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Abstract—This paper presents a scheduling approach, based 
on Ant Colony Optimization (ACO), developed to address 
the scheduling problem in manufacturing systems 
constrained by both machines and heterogeneous workers 
called as Dual Resource Constrained Job Shop Scheduling 
Problem with Heterogeneous Workers. This hybrid 
algorithm utilizes the combination of ACO and Simulated 
Annealing (SA) algorithm and proposes an adaptive control 
mechanism based on ant flow of route choice to improve the 
global search ability. Two adaptive adjusting schemes of 
parameters based on iteration times and quality of solutions 
respectively are imposed to actualize the performance 
optimization by stages. Then the performances of different 
optimization methods with different resource allocation 
strategies are compared according to simulation 
experiments on both concrete instance and random 
benchmarks while related discussion are represented at last.  
 
Index Terms—Dual Resource Constrained; Ant Colony 
Optimization; Adaptive Adjusting Parameters; Ant flow 
 

I  INTRODUCTION 

The Job Shop Scheduling Problem (JSP) is one of the 
most important issues in current academia, however, most 
of the literature on JSP had considered only machine as a 
limiting resource and ignored the possible constraints 
imposed by the availability of workers with requisite 
skills to perform the operations. This type of problem, 
where both machines and workers represent potential 
capacity constraints, was referred to as Dual-Resource 
Constrained (DRC) JSP by Nelson[1] at 1967. Since then 
there had been considerable investigations of DRCJSP 
which can be clustered into two groups and are briefly 
surveyed below. 

The first group investigated influences of different 
worker assignment rules using simulation method which 
forms the most investigated aspect of DRCJSP [2-4]. As 
machines in the DRC shop are not fully staffed where the 
operator can be reassigned from one machine to another 
as needed, decisions have to be made regarding when to 
consider transferring workers if they are eligible, and to 

which areas. These were referred to as the "when" rule 
and "where" rules, respectively. Furthermore, another 
worker assignment rule, which was referred to as the 
“Push/Pull” rule [5-6] and initiated worker transfers 
based on need, was shown to provide good results in 
recent years. The other group of studies investigated a 
great variety of heuristic algorithms and intelligent 
algorithms in order to find optimal or near optimal 
solutions to DRCJSP problems (e.g., Genetic 
Algorithm(GA) [7-10] and Ant Colony 
Optimization(ACO) [11]). 

In most of the researches about DRCJSP, all the 
workers were considered as the same resource. For 
example, if there were two workers A and B who were 
both able to operation machine C, then the process time 
of a same job on C operating by A and B respectively 
was considered to be the same. The affect of otherness 
among different workers on final scheduling results in 
DRCJSP, such as dexterity degree on equipment 
operation or working attitude, was usually ignored which 
violates the practice. Nelson[1] first announced to record 
the processing efficiency of different workers with the 
efficiency matrix, but he had not made a deep research on 
the DRCJSP with Heterogeneous Workers (DRCJSP-
HW). Afterwards, a new worker transfer rule for 
DRCJSP-HW was proposed by Bokhorst [12-13]. 
However, there had been no reference on applying 
intelligent algorithm to solve DRCJSP-HW till now. 

Ant Colony Optimization (ACO) is a constructed 
meta-heuristic algorithm based on swarm intelligence, in 
which artificial ants are created to solve problems by 
simulating the natural behavior of ant colony on three 
principal characteristics: (1) ants communicate with the 
others indirectly via releasing pheromone on passing 
routes; (2) pheromone of shorter paths accumulates faster; 
(3) ants prefer routes with higher pheromone level. Since 
the initial work of Dorigo [14] on the ACO algorithm, 
several scholars had developed different ACO algorithms 
that performed properly when solving combinatorial 
problems [15-17] such as the traveling salesman problem, 
the quadratic assignment problem, the sequential ordering 
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problem, the production scheduling, the project 
scheduling, the vehicle routing, the telecommunication 
routing, among others. 

In the field of scheduling, ACO had been successfully 
applied to the single machine weighted tardiness problem 
[18], the flow-shop scheduling problem [19] and the 
resource constraint project scheduling [20]. Moreover, its 
application to JSP had been especially proven to be quite 
difficult. Colorni et al. [21]were the first group of 
researchers who applied ACO to solve JSP and their 
algorithm was far from reaching a state-of-the-art 
performance. The earliest competitive ACO approach for 
solving the JSP was imposed by Blum [22] when 
applying to the open shop scheduling problem. But up till 
now, the researches on applying ACO to solve JSP [23-
24] and Flexible Job Shop Scheduling Problem (FJSP) 
[25-26] had made remarkable achievements in recent 
years.  

Compared with the other intelligent algorithms that are 
always be used for solving JSP, such as Genetic 
Algorithm (GA) and Immune Algorithm (IA), ACO can 
efficiently avoid additional calculation consumption 
caused by illegal solution since its particular character of 
constructing solution by stages. A variety of constraints 
are actualized during the process of solution generation in 
ACO when applying to solve multi-constrained 
scheduling problem such as DRCJSP-HW. This paper 
presents the development of a hybrid algorithm which is 
the combination of ACO and Simulated Annealing (SA) 
algorithm for solving DRCJSP-HW. Based on the 
analysis of the influence of different parameter values on 
algorithm performance, two adaptive adjusting schemes 
of main parameters and another adaptive route choice 
control mechanism based on ant flow are proposed to 
further improve the convergence performance on the 
basis of guaranteeing the scheduling quality.  

