doi:10.1007/3-540-36573-7_9 

[20] D. Amyot and L. Logrippo, “Use Case Maps and LOTOS 
for the Prototyping and Validation of a Mobile Group Call 
System”. Computer Communications, 23(12), pp. 1135–
1157, July 2000. doi:10.1016/S0140-3664(99)00242-X 

[21] D. Amyot, L. Logrippo, R.J.A. Buhr, and T. Gray, “Use 
Case Maps for the Capture and Validation of Distributed 
Systems Requirements”, in Fourth Int. Symposium on 
Requirements Engineering (RE'99), IEEE CS, pp. 44–53, 
June 1999. doi:10.1109/ISRE.1999.777984 

[22] D. Amyot, J.-F. Roy, and M. Weiss, “UCM-Driven 
Testing of Web Applications”, in 12th SDL Forum (SDL 
2005), LNCS 3530, Springer, pp. 247–264, June 2005. 
doi:10.1007/11506843_18 

[23] D. Amyot, M. Weiss, and L. Logrippo, “Generation of 
Test Purposes from Use Case Maps”. Computer 

762 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



Networks, 49(5), Elsevier, pp. 643–660, December 2005. 
doi:10.1016/j.comnet.2005.05.006 

[24] D. Amyot and J.B. Yan, “Flexible Verification of User-
Defined Semantic Constraints in Modelling Tools”, in 
18th Int. Conf. of Computer Science and Software 
Engineering (CASCON), IBM CAS, October 2008. 
doi:10.1145/1463788.1463798 

[25] R. Andrade, Capture, Reuse, and Validation of 
Requirements and Analysis Patterns for Mobile Systems. 
Ph.D. thesis, SITE, Univ. of Ottawa, Canada, May 2001. 

[26] R. Andrade and L. Logrippo, “Reusability at the Early 
Development Stages of the Mobile Wireless 
Communication Systems”, in 4th World Multiconference 
on Systemics, Cybernetics and Informatics (SCI 2000), 
IIIS, Orlando, USA, pp. 11–16, July 2000. 

[27] R. Andrade, W. Viana, and D.P. Menezes, “A high-level 
application framework for mobile system development: 
IMT-2000 case study”, in 9th Int. Conf. on 
Telecommunications, IEEE, Beijing, China, pp. 321–325, 
June 2002. 

[28] P. Araya and H. Antillanca, “Una metodología de agents”, 
in 1er. Workshop Chileno de Ingeniería de Software, 
Punta Arenas, Chile, November 2001. 

[29] D. Arnold, J.-P. Corriveau, and W. Shi, “Scenario-Based 
Validation: Beyond the User Requirements Notation”, in 
21st Australian Software Engineering Conf. (ASWEC 
2010), IEEE CS, pp 75–84, April 2010. doi:10.1109/ 
ASWEC.2010.29 

[30] D. Barone, E. Yu, J. Won, L. Jiang, and J. Mylopoulos, 
“Enterprise Modeling for Business Intelligence”, in The 
Practice of Enterprise Modeling, LNBIP 68, Springer, pp. 
31–45, 2010. doi:10.1007/978-3-642-16782-9_3 

[31] H. Becha, G. Mussbacher, and D. Amyot, “Modeling and 
Analyzing Non-Functional Requirements in Service 
Oriented Architecture with the User Requirements 
Notation”. Non-functional Properties in Service Oriented 
Architecture: Requirements, Models and Methods, IGI 
Global, USA, pp. 48–72, 2011. doi:10.4018/978-1-60566-
794-2.ch003 

[32] S.A. Behnam, D. Amyot, and G. Mussbacher, “Towards a 
Pattern-Based Framework for Goal-Driven Business 
Process Modeling”, in 8th Int. Conf. on Software 
Engineering Research, Management and Applications 
(SERA2010), IEEE CS, pp. 137–145, May 2010. 
doi:10.1109/SERA.2010.27 

[33] E.A. Billard, “Operating system scenarios as Use Case 
Maps”, in Fourth Int. Work. on Software and 
Performance (WOSP 2004), ACM Press, pp. 266–277, 
January 2004. doi:10.1145/974044.974087 

[34] E.A. Billard, “Patterns of agent interaction scenarios as 
Use Case Maps”. IEEE Transactions on Systems, Man 
and Cybernetics, 24B:4, pp. 1933–1939, August 2004. 
doi:10.1109/TSMCB.2004.828192 

[35] G. Birkhoff, Lattice theory. American Mathematical 
Society, 1967. 

[36] S.J. Bleistein, K. Cox, and J. Verner, “Requirements 
Engineering for e-Business Systems: Integrating Jackson 
Problem Diagrams with Goal Modeling and BPM”, in 
11th Asia Pacific Software Engineering Conference 
(APSEC 2004), IEEE CS, pp. 410–417, November 2004. 
doi:10.1109/APSEC.2004.84 

[37] S.J. Bleistein, K., Cox, J. Verner, and K.T. Phalp, 
“Requirements engineering for e-business advantage”, 
Requirements Engineering, 11(1), pp. 4–16, March 2006. 
doi:10.1007/s00766-005-0012-7 

[38] E. Börger and R. Stärk, Abstract State Machines: A 
Method for High-Level System Design and Analysis. 
Springer-Verlag, 2003. 

[39] F. Bordeleau, A Systematic and Traceable Progression 
from Scenario Models to Communicating Hierarchical 
State Machines. Ph.D. thesis, SCE Dept., Carleton 
University, Canada, December 1999. 

[40] F. Bordeleau and R.J.A. Buhr, “The UCM-ROOM Design 
Method: from Use Case Maps to Communicating State 
Machines”, in Conf. on the Engineering of Computer-
Based Systems (ECBS), pp. 167–179, March 1997. 
doi:10.1109/ECBS.1997.581850 

[41] F. Bordeleau and D. Cameron, “On the Relationship 
between Use Case Maps and Message Sequence Charts”, 
in 2nd Workshop on SDL and MSC (SAM 2000), 
Grenoble, France, pp. 123–138, June 2000. 

