
Towards a Conceptual Framework to Support
Dynamic Service Provisioning for
Non-Technical Service Clients

Luiz Olavo Bonino da Silva Santos, Vikram Sorathia, Luı́s Ferreira Pires, Marten J. van Sinderen
Centre for Telematics and Information Technology, University of Twente, The Netherlands

Email: {l.o.bonino, v.s.sorathia, l.ferreirapires, m.j.vansinderen}@ewi.utwente.nl

Abstract—Recently, paradigms such as Service-Oriented
and Pervasive Computing are being combined and applied
in scenarios where users are surrounded by a plethora
of computing devices and available services. Dealing with
a potentially large number of devices and services can
become overwhelming to users without appropriate software
support. Moreover, in the case of non-technical users, an
additional difficulty is to express service requests using
technical concepts such as data types, XML documents,
etc. In this paper we present a conceptual framework that
aims at supporting the service provisioning for non-technical
users, and we focus on the design and operation of the
framework’s software platform. The platform also makes
use of computing devices that surround the users to collect
contextual information that helps in the tasks of service
discovery, selection and composition.

Index Terms—service-oriented computing, ontology, seman-
tic web, service provisioning, goal

I. INTRODUCTION

Service-Oriented Computing (SOC) is a paradigm for
the design, use and management of distributed system
applications in the form of services. The vision of SOC is
that services represent distributed pieces of functionality
that can be combined (composed, in SOC terms) to
generate new (and more added-value) functionality [1].
In an ideal scenario based on this vision, a service client
expresses requirements to a software infrastructure, and
the infrastructure discovers, selects and invokes services
without the need of further human interaction. Non-
functional requirements such as cost, trust and privacy,
amongst others, should also be stated by the service client
and resolved automatically by the infrastructure.
Although completely automatic service provisioning is

the ultimate goal of SOC, much work still has to be done
to realize this vision. Scenarios with significant numbers
of available services, service providers and service clients,
may give rise to issues such as: (i) how to express service
requests in a more intuitive way (suited for non-technical
end-users); (ii) how to tackle semantic interoperability

This paper is based on “Service Provisioning Support for Non-
Technical Service Clients,” by L.O. Bonino da Silva Santos, L. Ferreira
Pires, and M. J. van Sinderen, which appeared in the Proceedings of the
1st International Symposium on Middleware and Network Applications
(MNA 2010), Las Vegas, USA, April 2010, part of the 7th International
Conference on Information Technology : New Generations (ITNG
2010). c© 2010 IEEE.

issues among service requests, service descriptions and
the internal interpretation of terms in the service operation
that use different conceptual models; and (iii) how to
support the discovery, selection and invocation of services
that fulfill the service client’s goals in the least disruptive
and invasive manner.
The SOC vision also overlaps with some of the char-

acteristics of Pervasive Computing. In his seminal paper
about Pervasive Computing (also known as Ubiquitous
Computing), Weiser foresaw that computing, sensing and
communication devices would be transparently embedded
in our surrounding environment [2]. These computer-
enriched environments would grant access to information
and services everywhere and anytime. Readily available
information can contribute to the realization of the SOC
vision specially by allowing a software infrastructure to
gather information related to service execution without
needing direct user interaction.
In our work we are particularly interested in scenarios

where non-technical users are surrounded by computer-
enabled devices and sensors, and a large number of
services is available. In these scenarios, additional support
should be provided to the end-users to help them deal with
the (possibly) overwhelming amount of decisions and
interactions regarding service provisioning steps, namely,
service request specification, service discovery, selection,
agreement, composition and invocation.
In this paper we present a conceptual framework to

support dynamic service provisioning to non-technical
users. Among the components of the framework we focus
on the supporting software platform that intermediates the
interactions between service clients and service providers.
The main benefits of our framework are to allow service
clients to express their service requests using concepts
closer to their natural perception and to reduce the need
of direct user interactions with the services. The paper
also discusses the motivation and requirements for this
conceptual framework (and consequently for the software
platform) and provides an example that illustrates how
this framework can be used and how the software platform
should operate.
This paper is further structured as follows. Section

II presents motivational scenarios for the proposed con-
ceptual framework that we have used to identify the
framework’s stakeholders and its requirements. Section III

564 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.564-573



presents the stakeholders we have identified by analyzing
the motivational scenarios, and Section IV presents the
requirements derived from this analysis. Section V gives
an overview of the conceptual framework components
and, in particular, presents the architecture of the software
service platform and its functional components. Section
VI presents an usage scenario to illustrate the operation of
the framework and, in particular, to demonstrate how the
software platform supports dynamic service provisioning.
Finally, Section VII gives our conclusions and identifies
topics for future work.

II. MOTIVATIONAL SCENARIOS
The main objective of our framework is to support

dynamic service provisioning. To identify classes of
stakeholders involved in service provisioning and their
interaction patterns, we have selected a set of moti-
vational scenarios. These scenarios have been selected
from the ones identified, investigated and validated in
the scope of the Amigo [3], A-Muse [4] and U-Care [5]
projects. In our work we have focused in the areas of
Ambient Intelligence and Health Care. These areas have
been chosen because they provide provide scenarios with
evident usefulness and applicability to a wide range of
people. Due to space constraints we selected only three
scenarios that cover the issues we target in this paper.
The following motivational scenarios have been used to
identify service provisioning stakeholders and to initially
assess requirements for dynamic service provisioning:
Motivational scenario #1: Customized ambient com-