The paper is organized as follows. In the next section 
is the description and mathematical model about 
DRCJSP-HW. The construction process and step 
description of the hybrid algorithm (ACO-SA algorithm 
with adaptive parameters and route choice based on flow 
control which is short for A-FC-ACOSA) are presented 
in section 3. In section 4, the convergence of the 
algorithm is proved in theory based on Markov chain. 
Then the comparison experimental results of different 
resource allocating strategies and different intelligent 
algorithms are provided in section 5. Finally, some 
concluding remarks and proposals for future works are 
shown in section 6.  

II  MODEL RESEARCH 

A.  Problem Description 
A DRCJSP-HW may be formulated as follows: given a 

n m w× ×  manufacturing system, in which n parts must be 
processed exactly on m machines operating by w workers 
during the plan period. The set of n parts can be defined 
as { , , }1P P Pn= ⋅⋅ ⋅ , each part has a certain delivery time 

i

E
PT  and is constructed with an aggregate of pre-defined 

order operations which can be processed with several 
combinations of machines and workers. The set of 
machines and workers are { , , }1W W W w= ⋅⋅ ⋅  and 

{ , , }1M M M m= ⋅⋅ ⋅  respectively where must be w<m and 
workers are capable of operating more than one machine. 
The practical process time 

ij k l

P
WP MT  of ijP  on machine 

kM  operating by worker lW  is decided both by 
processing performance of machine and operating 
efficiency

klW Me  of worker. Even if operating the same 
machine to process the same job, the otherness among 
workers results in different process time. Different 
workers and machines possess of different operating cost 

kMC  and hiring wage 
lWC  while resources with higher 

processing capacity are more expensive.  
In this paper, once processing is initiated, an operation 

cannot be interrupted and concurrency is not allowed. 
That is, operation ijP  cannot begin processing until 

1i jP −（ ）  has completed if j>1. However, there is no 
constrain relationship between operations of different 
parts. The setup and release time is contained in the 
process time, the moving time of workers and parts  and 
the accidents in production such as machine broken or 
worker absent are all ignored. 

B.  Mathematical Modeling 
The following are the symbols and variables used in 

this model： 
standard processing time of job with machineP Mij k
machine cannot process jobM Pk ij

_
0

ij k

P

P MTab PM t⎧⎪= ⎨
⎪⎩

; 

the effeciency when worker operating machineW Mkl
worker cannot operate machineW Mkl

_
0

klTab WM W Me⎧⎪= ⎨
⎪⎩

; 

1 0

1 elseij k

Pt P Mij kP MH
⎧ >⎪== ⎨
−⎪⎩

; 

1 0 0

1 elseij k l

Pt eP M W Mij k klWP MH
⎧ > ∧ >⎪= ⎨
−⎪⎩

; 

ij k l

S
WP MT —The start time of job Pij  with worker W l  and 

machine kM ; 

ij k l

E
WP MT —The end time of job Pij  with worker W l  and 

machine kM ; 

' 'i n k lj

E
WP MT —The end time of the last operation 

jinP  of 

part iP  with worker 'lW  and machine 'kM ; 

kMR —Available time sets of machine kM ; 

lWR —Available time sets of workerW l ; 

iPC —Material cost of iP ; 

i

early

PC —Punishment to early jobs; 

i

late

PC —Punishment to tardy jobs; 

yearC —annual interest; 

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 585

© 2011 ACADEMY PUBLISHER



According to the research of reference[27], let the 
discount rate of capital be zero and ignore the affect after 
interest deduction not only simplifies the computation 
process but also influences the scheduling decision 
remotely since the usually shorter scheduling period in 
DRCJSP system. Based on this hypothesis and the 
classical formula of production cost for JSP proposed by 
Shafei and Brunn [28-29], some factors of DRCJSP-HW 
problem, such as punishment to early and tardy jobs, 
flexible resources and heterogeneous workers, have been 
introduced to the definition of production cost, as shown 
in (1). 

( (max( , ) ))' ' 11

(( ) ( ))' '( 1)1 1

(( )
1 1

( max(0, )' '1

n SE E
C C T T Tyear P P WP Mi WP M i i k lin k li j

n jn S SP
C C C T T Tyear WM W WP M P Mk l WP Mij k ij kl li j k li j

n jn P
C C TWM WP Mk l ij k li j

n early E E laC T TP P PWP Mi i iin k li j

Cost =

× × − +∑
=

× + × × − +∑ ∑
+= =

+ × +∑ ∑
= =

× − +∑
=

max(0, ))' '
E EteC T TPWP M iin k lj

× −

(1) 

The first two parts of this formula represents the 
inventory cost produced during the production process, 
the third part dedicates the resource operating cost while 
the last part is the punishment to early and tardy jobs. The 
objective of our DRCJSP-HW is to find a feasible 
schedule for a set of jobs such that the production cost is 
optimal or near-optimal, as shown in (2) 

 min( )F Cost=  (2)   

The DRCJSP-HW subjects to two constraints, known 
as the operation precedence constraint and resource 
capability constraint. In our DRCJSP-HW, each part is 
ready to be processed as soon as the scheduling started 
while the order of each operation is fixed, as shown in  
(3) and (4). 