[42] F. Bordeleau, J.-P. Corriveau, and B. Selic, “A Scenario-
Based Approach to Hierarchical State Machine Design”, 
in ISORC 2000: 3rd IEEE Int. Symp. on Object-Oriented 
Real-time distributed Computing, IEEE CS, pp. 78–85, 
March 2000. doi:10.1109/ISORC.2000.839514 

[43] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, 
and M. Khalil, “Lessons from applying the systematic 
literature review process within the software engineering 
domain”. J. of Systems and Software, 80(4), pp. 571–583, 
April 2007. doi:10.1016/j.jss.2006.07.009 

[44] J. Brown, R. Gawley, I. Spence, P. Kilpatrick, C. Gillan, 
and R Bashroush, “Requirements Modelling and Design 
Notations for Software Product Lines”, in First Int. 
Workshop on Variability Modelling of Software-intensive 
Systems (VaMoS), Limerick, Ireland, January 2007. 

[45] H. de Bruin, “A Grey-Box Approach to Component 
Composition”, in Generative and Component-Based 
Software Engineering (GCSE 99), pp. 195–209, 1999. 

[46] R.J.A. Buhr, “Use Case Maps for Attributing Behaviour 
to System Architecture”, in Fourth Int. Work. on Parallel 
and Distributed Real Time Systems (WPDRTS), pp. 3–10, 
1996. 

[47] R.J.A. Buhr, “Design Patterns at Different Scales”, in 
Pattern Languages of Programs (PLoP96), June 1996. 

[48] R.J.A. Buhr, “A Possible Design Notation for Aspect 
Oriented Programming”, in ECOOP Workshop on Aspect 
Oriented Programming, Brussels, Belgium, July 1998. 

[49] R.J.A. Buhr, “Use Case Maps as Architectural Entities for 
Complex Systems”. IEEE Transactions on Software 
Engineering, 24(12), pp. 1131–1155, December 1998. 
doi:10.1109/32.738343 

[50] R.J.A. Buhr, “Understanding Macroscopic Behaviour 
Patterns in Object-Oriented Frameworks, with Use Case 
Maps (chapter 18)”. Building Application Frameworks: 
Object-Oriented Foundations of Framework Design, 
Wiley, pp. 415–440, September 1999. 

[51] R.J.A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. 
Gray, and S. Mankovski, “Feature-Interaction Visualiza-
tion and Resolution in an Agent Environment”, in Fifth 
Int. Work. on Feature Interactions in Telecommunications 
and Software Systems (FIW'98), IOS Press, pp. 135–149, 
July 1998. 

[52] R.J.A. Buhr and R.S. Casselman, Use Case Maps for 
Object-Oriented Systems. Prentice-Hall, November 1995. 

[53] G. Bush, S. Cranefield, and M.K. Purvis, “The Styx agent 
methodology”. Information Science Discussion Paper 
Series, 2001/02, University of Otago, New Zealand, 2001. 

[54] Z. Cai and E.Yu, “Addressing Performance Requirements 
Using a Goal and Scenario-Oriented Approach”, in 
CAISE'02: 14th Int. Conf. on Advanced Information 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 763

© 2011 ACADEMY PUBLISHER



Systems Engineering, LNCS 2348, Springer, pp. 706–710, 
May 2002. doi:10.1007/3-540-47961-9 

[55] M. Calder, M. Kolberg, E.H. Magill, and S. Reiff-
Marganiec, “Feature interaction: a critical review and 
considered forecast”. Computer Networks, 41, pp. 115–
141, 2003. 

[56] R.S. Casselman, A Role-Based Architectural Model 
Applied to Object-Oriented Systems. Master’s thesis, SCE 
Dept., Carleton University, Canada, August 1993. 

[57] H.N. Castejón Martínez, “Synthesizing State-Machine 
Behaviour from UML Collaborations and Use Case 
Maps”, in 12th SDL Forum (SDL 2005), LNCS 3530, 
Springer, pp. 339–359, June 2005. doi:10.1007/ 
11506843_24 

[58] H.N. Castejón, Collaborations in Service Engineering: 
Modeling, Analysis and Execution. Ph.D. thesis, Dept. of 
Telematics, NTNU, Norway, November 2008. 

[59] L. Charfi, Formal Modeling and Test Generation 
Automation with Use Case Maps and LOTOS. M.Sc. 
thesis, SITE, University of Ottawa, Canada, Feb. 2001. 

[60] P. Chen, Goal-Oriented Business Process Monitoring: An 
Approach based on User Requirement Notation combined 
with Business Intelligence and Web Services. M.Sc. 
thesis, SCS Dept., Carleton University, Canada, 
December 2007. 

[61] J. Cheng, L. Yang, Y.-J. Kuai, and D.-F. Zhang, “Non-
deterministic feature interaction filtering method based on 
scenarios with Use Case Map” (基于用例图呼叫处理场景的不 
确定性冲突过滤方法), Hunan Daxue Xuebao / Journal of 
Hunan University Natural Sciences, 32(2), pp. 104–109, 
April 2005. 

[62] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering. 
Kluwer Academic Publisher, 2000. 

[63] L. Constantine and L. Lockwood, Software for Use: A 
Practical Guide to the Models and Methods of User-
Centered Design. Addison-Wesley, April 1999. 