fort
John is a professional who lives in a city house but

also owns a beach house and a mountain cabin. He
has ambient comfort preferences such as light intensity,
light color, temperature and humidity that he expects
to be automatically applied on all houses and working
environments he uses. Additionally he would like that
incoming messages are delivered according to his current
activities. For instance, when he is in a meeting, voice
messages should be transcribed and delivered in textual
form on his smartphone, or when he is driving, text
messages should be delivered in an audible form through
his car’s audio system. This use case was identified in the
Amigo project [3].
Motivational scenario #2: Emergency assistance for

epilepsy
Maria has a chronic epileptic condition. However, she

wants to carry on with her life as normally as possible. As
a daily routine, every morning she runs in the park near
her house. Nowadays it is possible to detect an imminent
epileptic seizure based on body signals. Therefore she
wants to be warned if her body signals reach a critical
point so she can stop running and try to put herself in a
resting position. Concurrently, a relative or friend which is
closer to her location should be warned of her potentially
coming seizure and head on to her whereabouts. The
assigned or on-duty caregiver should also receive informa-
tion about her body signals, her location, which relative

or friend has been warned and when and how far he/she
is from Maria’s location. This information is used by the
caregiver to decide to send an ambulance (depending on
the severity of the body signals) or to contact the warned
relative or friend to provide further assistance instructions
and receive extra situation assessment. This use case was
identified in the A-Muse project [4].
Motivational scenario #3: Controlled use of medicine

by home-bound elderly patients
Peter and Sofia are an elderly couple living alone at

their home. Peter suffers from high blood pressure and has
to take some controlled medicine. His medicine varies in
frequency and schedule. Sofia has a mild diabetes that can
be normally controlled via her diet and only in exceptional
cases she needs to take an insulin shot. Both of them are in
the initial phase of senility, presenting occasional memory
lapses. Therefore, a mechanism to remind them to take
their medicine is in place so they do not need to have
to move to a nursing home, which could degrade their
quality of life. This use case was identified in the U-Care
project [5].

III. STAKEHOLDERS
Below we describe the stakeholders’ roles involved in

service provisioning that we have identified from the use
case scenarios presented in Section II:

• Service Client. Responsible for requesting services
and deal with possible negotiations over the service
provisioning terms. For example, a frequent traveler
can negotiate with an airline for discounts on a bulk
purchase of tickets or a company can get a faster
delivery of supplies after negotiating a transport
service. With the service contract, commitments are
established between the Service Client and the entity
providing the service. These commitments define the
Service Client’s rights and obligations in the scope of
the contracted service. Examples of Service Client’s
obligations are the payment of a specified amount
for the service delivery or the availability of some
information required for the service execution. Our
definition of Service Client is similar to the concepts
of service customer in [6], service client in [7],
service consumer in [8] and service requester in [9],
[10].

• Service Beneficiary. This role is played by the pri-
mary entity that perceives the benefits of the ser-
vice delivery. In our work we distinguish a Service
Client, which requests and contracts a service, from
a Service Beneficiary. These roles may or may not be
performed by the same entity. For example, a parent
contracts the education services of a school for his
child while the direct beneficiary of the service is the
child. In our motivational scenario #3, although the
health insurance provider have hired the home health
care company, the direct beneficiaries of the service
are Peter and Sofia. We categorize as performing
the role of Service Beneficiary the entities benefiting
from a service, which is requested by the Service

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 565

© 2011 ACADEMY PUBLISHER



Client with the explicit intention of benefiting the
Service Beneficiary.

• Service Provider. Responsible for the service itself,
the Service Provider advertises its offered services
and commits with the execution of the activities
described in the service advertisement once a service
is contracted by the Service Client. Our definition of
Service Provider is similar to the concepts of service
trustee in [6] and service provider in [8]–[10].

• Service Executor. The entity responsible for execut-
ing the activities related to the service. Although the
individual performing the role of Service Provider
is responsible (and liable) for the service w.r.t. the
Service Client, the execution of the service task can
be delegated to the Service Executor. The distinc-
tion between Service Executor and Service Provider
allows the clear separation of responsibilities and
obligations between these two entities. Our definition
of Service Executor is similar to the concept of
service producer presented in [6].

• Context Provider. Responsible for supplying mech-
anisms that allow the supporting platform to request
and transparently gather contextual information of
users. The contextual information is used by the
platform to reduce the need for direct user interac-
tion. These mechanisms include information gath-
ered from user’s personal information sources such
as profiles, calendar events, appointments, travel
bookings, etc., or from sensor devices such as lo-
cation (from motion detectors, GPS, etc.), blood
pressure, heart rate and weight, amongst others.

IV. SERVICE PROVISIONING REQUIREMENTS

We have analyzed the motivational scenarios and the
stakeholders to come up with a set of functional and
non-functional requirements for our proposed conceptual
framework to support dynamic service provisioning. The
motivational scenarios allowed us to identify the needs for
dynamic service provisioning and gave us insights about
how the stakeholders could interact with a supporting soft-
ware platform. However, the supporting software platform
should be accompanied with a set of technologies and
guidelines, forming our proposed framework, as discussed
in Section V. The most relevant requirements for the
purpose of this paper are briefly described as follows:
1) Domain independence. The motivational scenar-
ios presented in this paper relate to two different
domains, namely, ambient intelligence and home
health care. Scenarios related to other domains
are also being considered in our work. Therefore,
the supporting service platform should be able to
operate in different domains while keeping the same
functional properties and benefits for its users.

2) Reduced user interaction. The framework should
reduce the need of direct user interaction. Since we
are considering Pervasive Computing and Services
environments, constant requests for user interaction
when devices and services need some information

would lead to undesirable disruptions of the users’
routine. The supporting platform should make use
of context-aware mechanisms to gather the neces-
sary information aiming at reducing user interac-
tion.