                                  0
ij k l

S
WP MT ≥                              (3) 

                        
( 1)ij k i j ql r

SE
W WP M P MT T

+

≤                        (4) 

Considering delays in a job such as waiting time for 
resources during operations, we can obtain equation(5). 

                   
ij k ij k ij kl l l

SE P
W W WP M P M P MT T T≤ +               (5) 

Compared to classical JSP, the practical process time 
of each operation is affected by both machine technical 
properties and worker efficiency as (6). 

                      
ij k l ij k kl

PP
WP M WP M Mt eT =                      (6) 

A job can be processed only if the machine and 
worker are both idled, as shown in (7~9).  

( )( ) 0
ij k xy k ij k xy k ij k xy kl r l r l r

S SE E
W W W W W WP M P M P M P M P M P MH H T T T T− − ≥

(7) 

( )( ) 0
ij k xy q ij k xy q ij k xy ql r l r l r

S SE E
W W W W W WP M P M P M P M P M P MH H T T T T− − ≥

(8) 

            [ , ]
k ij k ij kl l l

S E
W W WM P M P MR R T T ≠ Φ∩ ∩                  (9) 

III  ADAPTIVE HYBRID ANT COLONY ALGORITHM 

The hybrid algorithm consists of two parts. We have 
the ACO part, where ants crawl over the search space 
trying to construct a feasible tour. After the fitness of 
each schedule defined by a tour is calculated, the SA part 
is operated as a neighborhood search method for the best 
solution and the pheromone updating process occurs only 
after the SA has finished.  

A. ACOSA algorithm  
a. Ant Map 

Each artificial ant starts off from a virtual starting node 
to a virtual goal and routing randomly on a J JN N×  
network, in which JN  represents the number of all the 
operations and each node is corresponding to an actual 
operation, to construct a tour gradually. However, the 
number of actual destination nodes of each ant when 
routing is equal to the number of parts at most since the 
movement of ant is constrained by both operation 
precedence constraint and resources capacity constraint to 
guarantee a feasible tour. Each ant affects the route 
choice of the others by releasing pheromone on the 
chosen route while the pheromone level ijτ , which 
expresses the expectation that operation j is scheduled 
following operation i, is set to 0 at the beginning if route 
(i,j) violates the operation precedence constraint. At last, 
the moving contrail of each ant directed by pheromone 
level ijτ  and local heuristic information ijη  seems to be 
an operation schedule.  
b. Solution Construction 

Generally speaking, the convergence performance of 
ACO is better than GA because of the guidance effect of 
pheromone, however, the performance of ACO is 
affected to a great extent by relatively optimal solution 
obtained at the early research stages which guide ant 
colony to local optimal at great probability and cause 
prematurely ACO. The best way to avoid it is to find the 
best balance between the exploration and utilization of 
existing information which not only guarantees large 
enough search space but also pays particular emphasis on 
solution space with higher fitness to accelerate the 
convergence speed. 

Therefore, each ant uses the pseudo-random 
proportional state transition rule to select the destination 
in this hybrid algorithm. The state transition rule can be 
divided into exploitation and exploration, as shown in 
(10), where 0P  is an important parameter on balancing 
the relationship between information exploration and 
utilization , which is a random variable between 0 and 1, 
since each ant selects the currently optimal tour 
developed with the probability of 0P  and explores new 
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path with the probability of (1- 0P ). When an ant at node 
i, ijP  means the probability of that the ant selects node j 

as destination node. ijη  is the heuristic information, also 
called visibility, and is the result of calculation according 
to corresponding strategy for resources allocation in our 
research. 

                     0

0

0 ij ij

ij

0ij ijij ij
(i,j)

1 { }

( )

arg max
xy

P
SP

S

P
P

P P

βα

β βα α

ητ

η ητ τ
∈

∈

⎧ ≤ ∧ ×⎪
⎪= ⎨
⎪ × × >
⎪⎩

∑（ ）
                  (10) 

c. Resources Allocation Strategy 
Compared to JSP, it is need to allocate both machines 

and workers for each operation when solving DRCJSP-
HW, capacity limited manufacturing resources have 
become the biggest bottleneck of the constraint for 
manufacturing system at this point. The often-used 
methods such as GA and IA get closer continuously to 
the global optimum solution through oriented 
neighborhood searching on a variety of initial scheduling 
solutions, which are easy to cause illegal solution and 
considerable reconfigurable time when applying to solve 
DRCJSP-HW due to the dual-resource capacity 
constraint. In contrast, ACO algorithm gradually allocates 
optimal combination of dual resources for each job based 
on heuristic allocating strategy library and available time 
sets of both machines and workers to ensure the feasible 
schedule. This research introduces five heuristic 
strategies in total: 

 Minimum Resource Cost (MRC): Choose the 
combination with the minimum cost due to 
resources utilization which is calculated as(11). 

                  ( ) PRCost C C TWMP WP Mk lij ij k l
= + ×                 (11) 

 Minimum Additional Cost (MAC): Choose the 
combination with the minimum additional cost 
including resources cost and punishment to early 
and tardy jobs is calculated as(12). 

( )

[ max(0, ) max(0, )]

PACost C C TWMP WP Mk lij ij k l
early E E E ElateC CT T T TP P W P W PP M P Mi i i iij k ij kl l

= + × +

× − + × −
 (12) 

 Shortest Process Time-Most Urgent (SPT-MU): The 
heuristic strategy used in reference [30-31] which 
first calculated the urgent degree of job based on its 
deadline, then a union criterion was built with the 
practical process time; at last the combination of 
resources with the minimum union criteria is 
chosen. 