[64] H. de Bruin, “Scenario-Based Analysis of Component 
Compositions”, in Generative and Component-Based 
Software Engineering (GCSE'00), LNCS 2177, Springer, 
pp. 129–146, Oct. 2000. doi:10.1007/3-540-44815-2_10 

[65] H. de Bruin and H. van Vliet, “Quality-Driven Software 
Architecture Composition”. Journal of Systems and 
Software, 66(3), Elsevier, pp. 269–284, June 2003. 
doi:10.1016/S0164-1212(02)00079-1 

[66] J.A. Díaz-Pace, J.P. Carlino, M. Blech, A. Soria, and 
M.R. Campo, “Assisting the Synchronization of UCM-
based Architectural Documentation with 
Implementation”, in IEEE/IFIP Conf. on Software 
Architecture and European Conference on Software 
Architecture (WICSA/ECSA 2009), IEEE CS, pp. 151–
160, September 2009. doi:10.1109/WICSA.2009.5290801 

[67] C. Dongmo and J. A. van der Poll, “Use Case Maps as an 
Aid in the Construction of a Formal Specification”, in 7th 
Int. Workshop on Modelling, Simulation, Verification and 
Validation of Enterprise Information Systems (MSVVEIS-
2009), INSTICC Press, pp. 3–13, May 2009. 

[68] M. Elammari and W. Lalonde, “An agent-oriented 
methodology: High-level and intermediate models”, in 
Proc. 1st Int. Workshop on Agent-Oriented Information 
Systems, Seattle, USA, June 1999. 

[69] Y. Feng and L.-S. Lee, “The Importance Analysis of Use 
Case Map with Markov Chains”. Int. J. of Computer 
Science and Information Security (IJCSIS), 7(1), pp. 55–
62, January 2010. arXiv:1002.1692v1 

[70] E. Folmer, J. van Gurp, and J. Bosch, “Scenario-based 
Assessment of Software Architecture Usability”, in Work. 

on Bridging the Gaps Between Software Engineering and 
Human-Computer Interaction (SE-HCI), IFIP, pp. 61–68, 
May 2003. 

[71] Y. Gao, Import/Export of URN Models in Z.151 XML File 
Format with jUCMNav. M.Sc. project, SITE, University 
of Ottawa, Canada, January 2010. 

[72] N. Genon, D. Amyot, and P. Heymans, “Analysing the 
Cognitive Effectiveness of the UCM Visual Notation”, in 
6th Workshop on System Analysis and Modelling (SAM 
2010), LNCS, Springer, October 2010 (to appear). 

[73] S. Ghanavati, A Compliance Framework for Business 
Processes Based on URN. M.Sc. thesis, SYS, University 
of Ottawa, Canada, May 2007. 

[74] S. Ghanavati, D. Amyot, and L. Peyton, “Towards a 
Framework for Tracking Legal Compliance in 
Healthcare”, in 19th Int. Conf. on Advanced Information 
Systems Engineering (CAiSE'07), LNCS 44495, Springer, 
pp. 218–232, June 2007. doi:10.1007/978-3-540-72988-
4_16 

[75] S. Ghanavati, D. Amyot, A. Siena, A. Perini, and A. Susi, 
“Towards a Framework for Business Process 
Compliance”, in Int. Workshop on Goal-based Business 
Process Engineering (WGBP 2010), IEEE CS, pp. 330–
334, October 2010. doi:10.1109/EDOCW.2010.46 

[76] S. Ghanavati, A. Siena, D. Amyot, A. Perini, L. Peyton, 
and A. Susi, “Integrating Business Strategies with 
Requirement Models of Legal Compliance”. Int. J. of 
Electronic Business, Inderscience Publishers, pp. 260–
280, 2010. doi:10.1504/IJEB.2010.034171 

[77] J. Gordijn and J.M. Akkermans, “Value-based 
Requirements Engineering Exploring Innovative e-
Commerce Ideas”. Requirements Engineering, 8(2), 
Springer, pp. 114–134, 2003. doi:10.1007/s00766-003-
0169-x 

[78] J. Gordijn, Value-based Requirements Engineering 
Exploring Innovative e-Commerce Ideas. Ph.D. thesis, 
Vrije Universiteit, Amsterdam, The Netherlands, June 
2002. doi:10.1007/s00766-003-0169-x 

[79] J. Gordijn and J.C. van Vliet, “Integral Design of E-
Commerce Systems: Aligning the Business with Software 
Architecture through Scenarios”, in ICT-Architecture in 
the BeNeLux (ICT 1999), 1999. 

[80] N. Gorse, The Feature Interaction Problem: Automatic 
Filtering of Incoherences & Generation of Validation Test 
Suites at the Design Stage. M.Sc. thesis, SITE, University 
of Ottawa, Canada, September 2001. 

[81] D. Gross and E.S.K. Yu, “From Non-Functional 
Requirements to Design through Patterns”. Requirements 
Engineering, 6(1), Springer, pp. 18–36, 2001. 

[82] R. Guan, From Requirements to Scenarios through 
Specifications: A Translation Procedure from Use Case 
Maps to LOTOS. M.Sc. thesis, SITE, University of 
Ottawa, Canada, September 2002. 

[83] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge, 
“Recovering Behavioral Design Models from Execution 
Traces”, in 9th European Conf. on Software Maintenance 
and Reengineering (CSMR), IEEE CS, pp. 112–121, 
March 2005. doi:10.1109/CSMR.2005.46 

[84] J. Hassine, Feature Interaction Filtering and Detection 
with Use Case Maps and LOTOS. M.Sc. thesis, SITE, 
University of Ottawa, Canada, February 2001. 

[85] J. Hassine, Formal Semantics and Verification of Use 
Case Maps. Ph.D. thesis, CSCE dept., Concordia 
University, Canada, April 2008. 