3) Abstract service request. By targeting our frame-
work’s support on non-technical end-users, we im-
pose a restriction on how the users request service
provisioning. We claim that non-technical end-users
would have difficulties specifying service requests
using current computer-based service technologies
such as WSDL [11] and WSMO/WSMX [12],
[13]. These difficulties relate to mandatory use of
computer-related technicalities such as data types,
XML formatting, URLs, URIs, ports, among others,
to specify a service request and interact with the
discovered services [14]. Therefore, to be able to
appropriately support non-technical end-users, the
framework should provide an intuitive way of re-
questing services.

4) Intelligence and interoperability. To allow reason-
ing and reduce issues related to semantic interoper-
ability, the interactions between the supporting ser-
vice platform and its users should be semantically-
enriched. Furthermore, the internal operation of the
platform is expected to benefit from the provided
semantics. For instance, when searching for a ser-
vice using a set of parameters, the platform can
find candidate services whose parameters are not
exact matches but are close enough, by applying
subsumption [15].

5) User support. The platform should support all its
users with interfaces, APIs and tooling according
to each user’s objectives. The service client should
be supported according to its technical expertise
and based on the domain’s needs. For instance, a
service client in the home health care domain such
as Peter and Sofia from use-case scenario 3, could
interact with the supporting platform through their
TV set, facilitating the visualization of the interface
items. In contrast, supposing Maria (from use-case
scenario 2) is technologically savvy, she interacts
with the supporting service platform through a web
interface on her computer as well as through her
smartphone.
Service Providers require tools to support them in
tasks such as service description publishing and
maintenance (insertion, update and deletion) and se-
mantic annotation of the service descriptions. More-
over, the supporting platform can provide feedback
on service usage, and information about services
that have been requested by users but have not been
offered by any Service Provider.
Context Providers require tooling support to man-
age the registration of their provided contextual
information as well as to provide semantic anno-
tations for the provided information.

6) Modularity. The platform should be designed to

566 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



be modular in order to allow the substitution of
particular elements according to evolution of the
requirements, changes in the available technolo-
gies and specific characteristics of the applications
domains. For example, the change of a Service
Client’s interfaces mentioned in requirement 5 can
possibly be achieved by a modular design.

V. FRAMEWORK DESIGN
Our solution for service provisioning support has been

defined in the scope of a conceptual framework. Our
framework consists of a set of technologies and tech-
niques to address the problem of dynamic service pro-
visioning. To define the framework architecture and its
components we have analyzed the service provisioning
support requirements discussed in Section IV. We adopted
a bottom-up approach, i.e., we started with the service
provisioning software platform that intermediates the in-
teraction between service provisioning stakeholders, and
then we moved upwards on the conceptual layers towards
the enabling technologies and techniques necessary to
support the operation of the software platform, which
should comply with the discussed requirements.
Analyzing our requirements, in particular requirement

4, we have identified a new stakeholder, namely the Do-
main Specialist. The Domain Specialist is responsible for
providing knowledge about a given domain, which allows
the software platform to take into account the specific
characteristics of the domain. In our framework, this
domain knowledge is provided to the supporting service
platform using domain ontologies. Therefore, the Domain
Specialist is responsible for defining domain ontologies
and submitting them to the platform. Additionally, the
supporting service platform should provide facilities to
help Domain Specialists define and manage their domain
ontologies.
Figure 1 depicts our Goal-Based Service Framework

(GSF) [16] for dynamic service provisioning. The main
elements of the GSF are the following:

• Goal-based Service Ontology (GSO). This founda-
tional ontology defines domain-independent concepts
such as service, stakeholder, organization, goal and
task, and their relations. These definitions are further
used and specialized in the domain ontologies. GSO
extends the Unified Foundational Ontology (UFO)
[17] by adding concepts related to SOC and by
relating the concepts of goal, task and service.

• Domain modeling language. The Goal-Based Ser-
vice Metamodel represents the concepts defined in
the GSO and defines the language (the Goal-Based
Domain Specification Language) used by domain
specialists to create domain ontologies.

• Domain ontologies. Defined using the Goal-Based
Domain Specification Language (GDSL), domain
ontologies provide shared knowledge about particu-
lar domains. The domain ontologies define domain-
specific concepts, the relations among these con-
cepts, the valid goals for that domain, valid tasks

Goal-Based Service Ontology

Goal-Based Service Metamodel

Goal-Based Domain Specification Language

Context-Aware Service Platform

ServicesDomain OntologiesDomain knowledge

Software platform support

Domain modeling language

Foundational ontology UFO

is transformed to

annotates

supported by

describes

used to model

Figure 1. Framework for service provisioning

Service
Client

Service
Provider

Domain
Specialist

Context-Aware Service Platform

Client 
Interface

Service 
Composer

Domain 
Specialist 
Interface

Provider 
Interface

Registry 
Manager

Service 
Finder

Service 
Requester

CA 
Controller

Service 
Invoker

Rule 
Manager

Context 
Manager

Event 
Monitor

Service 
Repository

Ontology 
Registry

Context
Provider

Figure 2. Architectural design of CASP

in that domain and how they relate to the domain
goals, etc.

• Context-Aware Service platform (CASP). This plat-
form supports interactions between service providers
and service clients. From the service provider’s
perspective, the platform supports the publication
of service descriptions. From the service client’s
perspective, the platform provides mechanisms for
service discovery, composition, invocation and mon-
itoring, amongst others.

Figure 2 depicts the architectural design of the CASP.
We have separated the platform’s components in three
main areas and we describe these areas in the sequel.