 Earliest Finish Time-Minimum Additional Cost 
(EFT-MAC): Choose the combination with the 
minimum additional cost from the sets of resources 
combinations with the earliest operation finish time. 

 Shortest Process Time- Minimum Additional Cost 
(SPT-MAC): Choose the combination with the 
minimum additional cost from the sets of resources 

combinations with the shortest practical process 
time. 

d. SA Local Search 
In order to avoid local optimal node being selected 

frequently caused by strongly deterministic resource 
allocating strategies, local search mechanism must be 
introduced to adjust resources combination after the 
routing process of ant colony. The local search 
mechanism of ACO was always the first advanced 
method with pruning or 2-opt exchange method in the 
past research [32], but the combination of ACO and local 
search intelligent algorithm often produce superior results 
according to researches [33-34] in recent years. This 
paper combines the ACO with the Simulated Annealing 
(SA) in the way of adjusting combination of resources of 
one operation in the optimal schedule randomly and 
utilizing the Metropolis rule as the decision criterion. The 
combination of both algorithms can jump out of local 
optimal at a certain probability as well as provide better 
initial solutions for SA with the fast search ability of 
ACO. 
e. Pheromone Update 

After each generation, the hybrid algorithm performs 
local updating to change the pheromone of each route 
as(13), Where ρ  is pheromone evaporation parameter in 
the range of 0~1. The main purpose of local updating is 
to avoid producing a path that is too powerful to make 
algorithm fall into a local optimum, and hindering the 
ants from exploring new paths. 

                       0(1 )ij ijijρ ττ τ= ∀ ≠− （ ）                        (13) 

Besides, the pheromone of global optimal solution is 
updated additionally according to the ASrank method of 
reference [35] : Sort all the solutions with fitness ost iC  
in descending order, then the pheromone on the routes 
participating in the solutions whose fitness at the top w is 
weighted updated as (14). The global updating not only 
accelerate convergence by increasing the differences 
between better solutions and worse ones, but also avoid 
fast pheromone accumulating on routes of relatively 
optimal solutions obtained at early stages.  

1 max
( , )

( 1)
ost

s

w

ijk jk
i

j k

Qw i

L
Cτ τ

=
∀ ∈

= + − +∑         (14) 

B. Adaptive Adjusting Parameters  
a. Case Study on Influence of Parameters 

There are many parameters in ACO and different 
combinations of which lead to different results as well as 
convergence performance. A numerical example of 
DRCJSP-HW is proposed to test the influence of 
different combinations of parameters {α , β ,1- A , 0P } on 
performance of calculation and convergence. The 
concrete instance is constructed by introducing the factor 
of heterogeneous workers (workers with higher machine 
operating proficiency will be paid more) on the basis of 
the example in reference [9], as shown in table I~V. 
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In existent researching files, scholars usually 
represented convergence speed of algorithm by the least 
iteration times for obtaining global optimal solution[36], 
however, global optimal solution obtaining does not 
mean convergence but only represents the global search 
capability meets the requirement for the random search 
algorithm such as ACO and GA. This paper applies both 
the convergence times and the number of global optimal 
solutions obtained in total during the calculation process 
to denote the convergence performance. 

TABLE I.  TECHNOLOGICAL PROCESS 

Part Job M1 M2 M3 M4 M5 M6 

P1 
1 2 3 4    
2  3  2 4  
3 1 4 5    

P2 
1 3  5 2   
2 4 3   6  
3   4  7 11 

P3 
1 5 6     
2  4  3 5  
3   13  9 12 

P4 
1 9  7 9   
2  6  4  5 
3 1   3  3 

TABLE II.  MACHINE OPERATING COST 

M1 M2 M3 M4 M5 M6 
60 40 30 60 30 10 

TABLE III.  WORKER SALARY 

W1 W2 W3 W4 W5 
20 15 15 20 15 

TABLE IV.  WORKER OPERATING PROFICIENCY 

Worker M1 M2 M3 M4 M5 M6 
1 0.9 0.8     
2  0.7 0.9    
3   0.6 1   
4    0.9 0.8  
5     0.8 0.8 

TABLE V.  OTHER PARAMETERS 

 P1 P2 P3 P4 
Raw Material Cost 200 300 300 200 

Delivery time 14 17 13 12 
Punitive Cost of Early Part 20 20 20 20 
Punitive Cost of Tardy Part 100 50 40 40 

 

The values available of the four parameters are 
{0,0.5,1,1.5,2.5,3,3.5,4,4.5,5},{0,0.5,1,1.5,2,2.5,3,3.5,4,4.
5,5},{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1},{0.1,0.2,0.3,0.
4,0.5,0.6,0.7,0.8,0.9,1} respectively according to the 
research of reference [34]. When one parameter are tested 
and changed its value, the others remains at their mean 
value. At last 42 combinations of parameters in total are 
applied to calculate the above example for 30 times 
respectively with ACOSA and EFT-MAC strategy. The 
results are drawn as shown in Fig.1~4. 

 According to(10), α determines the relative influence 
of pheromone level on route choice. Each ant selects 
destination node mostly depend on heuristic 
information when α is lesser and the global 

searching ability is so strong that the global optimal 
solution can be obtained earlier and lesser. The 
pheromone gradually plays a more important effect 
and strengthens convergence performance as α  
increases along with the decrease of average quality 
of solutions. Especially when α is too large, the 
choice of few ants has a tremendous influence upon 
the others and the pheromone of individual path 
accumulates so fast that the algorithm is easily to 
trap in local optima, as shown in Fig.1. 
 