[86] J. Hassine, “AsmL-Based Concurrency Semantic 
Variations for Timed Use Case Maps”, in Abstract State 
Machines, Alloy, B and Z (ABZ 2010), LNCS 5977, 

764 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



Springer, pp. 34–36, 2010. doi:10.1007/978-3-642-11811-
1_4 

[87] J. Hassine, “Early Schedulability Analysis with Timed 
Use Case Maps”, in SDL 2009: Design for Motes and 
Mobiles, 14th Int. SDL Forum, LNCS 5719, Springer, pp. 
98–114, Sept. 2009. doi:10.1007/978-3-642-04554-7_7 

[88] J. Hassine, J. Rilling, and R. Dssouli, “An ASM 
Operational Semantics for Use Case Maps”, in 13th IEEE 
Int. Requirement Engineering Conf. (RE05), IEEE CS, pp. 
467–468, September 2005. doi:10.1109/RE.2005.10 

[89] J. Hassine, J. Rilling, and R. Dssouli, “Timed Use Case 
Maps”, in SAM 2006: Language Profiles - Fifth 
Workshop on System Analysis and Modelling, LNCS 
4320, Springer, pp. 99–114, 2006. doi:10.1007/ 
11951148_7 

[90] J. Hassine, J. Rilling and R. Dssouli, “Formal Verification 
of Use Case Maps with Real Time Extensions”, in SDL-
Forum 2007, LNCS 4745, Springer, pp. 225–241, 2007. 
doi:10.1007/978-3-540-74984-4_14 

[91] J. Hassine, J. Rilling, and R. Dssouli, “Use Case Maps as 
a property specification language”, Software and Systems 
Modeling, 8(2), pp. 205–220, 2009. doi:10.1007/s10270-
007-0076-6 

[92] J. Hassine, J. Rilling, and R. Dssouli, “An evaluation of 
timed scenario notations”. Journal of Systems and 
Software, 83(2), pp. 326–350, 2010. doi:10.1016/ 
j.jss.2009.09.014 

[93] Y. He, D. Amyot, and A. Williams, “Synthesizing SDL 
from Use Case Maps: An Experiment”, in 11th SDL 
Forum (SDL'03), LNCS 2708, Springer, pp. 117–136, 
July 2003. doi:10.1007/3-540-45075-0_7 

[94] J. Hewitt and J. Rilling, “A Light-Weight Proactive 
Software Change Impact Analysis Using Use Case 
Maps”, in IEEE Int. Workshop on Software Evolvability, 
IEEE CS, pp. 41–46, 2005. doi:10.1109/IWSE.2005.1 

[95] P. Heymans, G. Saval, G. Dallons, and I. Pollet, “Chapter 
VIII: A Template-Based Analysis of GRL”. Advanced 
Topics in Database Research, IGI Publishing, pp. 124–
147, 2006. doi:10.4018/978-1-59140-935-9.ch008 

[96] J. Hodges and J. Visser, “Accelerating Wireless 
Intelligent Network Standards Through Formal 
Techniques”, in IEEE 1999 Vehicular Technology 
Conference, IEEE CS, pp. 737–742, 1999. 
doi:10.1109/VETEC.1999.778276 

[97] i* Wiki, http://istar.rwth-aachen.de/ (last accessed: July 
12, 2010). 

[98] IBM, Rational DOORS, USA, November 2010. 
http://www.ibm.com/software/awdtools/doors/ 

[99] ISO, Information Processing Systems, Open Systems 
Interconnection, LOTOS — A Formal Description 
Technique Based on the Temporal Ordering of 
Observational Behaviour. IS 8807, 1989. 

[100] ITU-T, Recommendation I.130 (11/88), Method for the 
characterization of telecommunication services supported 
by an ISDN and network capabilities of an ISDN. 
November 1988. 

[101] ITU-T, Recommendation M.3020 (07/07), Management 
interface specification methodology. July 2007. 

[102] ITU-T, Recommendation Z.100 (11/07), Specification and 
Description Language. November 2007. 

[103] ITU-T, Recommendation Z.111 (11/08), Notations to 
Define ITU-T Languages. November 2008. 

[104] ITU-T, Recommendation Z.120 (04/04), Message 
Sequence Chart (MSC). April 2004. 

[105] ITU-T, Recommendation Z.150 (02/03), User 
Requirements Notation (URN) – Language Requirements 
and Framework. February 2003. 

[106] ITU-T, Recommendation Z.151 (11/08), User 
Requirements Notation (URN) – Language definition. 
November 2008. http://www.itu.int/rec/T-REC-Z.151/en 

[107] M. Jackson, Problem Frames: Analyzing and Structuring 
Software Development Problem. Addison-Wesley, 2001. 

[108] S. Jaskó, T. Dulaia, D. Muhia, and K. Tarnaya, “Test 
aspect of requirement specification”. Computer Standards 
& Interfaces, 32(1-2), pp. 1–9, January 2010. 
doi:10.1016/j.csi.2008.12.005 

[109] B. Jiang, Combining Graphical Scenarios with a 
Requirements Management System. M.Sc. thesis, SITE, 
University of Ottawa, Canada, June 2005. 

[110] jUCMNav 4.3, University of Ottawa, Canada, September 
2010. http://jucmnav.softwareengineering.ca/jucmnav 

[111] C. Kaewkasi and W. Rivepiboon, “WWM: a practical 
methodology for Web application modeling”, in 26th 
Annual Int. Computer Software and Applications Conf. 
(COMPSAC 2002), IEEE CS, pp. 603–608, August 2002. 
doi:10.1109/CMPSAC.2002.1045070 

[112] P. Karpati, G. Sindre and A.L. Opdahl, “Visualizing 
Cyber Attacks with Misuse Case Maps”, in 16th Int. 
Working Conf. on Requirements Engineering: Foundation 
for Software Quality (REFSQ 2010), LNCS 6182, 
Springer, pp. 262–275, June 2010. doi:10.1007/978-3-
642-14192-8_24 

[113] R. Kazman and S.J. Carrière, “Playing Detective: 
Reconstructing Software Architecture from Available 
Evidence”. Automated Software Engineering, 6(2), pp. 
107–138, 1999. doi:10.1023/A:1008781513258 

[114] J. Kealey, Enhanced Use Case Map Analysis and 
Transformation Tooling. M.Sc. thesis, SITE, University 
of Ottawa, Canada, September 2007. 

[115] J. Kealey and D. Amyot, “Enhanced Use Case Map 
Traversal Semantics”, in 13th SDL Forum (SDL'07), 
LNCS 4745, Springer, pp. 133–149, September 2007. 
doi:10.1007/978-3-540-74984-4_9 

[116] J. Kealey, Y. Kim, D. Amyot, and G. Mussbacher, 
“Integrating an Eclipse-Based Scenario Modeling 
Environment with a Requirements Management System”, 
in 2006 IEEE Canadian Conf. on Electrical and 
Computer Engineering (CCECE06), IEEE CS, pp. 2432–
2435, May 2006. 