A. Stakeholders’ Interface Components
Figure 2 shows that the CASP supports the interac-

tions with its stakeholders by providing a set of inter-
face components, namely, Client Interface (for Service
Clients), Provider Interface (for Service Providers), Do-
main Specialist Interface (for Domain Specialists) and
Context Manager (for Context Providers). These interface
components provide APIs that allow GUI applications to
interact with the platform. Stakeholders interact with the
platform by using either the GUI applications or directly
through the APIs.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 567

© 2011 ACADEMY PUBLISHER



22

Light intensity

Light color

Temperature

light yellow

Adjust when in a room

Epilepsy Control

Home Health Care

Ambient comfort 22

Allow roaming

Favorite media available

Figure 3. Service Client’s GUI application screenshots

The Provider Interface component’s API offers methods
to retrieve available domain ontologies (to be used to se-
mantically annotate the service descriptions), manage the
service descriptions’ registration (add, update and delete)
and to manage the registration of the Service Provider to
the platform. The Service Provider’s registration is used
to control the ownership of the published services and to
give feedback to the providers when a client requests a
service that cannot be found in the service registry. In
this way the Service Providers can add new services for
which clients have expressed an interest.
The Domain Specialist Interface component’s API of-

fers methods to manage the registration of Domain Spe-
cialists and of domain ontologies (add, update and delete).
The CASP includes a GDSL editor to help Domain
Specialists define domain ontologies.
The Context Manager component’s API offers methods

to manage the registration of the Context Providers, to
manage the registration of the contextual information
they provide and to retrieve available domain ontologies,
which are used to semantically annotate the contextual
information descriptions.
The Client Interface component’s API offers methods

that allow Service Clients to submit their service requests,
to receive the results of the service execution and to enter
information required by the services but that could not
be gathered by the platform as contextual information. In
the GSF we use the concept of Goal as an abstraction to
represent the client’s service request. Goal is the proposi-
tional content of a service client’s intention, i.e., a service
client not only wishes something to be accomplished but
is committed to its fulfillment [18]. In our approach, we
represent a goal by a description of a particular state of
affairs that satisfies the goal. For instance, the goal of
having your house’s ambient comfort set can be satis-
fied by specifying the room’s temperature and lighting
settings. Figure 3 depicts our prototype Service Client’s
GUI application for the Ambient Comfort domain.
Figure 2 also shows that the CASP has two main repos-

itories, namely the Service Registry for storing service de-
scriptions and the Ontology Repository for storing domain
ontologies. These two repositories are accessible through
the Registry Manager, which provides methods to other
components for retrieving, updating and deleting service

descriptions and ontologies, while abstracting from the
technical details of the repositories’ implementations. In
our prototype the domain ontologies are specified in OWL
[19] and the service descriptions in SAWSDL [20]. The
choice for these languages is justified by the availability
of tools [21]. In our work we used Fusion Semantic
Repository [22] as service registry, WSMO Editor [23]
for semantic annotation of service descriptions by service
providers and Sesame 2 [24] as ontology repository.

B. Service Provisioning Components
After receiving the Service Client’s goal, represented

as the state-of-affairs that satisfies the goal, the Client
Interface component forwards it to the Service Requester
component. The Service Requester is responsible for gen-
erating a service request using the CASP’s internal format,
which contains not only the goal to be fulfilled but also the
provided inputs and pre-conditions, and expected effects
and post-conditions. We assume that a service fulfills a
service client’s goal if the state-of-affairs resulting from
the outcome of its execution (i.e., its effects) matches the
state-of-affairs defined by the service client that represents
the goal.
To generate the service request the Service Requester

component queries the Context-Aware Controller for
client’s available contextual information that could be
used as inputs for services. For instance, a service that
provides current temperature could make use of the
client’s current location (one of the client’s contextual
information) as an input parameter. After being generated,
the service request is submitted to the Service Finder,
which proceeds to discover the candidate service(s). In
case no single service fully complies with the service
request, a composition is requested to the Service Com-
poser component. To compose the services, the Service
Composer uses information present in the domain ontol-
ogy regarding the processes acceptable in that domain
that fulfill the user’s goals. The process information can
be structured in a hierarchy of processes/sub-processes,
giving the Service Composer a template for service com-
position. For instance, if no service could be discovered to
fully book a trip in a travel domain, the Service Composer
gather the process information from the domain ontology
defining that the book a trip process is composed of “book
a flight”, “book a hotel” and “book a car” sub-processes.
Therefore, the Service Composer can continue to search
for services that provide the functionality of these sub-
processes.
Once the service’s pre-conditions have been met, the

service invocation is performed by the Service Invoker.
Before invoking the service, the Service Invoker checks
whether the contextual information is still valid for the
pre-selected services. For instance, a client could have
requested services providing information about nearby
restaurants before meal times and the platform pre-
selected a service giving this information for the region
of the client’s residence. However, in the meantime the
client may have traveled to another city not covered by

568 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



the original service. The Service Invoker uses contextual
information to detect this situation change and requests
a new service discovery to the Service Finder. After
service invocation, the Service Invoker submits the ser-
vice’s outputs to the Client Interface to properly inform
the service client. The Service Finder, Service Composer
and Service Invoker components are extensions of the
DynamiCOS semantic service discovery and composition
platform discussed in [25].