 

Figure 1.  Performance of differnernt α  

 

Figure 2.  Performance of differnernt β  

 

Figure 3.  Performance of differnernt 1- A  

 

Figure 4.  Performance of differnernt 0P  

 On the other hand, β determines the relative 
influence of heuristic information. The pheromone 
plays an important role in route choice and lead to 
worse schedule and better convergence performance 
when β is lesser. Then the certain factor guides 
choosing gradually and average result gets better 
and more global optimal results are obtained as β  
increases, as shown in Fig.2. 

588 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



 1- A reflects the amount of pheromone residue after 
each evaporates. When1- A is lesser, pheromone 
evaporates so fast that the results are always been 
decided by first few iterations. At this time the 
algorithm can convergence quickly with worse 
results. Along with the increase of 1- A , the average 
result becomes better and global optimal result is 
obtained faster and lesser due to higher global 
search ability, as shown in Fig.3.  

 State transition probability 0P reflects the 
possibility of selecting local optimal paths. Ants 
choose destination according to roulette selection 
when 0P is lesser and the results are better. Along 
with the increase of 0P , ants are gradually tended to 
select local optimal path which result in worse 
results and better convergence performance. 
Although the algorithm can convergence with 
smaller iteration times, the global optimal can’t be 
obtained when 0P  is too high, as shown in Fig.4.  

b. Adaptive Adjusting Schemes 
Different parameter sets result in different direction of 

search as stated previously, however, up to now there 
lacks an efficiently and generality mathematic analysis 
method of parameter configuration. The researches of 
ACO generally find optimal parameter sets via amounts 
of simulate experiments which are only the “nearly 
optimal parameters” to concrete instance. For this 
problem scholars have proposed the ACO algorithm with 
adaptive adjusting parameter which obtains ideal 
experiment results in recent years which pay more 
attention to the parameters 1 ( )t− A [37] and 0P [38] 
however. In addition, the parameters should be adjusted 
by stages in accordance with our experiment results: at 
the elementary stages of iteration, the lowest α , 0P  and 
highest β ,1- A  will lower the influence of pheromone on 
route choice and lead to larger search space; at the later 
period the lowest β ,1- A and highestα , 0P  will accelerate 
the convergence due to the global pheromone updating 
mechanism. 

 Consequently, this paper proposes two synchronous 
adaptive adjusting schemes of the four parameters in 
ACOSA as below (only take the adjusting of α  for 
example). 

 Linear Adaptive (LA): Suppose endα  is the upper 
bound as the α  increases gradually according to the 
analysis mentioned above while startα  is the lower 
bound and α∆  is the delta ofα . maxNC  is the total 
times of iteration. Then each parameter is updated at 
a constant speed after each iteration step as(15). 

                            
end start

maxNC
α α α−∆ =                                (15) 

 Adaptive based on Quality of Solution (QA): Each 
parameter is decided whether to be adjusted based 
on the quality of solutions at each iteration step. If 
the fitness best

tR of optimal solution at tht  iteration 

is not worse than the fitness WbestR of currently 
global optimal which means currently combination 
of parameters is beneficial for global search and 
each parameter remains unchanged. Otherwise, each 
one is adjusted as(16) where tα  means the value of 
α  at tht  iteration, GbestR  and GworstR  are the fitness 
of currently global optimal and worst solution, 
respectively. At the early iteration step, larger 

max tNC −  results in smaller delta of parameters 
and enough ability of global search; the differences 
between global optimal and global worst is on the 
increase with iteration and parameters are adjusted 
to the status that are benefit for promoting algorithm 
convergence at latter stages (the more great the 
difference between GbestR  and GworstR , the more 
approximation to the theoretical lower bound to a 
specific instance for the global optimal). 

    
Gbest Gworst

( ) exp( max )
t

end t NC
R R

α α α∆ = − ×
−

−                 (16) 

From the adjusting formula of both schemes above, the 
scheduling performance of LA is stabler but weaker than 
QA since the adjusting of parameters is nothing to do 
with scheduling results which loses the learning ability on 
knowledge. Meanwhile, the performance of QA depends 
too much on the results of earlier stages because the 
parameters will be adjusted to promote convergence as 
long as the iteration results form an ascending sequence 
even without global optimal. Consequently, the 
performance of QA should be better than LA if the global 
search ability is enhanced at elementary stages, thus a 
route choice mechanism based on ant flow is proposed in 
this paper. 

C. Adaptive Route Choice Control Based on Ant Flow 
In the previous studies, ants choose destination mainly 

based on pheromone values and heuristic information. 
The research of Dussutour [39] about moving of ant 
colony on two symmetrical bridges with different width 
has revealed another impact factor—ant flow. Form his 
experiment, all the ants almost choose the same bridge 
when wider bridges and the numbers of ants become 
nearly equal on narrow bridges, as shown in Figure 5. It 
can be seen that pheromone can affect the path choice of 
the whole colony only if the ant flow of path is minor. It 
is caused by the method of ants on dealing with block: 
precedence ant will push the later to the branch road, as 
shown in figure 6, which means that the ACO is not a 
really parallel algorithm in fact since the precedence ants 
have priority on path choice. 