[117] J. Kealey, E. Tremblay, J.-P. Daigle, J. McManus, O. 
Clift-Noël, and D. Amyot, “jUCMNav: une nouvelle 
plateforme ouverte pour l'édition et l'analyse de modèles 
UCM”, in 5ième Nouvelles Technologies de la Répartition 
(NOTERE 2005), Gatineau, Canada, pp. 215–222, August 
2005. 

[118] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, 
J. Bailey, and S. Linkman, “Systematic literature reviews 
in software engineering - A systematic literature review”. 
Inf. Softw. Technol. 51, 1, pp. 7–15, Jan. 2009. 
doi:10.1016/j.infsof.2008.09.009 

[119] C. Kuziemsky, X. Liu, and L. Peyton, “Leveraging Goal 
Models and Performance Indicators to Assess Health Care 
Information Systems”. 7th Int. Conf. on the Quality of 
Information and Communications Technology (QUATIC 
2010), IEEE CS, Porto, Portugal, September 2010. 
doi:10.1109/QUATIC.2010.37 

[120] E. Lavendelis and J. Grundspenkis, “MASITS - A Tool 
for Multi-Agent Based Intelligent Tutoring System 
Development”, in 7th Int. Conf. on Practical Applications 
of Agents and Multi-Agent Systems (PAAMS 2009), 
Advances in Soft. Computing Vol. 55, Springer, pp. 490–
500, March 2009. doi:10.1007/978-3-642-00487-2_52 

[121] P. Leelaprute, M. Nakamura, K. Matsumoto, and T. 
Kikuno, “Design and Evaluation of Feature Interaction 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 765

© 2011 ACADEMY PUBLISHER



Filtering with Use Case Maps”. NECTEC Technical 
Journal, 5(16) pp. 581–597, December 2005. 

[122] T. Lethbridge and J. Singer, “Studies of the Work 
Practices of Software Engineers”. Advances in Software 
Engineering: Comprehension, Evaluation and Evolution, 
Springer-Verlag, pp. 51–72, 2002. 

[123] H. Liu, Multilevel Performance Analysis of Scenario 
Specification for a Presence System. M.Sc. thesis, SCE 
Dept., Carleton University, Canada, October 2002. 

[124] L. Liu and E. Yu, “From requirements to architectural 
design—using goals and scenarios”, in ICSE-2001 
Workshop: From Software Requirements to Architectures 
(STRAW 2001), Toronto, Canada, pp.22–30, May 2001. 

[125] L. Liu and E. Yu, “Designing Information Systems in 
Social Context: A Goal and Scenario Modelling 
Approach”. Information Systems, pp. 187–203, April 
2004. doi:10.1016/S0306-4379(03)00052-8 

[126] L. Liu and E. Yu, GRL - Goal-oriented Requirement 
Language, 2000. http://www.cs.toronto.edu/km/GRL/ 

[127] R. Matulevičius, P. Heymans, and A. L. Opdahl, 
“Comparing GRL and KAOS using the UEML 
Approach”. Enterprise Interoperability II: New 
Challenges and Approaches, August 2007, pp. 77-88 

[128] A. Medve, “Advanced steps with standardized languages 
in the re-engineering process”. Computer Standards & 
Interfaces, 30(5), Elsevier, p. 315–322, July 2008. 
doi:10.1016/j.csi.2007.09.004 

[129] A. Miga, Application of Use Case Maps to System Design 
With Tool Support. Master’s thesis, SCE Dept., Carleton 
University, Canada, October 1998. 

[130] A. Miga, D. Amyot, F. Bordeleau, D. Cameron, and M. 
Woodside, “Deriving Message Sequence Charts from Use 
Case Maps Scenario Specifications”, in Meeting UML - 
Tenth SDL Forum (SDL'01), LNCS 2078, Springer, pp. 
268–287, June 2001. doi:10.1007/3-540-48213-X_17 

[131] F. Molina, J. Pardillo, C. Cachero, and A. Toval, “An 
MDE Modeling Framework for Measurable Goal-
Oriented Requirements”. Int. J. of Intelligent Systems, 
25(8), Wiley, pp. 757–783, August 2010. doi:10.1002/ 
int.20430 

[132] O. Monkewich, I. Sales, and R. L. Probert, “OSPF 
Efficient LSA Refreshment Function in SDL”, in Tenth 
SDL Forum (SDL'01), LNCS 2078, Springer, June 2001, 
pp. 300–315. doi:10.1007/3-540-48213-X_19 

[133] D.L. Moody, P. Heymans, and R. Matulevičius, “Visual 
syntax does matter: improving the cognitive effectiveness 
of the i* visual notation”. Requirements Engineering, 
15(2), Springer, pp.141–175, 2010. doi:10.1007/s00766-
010-0100-1 

[134] G. Mussbacher, Aspect-oriented User Requirements 
Notation. Ph.D. thesis, SITE, University of Ottawa, 
Canada, November 2010. 

[135] G. Mussbacher and D. Amyot, “A Collection of Patterns 
for Use Case Maps”, in First Latin American Conf. on 
Pattern Languages of Programming (SugarLoafPLoP), 
UERJ - Série Informática, Special Edition, pp. 57–82, 
June 2002. 