C. Context-Aware Components
The context-aware components are responsible for

gathering contextual information and providing it to the
other platform components. The platform uses contextual
information to (i) increase the accuracy and suitability of
the selected services, and (ii) provide input information
for services. The Context-Aware Controller receives a
list of requested pieces of information (e.g., John’s lo-
cation or the living room’s temperature). The contextual
information can be requested for single use, or can be
subscribed to if the platform needs continuous updates of
that information.
When the request for contextual information is re-

ceived, the Context-Aware Controller forwards it to the
Event Monitor component, which queries the Context
Manager for the availability of this information. Context
Providers register their contextual information through the
Context Manager. This registration contains details such
as the provided information and update frequency.
When a contextual information is needed for unique

and immediate usage, the Event Monitor queries the
Context Manager which, in case the information is avail-
able, returns the requested contextual information back
to the information’s requester. However, some contextual
information may be needed under certain conditions, for
a certain amount of times, or in some point in the
future. In this case, the context-aware components adopt
a subscription approach. When subscribed contextual
information is requested, the Context-Aware Controller
generates an Event-Control-Action (ECA) rule containing
the requested information, and when and how frequent
this information is required. This rule is managed by the
Rule Manager component. The context-aware components
that have been built in our prototype are extensions of
the Context Management Service and Awareness and
Notification Service discussed in [26].

VI. DYNAMIC SERVICE PROVISIONING EXAMPLE

We motivate and illustrate the applicability of our ap-
proach with a usage scenario in the health care domain. A
health care service transaction may span multiple service
providers. A service client may select and access the
service of any of the available providers. As depicted
in Figure 4, once a health condition is reached, the
patient (service client) can decide to consult a General
Practitioner (service provider). There can be many GPs
available and the patient can select a practitioner by

Figure 4. Service provider selection in a typical health care service
consumption scenario

evaluating criteria like geographical proximity, availabil-
ity of earliest appointment or reputation. During the
consultation, the GP may request additional tests. From
the pool of medical laboratories, the patient again needs
to select a suitable provider based on various criteria.
The tests’ results are evaluated by the GP, who prescribes
the treatment and possibly some medication drugs. Once
again, the patient needs to choose a provider from a pool
of pharmacists. Additionally, as the patient is receiving
the health service(s), some or all the financial aspects are
covered by her insurance company, which she has selected
much earlier from an insurance service providers pool.
Hence, in this typical health care scenario, the actual

service provision may include several providers. Each
provider can be selected independently, but the services
they provide may fulfill specific preconditions. For in-
stance, laboratories typically require a test request from a
GP or Medical Expert stating the test specifications. Here,
the prescription can be seen as the outcome of a service
transaction carried out by the GP or Medical Expert.
Similarly, pharmacies often require a drug prescription
before they deliver the requested drug.

A. Domain modeling
A health care domain ontology is modeled by spe-

cializing or instantiating concepts of the GSO. Figure
5 shows an excerpt of the GSO that gives the relation
between services and tasks. In GSO, services (commit
to) perform tasks. A Service Task Type is a sub-category
of Action Type, which can be instantiated by an Action
(an individual) creating a Situation. This Situation (state-
of-affairs) is the outcome of a service execution and can
be related to what is commonly referred to in SOC as
service effect. The service task also requires some inputs
and creates outputs. In our use case scenario, medical con-
sultation, medicine delivery and medical test performance
are modeled as Social Services. The medicine delivery
social service requires a medical prescription as input type
and its execution creates a situation where the service

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 569

© 2011 ACADEMY PUBLISHER



Action Type (Plan)
(UFO) Task Type

Service Task TypeService Type
performs

1..*1

Social Service Task 
Type

Social Service 
Type

performs

1..*1

Computational Service 
Task Type

Computational 
Service Type

performs

1..*1

automates 0..*

0..*

Action
(UFO)

<<instantiate>>

Situation
(UFO)

creates

Output Type
creates

0..*1..*

Input Type
requires

0..*

1..*

Figure 5. Services and tasks

client has access to the prescribed medicine. Similarly,
the medical test performance social service requires the
input of a medical request, creates some information as
test’s result, and its execution creates a situation in which
the doctor has access to the results.
Figure 6 shows another excerpt of the GSO that gives

the relations between Service Type, Service Client Type
and Service Provider Type. Services types can be specified
in a given domain by associating them with service
provider types that can offer certain kinds of services,
and service client types that can request these kinds of
services. Service clients and service providers are related
by the agreements concerning service provisioning. This
relation can be established whenever a service client
finds a service whose related task creates a situation that
satisfies the service client’s goal. The Service Provision
Event Type represents types of events that can contribute
to or enable service provision, such as Service Negotiation
Type, Service Discovery Type and Service Activation Type.
Due to space limitations, not all events are depicted in
Figure 6. When a service client discovers and selects a ser-
vice, a negotiation takes place to determine the conditions
and constraints for the service provisioning. A successful
negotiation creates a Service Agreement Type. This service
agreement is a social relator that binds the service client
and service provider. A Service Agreement Type can be
composed of a set of commitments and claims, e.g.,
the commitment of providing the service under certain
conditions and for a specified cost. This social relator (the
Service Agreement Type) can be described in a contract
(omitted in Figure 6), which is a normative description
[27].
In our use case scenario, a patient is a Service Client

Type, while health insurance companies, pharmacies, gen-
eral practitioners, medical experts and laboratories are
Service Provider Types. When closing the deal for a health
insurance, the agreements between the health insurance
company and the patient are realized in a health insurance
contract, which is a Service Agreement Type in our health
care domain.
Figure 7 depicts the service description concepts. In

GSO, we consider that different parts of a service have
different descriptions. The Service Profile provides an
overview of the service for advertisement purposes. It de-
scribes what the service does (in a human readable form),
its requirements and conditions. Service-level agreement

Event Type
(UFO)

Service Type

1

1..*

Service Provisioning 
Event Type

Service Provisioning 
Action Type

Service Activation 
Type

Service Discovery 
Type

Service Negotiation 
Type

Social Relator Type
(UFO)