Inspired by this result, a limit on the ant flow of each 
path during the search process will not only expand 
search scope of ants, but also avoid the fast accumulation 
of pheromone caused by abnormally attraction of local 
optimal path. However, too strict limitation on ant flow 
will bring about the “narrow bridge phenomena” as 
shown in figure 5 also, in which the positive effect of 
pheromone is weaken too much and the algorithm is hard 
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to convergence. Therefore, the route choice control based 
on ant flow should also be adjusted adaptively by stages: 
paying more attention on global search during the initial 
search stages while accelerating algorithm convergence 
later. 

 

Figure 5.  Double Bridge Experiment of Dussutour [39] 

 

Figure 6.  The method of ants on dealing with block [39] 

Some variables have been introduced next: 
( )r

ij tN —ant flow, reflects the number of ants selecting 

path (i,j) at tht  iteration. 
( )r

ij tθ —flow valve, reflects the number of ants that are 

admit to choose path (i,j) at the tht  iteration, which is 
adjusted adaptively as (17). 

                max

max

( ) (1)
( ) ( 1) NC

NC

r r
r r ij ij
ij ijt t θ θθ θ

−
= − +                (17) 

Let (1)r
ijθ  be ant

P

Num
N

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥

 and antNum reflects the total 

number of ants in order to maximum the search space at 
the early stages since the maximum value of 0S  is n. 

Meanwhile, there is max( )NCr
ij antNumθ =  since all the 

ants may converge to the same tour at last.  
According to the result of reference [39], precedence 

ants have the priority on route choice when the path is 
saturated which brings out r

ijN < ( )r
ij tθ ⇔  ijP >0. 

However, 0S  will decrease gradually from n to 0 along 
with the finish of each part in DRCJSP-HW and there 
will be 0 ( )r

ant ij tNum S θ> ×  at the later period of 
scheduling which may result in super-saturated path. 
Therefore, ( )r

ij tθ  should be adjusted dynamic along 

with 0S . Overall, the pseudo-random proportional state 
transition rule based on ant flow control should be 
improved as(18): 

0

0

0
0

1 { }
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0
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arg max ij ij
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ij r rij

ij ij
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θ
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⎡ ⎤
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∈

⎧ ≤ ∧ ×⎪
⎪

∈ ∧ ≤ ×⎪
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× ⎡ ⎤⎪
⎢ ⎥> ∧ ≤ ×⎪
⎢ ⎥⎪ ⎢ ⎥×⎪

⎩
∑ ）

       (18) 

D. The discription of A-FC-ACOSA 

 

IV  SIMULATION AND ANALYSIS 

The proposed A-FC-ACOSA is coded on Matlab 
2006a with Inter Pentium 1.73 GHz and 512 RAM. In 
consideration of the fact that there is no classical 

DRCJSP-HW benchmark in existing investigation and in 
order to avoid the influence on the credibility of A-FC-
ACOSA algorithm caused by concrete instance, the 
simulation experiment of this paper not only utilizes the 
instance mentioned in section III, but also generates 10 

Step 1 Initial 
Establish the ant map, assign initial pheromone value for each 

path, establish candidate solution set 0S  in which the destination 
node is the first operation of each part and the selected 
probability of them are all equal to1/ PN . 
Step 2 Solution construction  

For t=1 to maxNC  
For a=1 to antNum  
While 0S φ≠  
Each ant selects destination node in accordance with the 

pseudo-random proportional state transition rule based on ant 
flow and record relative information of the selected operation in 
R. 

Update the available time set of machines and workers. 
Update 0S : replace the selected node with the further 

operation; allocate optimal combination of resources for the new 
operation based on heuristic strategy. 

End 
Convert the tour to schedule and calculate its fitness. 
End 
Compare all the schedules and obtain the fitness C

bestR of the 
optimal solution at this iteration step.  
Step 3 Local Search 

Initial temperature 0T ; 
While endkT T≥  
Count=0; 
While count< maxL  
Select an operation randomly and replace its resources 

combination with another one randomly. 
Recalculate the new fitness cos

new
tC  of the new schedule. 

Decide whether to accept new solution according to 
Metropolis rule: 

If accept  
Replace the old solution by new one and turn to temperature 

update process. 
Else 
Count=count+1; 
End 
End 
Temperature update: 0k

kT T α= . 
End 

Step 4 Parameters Update 
If LA 
Update four parameters as(15). 
Else if QA 
Update four parameters as(16). 
End 

Step 5 Information Update 
Local Pheromone Update; 
Global Pheromone Update; 
Ant Flow Update: The flow of path (i,j) plus 1 as soon as 

operation i is scheduled behind operation j for each solution of 

tht  iteration. 
End 
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benchmarks of different scales randomly which includes 
3 parts of information as below: 

 Process Information: the number of parts n is 
equal to 10 while the operation numbers of each part is a 
random number generated between 2 and 10, each 
operation can be operated with at least 2 kinds of 
machines and the standard process time obeys uniform 
distribution [2, 30]. Set the deadline of each part 

as 1

1

1

Pi ij k

ij k

m
P

d k
i m

j

k

n P M
Rnd

P M

t
P

H
=

=

=

= ×
∑

∑
∑

, in which Rnd is a random number in 

range from 1 to 1.5 for each part. 
 Resource Information: resources utilization and 

scheduling result are best when staffing level is 70%  
according to the research of ElMaraghy [7] and Sun [8]. 
Therefore, the number of machines m obeys U[5,10] and 
the number of workers w is set to 0.7m×⎡ ⎤⎢ ⎥ , the amount of 
skills of each worker is generated randomly between 1 
and 3 with the operating efficiency of each skill is 
generated randomly between 0.5 and 1, each machine is 
capable of being operated by one worker at least. 