[136] G. Mussbacher and D. Amyot, “Assessing the 
Applicability of Use Case Maps for Business Process and 
Workflow Description”, in 3rd Int. MCeTech Conference 
on eTechnologies, IEEE CS, pp. 219–222, January 2008. 
doi:10.1109/MCETECH.2008.18 

[137] G. Mussbacher and D. Amyot, “Goal and Scenario 
Modeling, Analysis, and Transformation with 
jUCMNav”, in 31st Int. Conf. on Software Engineering 
(ICSE-Companion), ACM, Canada, pp. 431–432, May 
2009. doi:10.1109/ICSE-COMPANION.2009.5071047 

[138] G. Mussbacher, D. Amyot, J. Araújo, and A. Moreira, 
“Modeling Software Product Lines with AoURN”, in 
Early Aspects Workshop @ AOSD08, ACM, March 2008. 
doi:10.1145/1404946.1404948 

[139] G. Mussbacher, D. Amyot, J. Araújo, and A. Moreira, 
“Requirements Modeling with the Aspect-oriented User 
Requirements Notation (AoURN): A Case Study”. 
Transactions on Aspect-Oriented Software Development 
VII, LNCS 6210, Springer, pp. 23–68, 2010. 
doi:10.1007/978-3-642-16086-8_2   

[140] G. Mussbacher, D. Amyot, and M. Weiss, “Formalizing 
Patterns with the User Requirements Notation”. Design 
patterns formalization techniques, IGI Global, pp. 302–
322, 2007. doi:10.4018/978-1-59904-219-0.ch014 

[141] G. Mussbacher, D. Amyot, and M. Weiss, “Visualizing 
Early Aspects with Use Case Maps”. LNCS Journal on 
Transactions on Aspect-Oriented Software Development, 
LNCS 4620, Springer, p. 105–143, November 2007. 
doi:10.1007/978-3-540-75162-5_5 

[142] G. Mussbacher, D. Amyot, and J. Whittle, “Refactoring-
Safe Modeling of Aspect-Oriented Scenarios”, in 12th Int. 
Conf. on Model Driven Eng. Languages and Systems 
(MODELS 2009), LNCS 5795, Springer, pp. 286–300, 
October 2009. doi:10.1007/978-3-642-04425-0_21 

[143] G. Mussbacher, J. Whittle, and D. Amyot, “Modeling and 
Detecting Semantic-Based Interactions in Aspect-
Oriented Scenarios”. Requirements Engineering, 15(2), 
Springer, pp.197-214, 2010. doi:10.1007/s00766-010-
0098-4 

[144] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo, 
“Feature Interaction Filtering with Use Case Maps at 
Requirements Stage”, in Sixth International Workshop on 
Feature Interactions in Telecommunications and Software 
Systems (FIW'00), IOS Press, pp. 163–178, May 2000. 

[145] Object Management Group, BPMN 1.2 Specification, 
formal/2009-01-03, January 2009. 

[146] Object Management Group, UML 2.2 Specification, 
formal/2009-02-04, February 2009. 

[147] Object Management Group, UML Profile for 
Schedulability, Performance and Time, v1.0, formal/03-
09-01, September 2003. 

[148] Object Management Group, UML Profile for Modeling 
and Analysis of Real-time and Embedded Systems 
(MARTE), v1.0, formal 2009-11-02, November 2009. 

[149] C. Ölvingson, N. Hallberg, T. Timpka, and K. Lindqvist, 
“Requirements Engineering for Inter-Organizational 
Health Information Systems with Functions for Spatial 
Analyses: Modeling a WHO Safe Community Applying 
Use Case Maps”. Methods of Information in Medicine, 
Schattauer Gmb H, 4/2002, pp. 299–304, 2002. 

[150] OpenOME, an open-source requirements engineering tool, 
University of Toronto, Canada, November 2010. 
https://se.cs.toronto.edu/trac/ome 

[151] T. Okamura, M. Nakamura, and H. Igaki, “Finding 
Optimal Energy-Saving Operations in Home Network 
System Based on Effects between Appliances and 
Environment”, in 8th Asia-Pacific Symp. on Information 
and Telecommunication Technologies (APSITT 2010), 
IEEE CS, Kuching, Malaysia, , pp. 1–6, June 2010. 

[152] D.B. Petriu, Layered Software Performance Models 
Constructed from Use Case Map Specifications. M.Eng. 
thesis, SCE Dept., Carleton University, Canada, May 
2001. 

[153] D.B. Petriu, D. Amyot, and C.M. Woodside, “Scenario-
Based Performance Engineering with UCMNav”, in 11th 
SDL Forum (SDL'03), LNCS 2708, Springer, pp. 18–35, 
July 2003. doi:10.1007/3-540-45075-0 

766 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER



[154] D.B. Petriu and C.M. Woodside, “Software performance 
models from system scenarios”. Performance Evaluation, 
61(1), Elsevier, pp. 65–89, June 2005. doi:10.1016/ 
j.peva.2004.09.005 

[155] D.B. Petriu and C.M. Woodside, “An intermediate 
metamodel with scenarios and resources for generating 
performance models from UML designs”. Software and 
Systems Modeling, 6(2), Springer, pp. 163–184, June 
2007. doi:10.1007/s10270-006-0026-8 

[156] A. Pourshahid, A URN-Based Methodology for Business 
Process Monitoring, M.Sc. thesis, EBT, University of 
Ottawa, Canada, March 2008. 

[157] A. Pourshahid, P. Chen, D. Amyot, A.J. Forster, S. 
Ghanavati, L. Peyton, and M. Weiss, “Business Process 
Management with the User Requirements Notation”. 
Electronic Commerce Research, 9(4), Springer, pp. 269–
316, December 2009. doi:10.1007/s10660-009-9039-z 

[158] A. Pourshahid, G. Mussbacher, D. Amyot, and M. Weiss, 
“Toward an Aspect-Oriented Framework for Business 
Process Improvement”. Int. J. of Electronic Business, 
8(3), Inderscience Publisers, pp. 233–259, 2010. 
doi:10.1504/IJEB.2010.034170 

[159] A. Pourshahid and T. Tran, “Toward an Effective Trust 
Management System for E-Commerce: Modeling Trust 
Components and Processes Using URN”. Journal of 
Business and Technology (JBT), 2(2), Atlantic Academic 
Press, pp. 37–46, 2007. 