Service Agreement 
Type

Service Client Type

activatesServiceIn >
1..*

hasClientType

*

creates
1..*

1..*

Service Provider Type

offers1..*

1..*

1..* 1

hasServiceType

Figure 6. Service provisioning events

performs

1 1..*
Service 

Service 
Description
has

1

1..*

Service Prole Service Model Service 
Grounding

Service Task

1..*

1 describes

Service Interface

1..*

1 describes

1..*

has

describes

1

1..*

Figure 7. Service description

parameters can also be included and used in the service
negotiation. The Service Model describes the Service Task
and provides information about the activities involved in
the Service Task execution. The Service Model is used
to assess the service’s behavior, i.e., the set of activities
performed by the service. The Service Model can be
used for service monitoring and orchestration (outside the
scope of this paper). Moreover, the Service Model can be
described at different granularity levels allowing a more
superficial or more in-depth view of the Service Task. The
Service Grounding describes the Service Interface. The
Service Interface defines information necessary to invoke
the service, i.e., to trigger service execution. In the case of
Computational Services, the Service Interface defines the
technology-specific information necessary to invoke the
service, namely, the communication protocol, parameters’
types and URI. GSO does not commit to any particular
language to describe services, such as WSDL, OWL-S or
SAWSDL, so that any of these languages could be used
to instantiate the concepts defined in GSO.
The functional and non-functional parameters of ser-

vices can vary depending on the domain. Hence, domain
specialists can extend basic service concepts defined in
GSO to define domain-specific vocabularies for describ-
ing services in their respective domains.
Figure 8 depicts the Goal concept of GSO and how it

is related to tasks and ultimately to services. In GSO, a
Goal is owned by a Service Client Type. This ownership
relation defines a meta-commitment making that the in-
dividual instances of the Service Client Type have a goal
of certain kind. Formally, let S be a service client type
and g a goal, we have that S owns g iff for every instance
x of S there is an intention I that is an intrinsic property
of x (inheres in x) and g is the propositional content of I.
A Task in GSO is a specialization of the UFO concept

570 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



Agent Type

Proposition

ActionType

Goal

Service Client 
Type

owns

1..*

1..*

Task

AtomicTask ComplexTasksupports

*

1..*

2..*

Service

Service Provider 
Type

offers 1..*

1..*

*
*

performs

Figure 8. Goal, task and service

of Action Type. An Action in UFO is an intentional event,
i.e., an event performed by one or more agents in order
to accomplish a goal. In Figure 8, the relation performs
between Service and Task represents that instances of
Task are executed when the associated service is invoked.
Finally, the relation supports between task and goal
represents that a successful execution of that task satisfies
that goal.
Figure 9 shows that a Goal can be structured in

two different ways, namely, in a decomposition struc-
ture (GoalANDDecomposition) and in a specialization
structure (GoalORDecomposition). These two structures
have different implications for goal fulfillment. In the
decomposition structure, the fulfillment of the high-level
goal is accomplished with the fulfillment of all the sub-
goals. For instance, a high-level goal GetMedicalTreat-
ment is fulfilled when its sub-goals GetMedicalConsult
and GetMedicinePrescription have been fulfilled. Con-
versely, in the specialization structure, the fulfillment of
one sub-goal implies the fulfillment of the high-level goal.
Figure 9 also shows the causal chain of goal satisfaction.
An intention (of which a goal is its propositional content)
causes an action (an instance of a Task) to be performed,
i.e., since the intentional agent is committed to the goal
satisfaction, he acts accordingly to pursue its satisfaction.
The action creates a situation that satisfies the goal. The
use of situations to satisfy goals opens the possibility of
using a Fuzzy logic mechanism to assess partial satisfac-
tion (if necessary) of goals. Depending on the domain
being specified using GSO, the domain specialists can
define different degrees of goal satisfaction.
In our scenarios, we model that a Service Client has a

Goal. However, this service client cannot satisfy the goal
by his own and delegates the satisfaction for a third party,
namely, a Service Provider by means of a Service. The
service provider, bound by the agreements established in
the scope of the contracted service performs the actions
associated with the service, which creates a situation
fulfilling the service client’s goal.

B. Domain registry
Domain ontologies defined by the domain specialists

are used as reference ontologies by the Context-Aware

Agent

Action

IntentionalMoment

Intention

Proposition

Goal

GoalDecomposition

FormalRelation

GoalANDDecomposition GoalORDecomposition

1

* *

2..*

< propositional content of

1

11..*

*

1 1..*

< inheres in

1..*

*

participates in

1..*

Situation
1

creates

satises
*

*

1..*
causes

1..*

Figure 9. Goal satisfaction and composition

Service Platform (CASP). The health domain ontology
and other domain ontologies defined in a similar manner
are stored by the CASP in an ontology repository so
that they can be referred to at runtime for semantic
service provisioning. These ontologies are used to anno-
tate service descriptions and to support service requests.
In our prototype, we have used Sesame 2 [24], which
is an open source framework for storing, inferencing
and querying ontologies. The Sesame Server allows one
to build a repository that can be accessed through the
web-based OpenRDF Workbench or programmatically by
using query languages such as SeRQL and SPARQL
through the Storage And Inference Layer (SAIL) API.
Therefore, the CASP’s Ontology Registry has been im-
plemented using the Sesame 2 and the CASP Registry
Manager (Figure 2) accesses the ontology registry using
the SAIL API.