 Cost Information: The resource with more 
flexible or higher efficiency is more expensive, thus the 
process cost per hour of machine is set to 

2

Time

M
FN

Mean

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥

（ ）  where 
M
FN  is the number of operations that can be processed on 

this machine while TimeMean  represents the mean process 
time of them. The worker salary is set to 10sume×  in which 
sume  indicates the sum of the efficiency values of each 
worker. Material cost of each part is set to multiply the 
number of its operations by 100 and the punishment to 
early and tardy job is 20 and 2

d
iP , respectively. 

A. Comparison on Resources Aloocation Strategies 
The combination of resources for each operation is 

recommended by resources allocation strategies which 
must affect the final schedules, so this paper applies a 
concrete instance and 10 random benchmarks to test the 
performance of different strategies. 
a. Concrete instance 

The computational results of simulation experiments of 
different strategies for the instance are given with QA-
FC-ACOSA algorithm with the parameters { antNum =100, 

maxNC =200, Q=100, calN =50}, as shown in table VI.  

TABLE VI.  RESOURCES ALLOCATION STRATEGIES EXPERIMENTS 

Resources 
Allocation 
Strategies 

QA- FC-TACOSA 

Global 
Optimal 

(GO) 

Standard 
Error 
(SE) 

Mean 
Result 
(MR) 

Number 
of 

Global 
Optimal 
(NGO) 

Convergence 
Times 
(CT) 

MRC 3512.47 66.22 3571.09 18.7 10.2 
MAC 3512.47 92.08 3623.75 16.5 21.5 

EFT-MAC 3512.47 24.74 3519.60 41.6 6.7 
SPT-MAC 3512.47 57.86 3541.18 18.3 24.4 
SPT-MU 3532.03 102.11 3703.19 3.5 31.5 

From the experiment results, the algorithm can obtain 
the global optimal solution with all strategies except SPT-
MU which is nothing to do with the cost index. The 
scheduling results and convergence performance are 
better when using the EFT-MAC and SPT-MAC which 

rely mainly on time index and secondarily on cost index 
than using MRC and MAC which only focus on cost 
index. Among them, EFT-MAC is the best and the most 
robustness strategy according the table VI. 
b. Random benchmark 

Table VII is the Analysis of Variance (ANOVA) on 
the comparison results of calculating by QA- FC-ACOSA 
with 5 strategies to solve 10 benchmarks for 10 times 
respectively. The results represents that there are obvious 
otherness of scheduling results among different resources 
allocation strategies according to Sig.<0.05 in the table. 

TABLE VII.  RESULTS OF ANOVA 

 Sum of 
Squares df Mean 

Squares F Sig. 

Contrast 6.706E9 4 1.676E9 41.059 .000 
Error 1.984E10 486 4.083E7   
Then the Post Hoc is processed to analysis the crux of 

otherness specifically and find out the best strategy, as 
shown in table VIII. From which, the EFT-MAC is better 
than the others in 95% probability confidence interval. 

TABLE VIII.  RESULTS OF POST HOC 

(I) 
Strategy 

(J) 
Strategy 

Mean Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

MRC 

MAC 1229.52 903.66 .174 -546.04 3005.07 

EFT-MAC 8376.59* 903.66 .000 6601.03 10152.15 

SPT-MAC 765.55 903.66 .397 -1010.04 2541.11 

SPT-MU -2613.56* 903.66 .004 -4389.12 -838.00 

MAC 

MRC -1229.51 903.66 .174 -3005.07 546.04 

EFT-MAC 7147.07* 903.66 .000 5371.51 8922.63 

SPT-MAC -463.95 903.66 .608 -2239.51 1311.60 

SPT-MU -3843.07* 903.66 .000 -5618.64 -2067.51 

EFT-MAC

MRC -8376.59* 903.66 .000 -10152.15 -6601.03 

MAC -7147.07* 903.66 .000 -8922.63 -5371.51 

SPT-MAC -7611.03* 903.66 .000 -9386.59 -5835.47 

SPT-MU -10990.15* 903.66 .000 -12765.71 -9214.59 

SPT-MAC

MRC -765.55 903.66 .397 -2541.11 1010.00 

MAC 463.95 903.66 .608 -1311.60 2239.51 

EFT-MAC 7611.03* 903.66 .000 5835.47 9386.59 

SPT-MU -3379.12* 903.66 .000 -5154.68 -1603.56 

SPT-MU 

MRC 2613.56* 903.66 .004 838.00 4389.1251

MAC 3843.07* 903.66 .000 2067.51 5618.6410

EFT-MAC 10990.15* 903.66 .000 9214.59 12765.7193

SPT-MAC 3379.12* 903.66 .000 1603.56 5154.6831

B. Comparison on Algorithm 
a. Concrete instance 

This paper utilizes the MAX-MIN Ant System(MMAS) 
in reference [36], ACOSA, and self-adaptive parameters 
ant colony algorithm without flow control(LS-ACOSA, 
QS-ACOSA), and A -ACOSA which is constructed based 
on ACOSA and the adaptive adjusting parameter ( )tρ  
proposed by reference [37] as the comparing algorithms. 
The parameters of them are 3α = , 1β = , 1 0.99ρ− = , 