[160] J.-F. Roy, J. Kealey, and D. Amyot, “Towards Integrated 
Tool Support for the User Requirements Notation”, in 
SAM 2006: Language Profiles - Fifth Workshop on 
System Analysis and Modelling, LNCS 4320, Springer, 
pp. 198–215, May 2006. doi:10.1007/11951148_13 

[161] J.-F. Roy, Requirement Engineering with URN: 
Integrating Goals and Scenarios. M.Sc. thesis, SITE, 
University of Ottawa, Canada, March 2007 

[162] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, 
and N. Mulyar, Workflow Control-Flow Patterns: A Re-
vised View. BPM Center Report BPM-06-22, 2006. 
http://workflowpatterns.com/ 

[163] Sandrila Ltd., Sandrila SDL. UK, November 2010. 
http://www.sandrila.co.uk 

[164] H. Saiedian, P. Kumarakulasingam, and M. Anan, 
“Scenario-Based Requirements Analysis Techniques for 
Real-Time Software Systems: A Comparative 
Evaluation”. Requirements Engineering, 10(1), Springer, 
pp. 22–33, January 2005. doi:10.1007/s00766-004-0192-6 

[165] K. Saleh and A. Al-Zarouni, “Capturing Non-Functional 
Software Requirements using the User Requirements 
Notation”, in 2004 Int. Research Conf. on Innovation in 
Information Technology (IIT'04), Dubai, pp. 222–230, 
October 2004. 

[166] K. Saleh and G. Elshahry, “Modeling Security 
Requirements for Trustworthy Systems”. Encyclopedia of 
Information Science and Technology, 2nd edition, IGI 
Global, pp. 2657–2664, 2009. doi:10.4018/978-1-60566-
026-4.ch424 

[167] I. Sales, A Bridging Methodology for Internet Protocols 
Standards Development. M.Sc. thesis, SITE, University of 
Ottawa, Canada, August 2001. 

[168] I.S. Sales and R.L. Probert, “From High-Level Behaviour 
to High-Level Design: Use Case Maps to Specification 
and Description Language”, in 18th Brazilian Symp. on 
Computer Networks (SBRC2000), Brazil, May 2000. 

[169] W.C. Scratchley, Evaluation and Diagnosis of 
Concurrency Architectures. Ph.D. thesis, SCE Dept., 
Carleton University, Canada, July 2000. 

[170] W.C. Scratchley and C.M. Woodside, “Evaluating 
Concurrency Options in Software Specifications”, in 
Seventh Int. Symp. on Modelling, Analysis and Simulation 
of Computer and Telecom. Systems (MASCOTS'99), 
College Park, USA, pp. 330–338, October 1999. 
doi:10.1109/MASCOT.1999.805071 

[171] S. Schneider, The B-Method: An Introduction, Palgrave, 
Cornerstones of Computing series, 2001. 

[172] A. Shamsaei, A. Pourshahid, and D. Amyot, “Business 
Process Compliance Tracking Using Key Performance 
Indicators”, in 6th Int. Workshop on Business Process 
Design (BPD 2010), LNBIP 66, Springer, pp. 73–84, 
September 2010. 

[173] M. Shiri, Supporting UCM Requirements Evolution by 
Means of Formal Concept Analysis. M.Sc. thesis, CSCE 
dept., Concordia University, Canada, February 2008. 

[174] M. Shiri, J. Hassine, and J. Rilling, “Feature Interaction 
Analysis: A Maintenance Perspective”, in 22nd 
IEEE/ACM Int. Conf. on Automated Software Engineering 
(ASE), ACM Press, pp. 437–440, November 2007. 
doi:10.1145/1321631.1321703 

[175] K.H. Siddiqui and C. M. Woodside, “Performance Aware 
Software Development (PASD) Using Resource Demand 
Budgets”, in WOSP 2002: Third Int. Work. on Software 
and Performance, ACM Press, pp. 275-285, July 2002. 
doi:10.1145/584369.584412 

[176] G. Smith, The Object-Z Specification Language. 
Advances in Formal Methods Series, Kluwer Academic 
Publishers, 2000. 

[177] Software Performance Research Group, Layered 
Queueing Research Resource Page. Carleton University, 
Canada, November 2010. http://www.layeredqueues.org/ 

[178] A. Soria, J.A. Díaz-Pace, and M.R. Campo, “Tool Support 
for Fault Localization Using Architectural Models”, 13th 
European Conf. on Software Maintenance and 
Reengineering (CSMR), IEEE CS, March 2009, pp. 59–
68. doi:10.1109/CSMR.2009.42 

[179] C.H. Störmer, Software Quality Attribute Analysis by 
Architecture Reconstruction (SQUA3RE), Ph.D. thesis, 
Vrije Universiteit, The Netherlands, March 2007. 

[180] N.-T. Truong, T.M.T. Tran, V.-K. To, and V.H. Nguyen, 
“Checking the Consistency between UCM and PSM 
Using a Graph-Based Method”, in 1st Asian Conf. on 
Intelligent Information and Database System (ACIIDS 
09), IEEE CS, pp. 190–195, April 2009. 
doi:10.1109/ACIIDS.2009.66 

[181] Use Case Map Navigator (UCMNAV) 2.3, July 2005. 
http://jucmnav.softwareengineering.ca/ucm/bin/view/UC
M/UcmNav 

[182] URN Virtual Library, http://www.UseCaseMaps.org/pub 
(last accessed: July 27, 2010). 

[183] J.A. van der Poll, P. Kotze, A. Seffah, T. Radhakrishnan, 
and E. Alsumait, “Combining UCMs and Formal Methods 
for Representing and Checking the Validity of Scenarios 
as User Requirements”, in 2003 annual research conf. of 
the South African Institute of Computer Scientists and 
Information Technologists (SAICSIT 2003), 
Johannesburg, South Africa, pp. 59–68, September 2003. 

[184] B. van der Raadt, Business-Oriented Exploration of Web 
Services Ideas - Combining Goal-Oriented and Value-
Based Approaches. MSc. Thesis, Vrije Universiteit, 
Amsterdam, The Netherlands, February 2005. 