C. Semantic service selection
Initially, the service client defines to the CASP that

his/her main goal in the health care domain is to stay
healthy. Assuming that the initial state of the service
client is that s/he is healthy, the CASP can be configured
to collect user’s contextual information to identify any
situation that may trigger the need for a health service.
Remote patient monitoring technology can be used as
information source to collect user’s health-related infor-
mation to determine if the health service client is no
longer healthy and, therefore, needs medical attention.
Whenever the contextual information suggests the need
for medical attention, the CASP triggers a query to
identify all tasks that can be carried out to satisfy the
given goal. All tasks that fully or partially satisfy the
StayHealthy goal can be determined by the query depicted
in Figure 10.
This query is performed on the health domain ontology

and returns the service tasks PerformMedicalDiagnosis,
ProvideDrugs and ProvideMedicalConsultation, which
partially fulfill the stayHealthy goal. From the list of
identified tasks, another semantic query can determine the
tasks that can be performed first. The ordering is given
by the task decomposition primitives of GSO, allowing
the definition of structures of tasks and sub-tasks. The
CASP determines that ProvideMedicalConsultation is the
first task to be considered and, for performing this task,
appropriate service provider types should be identified. A

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 571

© 2011 ACADEMY PUBLISHER



Figure 10. Semantic query to determine service tasks for the given goal

Figure 11. Semantic query to determine Service Provider Type for the
given Service Task

semantic query can be performed to determine the service
provider type HealthServiceProvider that can perform
ProvideMedicalConsultation, as depicted in Figure 11.
There can be multiple instances of service providers

offering the same service. The CASP can use the user
context information to further refine the selection criteria.
The service grounding of the ProvideMedicalConsultation
service requires input parameters such as Location and
SupportedPaymentMethod, which can be employed as se-
lection criteria. Figure 12 shows a SPARQL query that can
be employed to identify the most suitable service provider
for this service from the available pool. The query indi-
cates that both the GSO (marked as 1 in Figure 12) and
the Domain ontology (marked as 2 in Figure 12) are used.
As individual domain ontologies are derived from the
GSO’s concepts, query of the various service parameters
defined in the GSO is allowed. The Service Grounding
(marked as 3) defines the domain-independent property
hasSupportedPaymentMethod, which can be filtered with
the domain-specific parameter MedicalPolicy101 (marked
as 4) enabling consistent search strategies that are appli-
cable in various service consumption scenarios.
The successful execution of this query indicates the

selection of the first service provider in a health care
consumption scenario depicted in Figure 4. Depending
upon the outcome of ProvideMedicalConsultation task,
the CASP can determine the next service task to be

Figure 12. Semantic query for Service Provider instance selection

executed to fulfill the given goal. The same process can
continue until the goal is fulfilled.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented our framework for support
of dynamic service provisioning. This framework has
been designed to target non-technical service client. We
claim that these clients have difficulties requesting and
interacting with services that use the current technolo-
gies related to Service-Oriented Computing (SOC). The
SOC-related technologies demand proper knowledge of
XML-based document formats, communication protocols,
service choreography and orchestration, amongst others.
To cope with this issue, our framework uses the concept
of goal as an abstraction to express service requirements.
This brings the concepts related to service request closer
to the user’s conceptualization, instead of forcing users to
use technical concepts as in traditional approaches.
The concept of goal and its relation to the concepts of

task and service are defined in a foundational ontology
that is used in our framework as the basis for a domain
specification language. This language is used by domain
specialists to define domain ontologies, which formalize
the knowledge of a given domain and allow the supporting
service platform to take into account the specific charac-
teristics of the corresponding domain.
To design of our framework we started by identifying

the stakeholders involved in service provisioning using
scenarios in the areas of health care and ambient intelli-
gence. After analyzing these scenarios and the identified
stakeholders, we came up with a set of functional and
non-functional requirements for dynamic service provi-
sioning that our framework should comply with. Then, the
architecture design of the framework and the supporting
service platform have been presented and discussed.
To demonstrate the applicability of our framework we

have provided an use case scenario in the health care
domain. Based on this scenario we discussed the modeling
of this domain and how the service platform operates to
support dynamic service provisioning.
The main benefits of the service platform are the sup-

port to service provisioning for non-technical users and
the use of contextual information. The use of contextual
information is used to both increase the accuracy and

572 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER



suitability of the selected services, and reduce the need
of direct user interaction by gathering information that is
used as input to services.
In the current stage, the service provisioning and the

context-aware components of the CASP have been im-
plemented. The service provisioning components used in
our prototype are based on the DynamiCOS framework
[25] and the context-aware components are based on the
Amigo’s ANS [26]. The integration of these two sets of
components is underway together with the deployment
of the Service Registry, Ontology Repository, Registry
Management and Stakeholders’ Interface components.
Moreover, more complex domains are being modeled
using the Goal-Based Domain Specification Language to
validate its appropriateness to specify domain ontologies.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing research roadmap,” European
Union Information Society Technologies (IST),
Directorate D, Tech. Rep., 2006. [Online]. Available:
http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf

[2] M. Weiser, “The computer for the 21st century,” SIG-
MOBILE Mobile Computing and Communications Review,
vol. 3, no. 3, pp. 3–11, 1999.

[3] “Amigo: Ambient intelligence for the net-
worked home environment,” http://www.hitech-
projects.com/euprojects/amigo/.

[4] “A-muse: Architectural modeling for service enabling in
freeband,” http://a-muse.freeband.nl/.

[5] “U-care: User-tailored homecare services platform,”
http://ucare.ewi.utwente.nl/.

[6] R. Ferrario and N. Guarino, “Towards an ontological
foundations for services science,” in Proceedings of Future
Internet Symposium 2008, D. Fensel and P. Traverso, Eds.
Springer Verlag, 2008.