0 0.3P = , antNum =50, maxNC =100. All algorithms are 
applied to calculate the concrete instance for 30 times and 
the results are compared, as shown in table IX. 
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In this table, only the MMAS couldn’t obtain the 
global optimal result which shows that it’s necessary to 
have local search mechanism when utilizing certain 
resources allocating strategy. On the other hand, although 
ACOSA has better result and more stable convergence 
performance, which is built on amounts of parameter 
configuration experiments. Meanwhile, compared to LS-
ACOSA, the QS-ACOSA can accelerate the convergence 
speed, but it is easy to drop in local optimal which is in 
accord with the analysis above. After the introduction of 
adaptive route choice control mechanism based on ant 
flow, the average quality of results and the convergence 
performance of A-FC-ACOSA are improved greatly 
comparing to A-ACOSA. Moreover, the improvements of 
global search ability at the elementary stages makes the 
QA-FC-ACOSA better than LA-FC-ACOSA on both 
mean result and convergence performance.  

TABLE IX.  ALGORITHMS COMPARING 

Comparing 
Algorithm GO GW SE MR NGR CT 

LA-TACOSA 3512.47 3701.99 32.49 3552.45 20.4 20.1 
QA-TACOSA 3512.47 3728.09 56.43 3567.36 27.0 14.1 

LA-FC-TACOSA 3512.47 3611.92 23.95 3522.86 40.2 9.9 
QA-FC-TACOSA 3512.47 3611.92 24.74 3519.60 41.6 6.7 

A -TACOSA 3512.47 3731.36 59.81 3559.28 26.8 25.7 
TACOSA 3512.47 3780.28 64.63 3544.12 25.7 19.8 

MMAS 3589.17 3701.40 22.45 3601.43 62.6 56.5 
b. Random benchmark 

10 groups of random benchmarks are solved by the 
mentioned algorithms above, the results of which has 
been shown in table X. Not all the algorithm can 
converge to the global optimal solution so that we only 
compare the fitness here. The performance of QA-FC-

ACOSA is improved obviously compared to QA-ACOSA 
and plays the best in most benchmarks while LA-FC-
ACOSA is the most stable algorithm still. 

V  CONCLUSION 

This paper has presented the application of Ant Colony 
Optimization with Simulated Annealing algorithm and 
adaptive adjusting parameters to solve dual resource 
constrained job shop scheduling problem with 
heterogeneous workers. The goal of the work was to gain 
some insight into the influence of resources allocation 
strategies on scheduling result and the improvement on 
convergence performance with adaptive adjusting 
parameters. According to the simulation experiments, the 
resources allocation strategy seems to play an important 
role in the construction of good solutions while EFT-
MAC which replies mainly on time index and secondarily 
on cost index leads to the best performance. Two 
adaptive adjusting schemes of parameters have been 
proposed in accordance with the test experiments of 
different parameters. The ACOSA with adaptive 
adjusting parameters based on quality of solution plays 
better than the other competing algorithms when utilizing 
the proposed adaptive route choice control mechanism 
based on ant flow which strengthen the global search 
ability at the early stages, according to the comparison 
experiment on both concrete instance and random 
benchmark. However, this research only take cost index 
into account, time index is another important criterion for 
evaluation in practice. Hence, multi-object DRCJSP-HW 
would be deeply researched in future. 

TABLE X.  ALGORITHMS COMPARING 

Comparing 
Algorithm Index B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 

LA-
ACOSA 

MR 174448.96  182837.03  323845.58  168913.41  390367.64  103933.45  292732.07  156661.75  343510.66  111165.96  
SE 2354.14  1988.50  8056.95  3129.60  3439.79  1516.74  5154.62  2801.62  7150.79  1234.28  

QA-
ACOSA 

MR 174523.49  183962.82  335946.04  173562.58  400015.56  106257.47  296849.27  161657.05  359375.97  114964.03  
SE 5103.87  1997.83  8474.56  5155.57  6669.94  1818.71  6945.32  4882.05  9493.60  1917.33  

LA-FC-
ACOSA 

MR 174695.33  181862.33  323732.16  166347.10  388941.77  102970.90  291505.95  155598.14  344408.85  111808.04  
SE 2418.22  1827.77  2606.23  2671.05  4478.87  1267.77  3104.25  2772.61  3568.07  1230.55  

QA-FC-
ACOSA 

MR 174049.85  180768.15  323743.12  166899.90  387737.84  103177.32  290071.50  155308.75  337244.62  111568.42  
SE 2562.48  1874.27  2019.01  2619.39  6531.01  1356.94  2329.95  1508.76  8305.63  1512.84  

A -ACOSA MR 175812.31  184227.56  331992.37  170978.40  394422.52  106037.42  295065.49  158346.19  353268.94  113430.95  
SE 3816.66  2447.32  5513.89  3061.85  3454.43  1327.92  6280.18  2944.62  12235.64  2457.00  

ACOSA MR 179347.90  182005.89  331297.68  169028.23  392535.16  104458.03  297418.65  157093.74  349188.99  113493.36  
SE 1995.28  2852.35  4810.59  4216.89  3400.90  1031.90  3388.16  2298.17  5535.86  1424.77  

MMAS MR 192230.14  194185.38  379203.56  190814.40  425263.46  111553.17  334307.97  175375.42  412487.60  120781.73  
SE 2959.18  2879.13  4839.47  2959.90  2843.20  1584.68  6764.61  3181.30  5805.11  2070.27  
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