[185] A. van Lamsweerde, Requirements engineering: From 
System Goals to UML Models to Software Specifications. 
John Wiley & Sons, 2009. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011 767

© 2011 ACADEMY PUBLISHER



[186] M. Vigder, Applying Formal Techniques to the Design of 
Concurrent Systems. Ph.D. thesis, SCE Dept., Carleton 
University, Canada, July 1992. 

[187] M. Vinje, An Auditing Framework for Service Provision 
in Mobile IPv6 Networks. Diploma Thesis, EPF Zurich, 
Switzerland, August 2002. 

[188] M. Weiss, “Pattern-Driven Design of Agent Systems: 
Approach and Case Study”, in 15th Conf. on Advanced 
Information Systems Engineering (CAiSE'03), LNCS 
2681, Springer, pp. 711–723, June 2003. doi:10.1007/3-
540-45017-3 

[189] M. Weiss, “More Patterns for Web Applications”, in 
Tenth European Conf. on Pattern Languages of Programs 
(Euro PLoP 2005), Irsee, Germany, pp. 21–34, July 2005. 

[190] M. Weiss and D. Amyot, “Business process modeling 
with URN,” Int. J. of E-Business Research, 1(3), pp. 63–
90, 2005. doi:10.4018/jebr.2005070104 

[191] M. Weiss and B. Esfandiari, “On Feature Interactions 
among Web Services”. Int. J. of Web Services Research, 
2(4) pp. 22–47, October 2005. doi:10.4018/jwsr. 
2005100102 

[192] M. Weiss, B. Esfandiari, and Y. Luo, “Towards a 
classification of Web service feature interactions”. 
Computer Networks, 51(2), Elsevier, pp. 359–381, 
February 2007. doi:10.1016/j.comnet.2006.08.003 

[193] M. Weiss and H. Mouratidis, “Selecting Security Patterns 
that Fulfill Security Requirements”, in 16th IEEE Int. 
Requirements Engineering Conf. (RE'08), IEEE CS, pp. 
169–172, September 2008. doi:10.1109/RE.2008.32 

[194] P. Wu and C.M. Woodside, “An Aggregation Approach to 
Constructing Hybrid Layered Queueing Models”, in 7th 
Int. Workshop on Performability Modeling of Computer 
and Communication Systems (PMCCS7), Torino, Italy, 
September 2005. 

[195] W. Wu and T.P. Kelly, “Managing Architectural Design 
Decisions for Safety-Critical Software Systems”, in 2nd 
Int. Conf. on the Quality of Software Architectures (QoSA 
2006), LNCS 4126, Springer, pp. 59–77, June 2006. 
doi:10.1007/11921998_9 

[196] Z. Yi, CNAP Specification and Validation: A Design 
Methodology Using LOTOS and UCM. M.Sc. thesis, 
SITE, University of Ottawa, Canada, January 2000. 

[197] E.S.-K. Yu, Modelling strategic relationships for process 
reengineering. Ph.D. thesis, Dept. of Computer Science, 
University of Toronto, Canada, 1995. 

[198] E. Yu, Y. Yu, and L. Liu, OME — Organization 
Modelling Environment, University of Toronto, 2000. 
http://www.cs.toronto.edu/km/ome/ 

[199] X.Y. Zeng, Transforming Use Case Maps to the Core 
Scenario Model Representation. M.Sc. thesis, SITE, 
University of Ottawa, Canada, June 2005 

[200] R. Zhang and X.-X. Liu, “Feature Interaction Filtering 
Method Based on URN (基于 URN 的特征冲突过滤方法)”, 
Computer Engineering (计 算 机 工 程), 35(21), pp. 45–47, 
November 2009. 
 

 
Daniel Amyot received both his Ph.D. 
(2001) and M.Sc. (1994) degrees in 
computer science from the University of 
Ottawa. The research topic was related 
to the specification and validation of 
telecommunication systems with Use 
Case Maps and LOTOS. 

After working for Mitel Networks as 
a senior researcher, he joined the School 

of Information Technology and Engineering of the University of 
Ottawa, where he is now Associate Professor in software 
engineering. His research interests include goal-oriented and 
scenario-based software engineering, requirements engineering, 
business process modeling, aspect-oriented modeling, and 
healthcare informatics. He has published over 90 papers in 
various conferences and in journals such as Requirements 
Engineering, Computer Networks, and the International Journal 
of Electronic Business. 

Dr. Amyot is a member of ACM, IEEE Computer Society, 
and APIIQ, and he is a professional engineer in the province of 
Québec (Canada). He is also Associate Rapporteur for 
requirements languages at the International Telecommunication 
Union, where he leads the evolution of the User Requirements 
Notation. 
 

Gunter Mussbacher received a M.Sc. 
degree in computer science from Simon 
Fraser University in 1999, and a Ph.D. in 
computer science from the University of 
Ottawa in 2010. In his thesis, he 
developed the Aspect-oriented User 
Requirements Notation (AoURN), a 
framework that enables goal-oriented, 
scenario-based, and aspect-oriented 
modeling in a unified way. 

After his M.Sc., he worked as a research engineer for the 
Strategic Technology department of Mitel Networks, where he 
applied and taught URN concepts. He has published in the 
Requirements Engineering Journal (REJ) and in the 
Transactions on Aspect-Oriented Software Development 
(TAOSD), and co-edited with Daniel Amyot the URN standard 
(ITU Recommendation Z.151 11/2008). He is also teaching 
software engineering undergraduate courses as well as URN and 
AoURN tutorials for industry and at international conferences. 
His general research interests lie in requirements engineering, 
URN, aspect-oriented modeling, and patterns. 

Dr. Mussbacher is an organizer and program committee 
member of Early Aspects (EA), Aspect-oriented Modeling 
(AOM), and Systems Analysis and Modelling (SAM) 
workshops since 2008. 

 

768 JOURNAL OF SOFTWARE, VOL. 6, NO. 5, MAY 2011

© 2011 ACADEMY PUBLISHER