[7] M. P. Papazoglou and D. Georgakopoulus, “Service-
oriented computing,” Communications of ACM, vol. 46,
no. 10, pp. 25–28, October 2003.

[8] K. Laskey, J. A. Estefan, F. G. McCabe, and D. Thornton,
“Reference architecture foundation for service oriented
architecture version 1.0,” Oasis, Committee Draft 02,
October 2009. [Online]. Available: http://docs.oasis-
open.org/soa-rm/soa-ra/v1.0/soa-ra-cd-02.pdf

[9] D. Booth, H. Haas, F. G. McCabe, E. Newcomer,
M. Champion, C. Ferris, and D. Orchard, “Web services
architecture,” http://www.w3.org/TR/ws-arch/, February
2004.

[10] S. Burbeck, “The tao of e-business services: The evolution
of web applications into service-oriented components with
web services,” Online document, IBM Software Group,
October 2000.

[11] “Web services description language (wsdl) ver-
sion 2.0 part 0: Primer.” [Online]. Avail-
able: http://www.w3.org/TR/2007/REC-wsdl20-primer-
20070626/

[12] J. de Bruijn, C. Bussler, J. Domingue, D. Fensel, M. Hepp,
M. Kifer, B. König-Ries, J. Kopecky, R. Lara, E. Oren,
A. Polleres, J. Scicluna, and M. Stollberg, “Web Service
Modeling Ontology (WSMO),” October 2006. [Online].
Available: http://www.wsmo.org/TR/d2/v1.3/20061021/

[13] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and
M. Zaremba, “Wsmx: A semantic service oriented mid-
dleware for b2b integration,” in Proceedings of the 4th
International Conference on Service Oriented Computing,

A. Dan and W. Lamersdorf, Eds., vol. 4294. Chicago,
USA: Springer-Verlag, December 2006, pp. 477–483.

[14] C. Rolland, R. S. Kaabi, and N. Kraı̈em, “On isoa: Inten-
tional services oriented architecture,” in Proceedings of the
19th International Conference on Advanced Information
Systems Engineering (CAiSE 2007), ser. Lecture Notes
in Computer Science, J. Krogstie, A. L. Opdahl, and
G. Sindre, Eds., vol. 4495. Springer Verlag, 2007, pp.
158–172.

[15] D. L. McGuinness and A. Borgida, “Explaining subsump-
tion in description logics,” in IJCAI (1), 1995, pp. 816–821.

[16] L. O. Bonino da Silva Santos, E. Gonçalves da Silva,
L. Ferreira Pires, and M. van Sinderen, “Towards a goal-
based service framework for dynamic service discovery
and composition,” in Proceedings of the 2009 Sixth In-
ternational Conference on Information Technology: New
Generations, 2009.

[17] G. Guizzardi, “Ontological foundations for structural con-
ceptual models,” Ph.D. dissertation, University of Twente,
2005.

[18] L. O. Bonino da Silva Santos, G. Guizzardi, R. Silva
Souza Guizzardi, E. Gonçalves da Silva, L. Ferreira Pires,
and M. J. van Sinderen, “Gso: Designing a well-founded
service ontology to support dynamic service discovery and
composition,” in 2nd International Workshop on Dynamic
and Declarative Business Process (DDBP 2009), Septem-
ber 2009.

[19] “Owl 2 web ontology language primer,” October 2009.
[Online]. Available: http://www.w3.org/TR/2009/REC-
owl2-primer-20091027/

[20] J. Farrell and H. Lausen, “Semantic annotations for
wsdl and xml schema,” August 2007. [Online]. Available:
http://www.w3.org/2002/ws/sawsdl/

[21] J. Cardoso, “The semantic web vision: Where are we?”
IEEE Intelligent Systems, vol. 22, pp. 84–88, 2007.

[22] D. Kourtesis and I. Paraskakis, “Web service discovery in
the FUSION semantic registry,” in BIS 2008 - 11th Inter-
national Conference on Business Information, ser. Lecture
Notes in Business Information Processing, W. Abramowicz
and D. Fensel, Eds., vol. 7. Springer, 2008, pp. 285–296.

[23] M. Dimitrov, A. Simov, V. Momtchev, and M. Konstanti-
nov, “WSMO Studio — a semantic web services modelling
environment for WSMO,” in ESWC ’07: Proceedings
of the 4th European conference on The Semantic Web.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 749–758.

[24] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame:
A generic architecture for storing and querying RDF and
RDF Schema,” in Proceedings of the first International
Semantic Web Conference (ISWC 2002), ser. Lecture Notes
in Computer Science, I. Horrocks and J. Hendler, Eds., vol.
2342. Sardinia, Italy: Springer Verlag, May 2002, pp. 54–
68.

[25] E. Gonçalves da Silva, L. Ferreira Pires, and M. J. van
Sinderen, “Supporting dynamic service composition at run-
time based on end-user requirements,” in User Generated
Services Workshop at the International Conference on
Service Oriented Computing (ICSOC 2009), November
2009.

[26] L. O. Bonino da Silva Santos, R. Poortinga-van Wijnen,
and P. Vink, “A service-oriented middleware for context-
aware applications,” in 5th International Workshop on
Middleware for Pervasive and Ad-Hoc Computing (MPAC
2007), November 2007.

[27] G. Guizzardi, R. Falbo, and R. S. S. Guizzardi, “Grounding
software domain ontologies in the unified foundational
ontology (ufo): The case of the ode software process on-
tology,” in 1th Iberoamerican Workshop on Requirements
Engineering and Software Environments (IDEAS’2008),
Recife, Brazil, 2008.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 573

© 2011 ACADEMY PUBLISHER


