
Towards Testing Web Applications Using
Functional Components

Zhongsheng Qian

School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, China
Email: changesme@163.com

Abstract—With the prevalence of Internet, the rapid
development of component, middleware and Web services,
and the wide application of the Web, the reliability and
quality assurance of Web applications have become a very
critical problem and a hot research topic. To ensure the
security and reliability of Web applications, Web testing is
one of the most effective methods. A Web application is
divided into a set of functional components, each of which
offers a certain kind of Web service. A Component
Dependency Diagram (CDD) is employed to represent the
structural relationship among the functional components;
FSMs are used to represent their behaviors and the
composition of FSMs to represent their interactions. It
presents two test criteria including complete executing
sequence coverage and component complete executing
sequence coverage. A detail test process is illustrated
according to the proposed test criteria.

Index Terms—Web application; functional component; test
case

I. INTRODUCTION

Web applications are among the fastest growing classes
of software systems today. These Web applications are
being used to support a wide range of important activities:
business transactions such as product sale and
distribution, scientific activities such as information
sharing and proposal review, and medical activities such
as expert system-based diagnoses. Given the importance
of such applications, bad Web applications can have
far-ranging consequences on businesses, economies,
scientific progress, health, and so on. Web testing is an
effective technique to ensure the quality of Web
applications. Traditional testing approaches are no longer
adequate for Web applications. Web applications typically
undergo maintenance at a faster rate than other software
systems and this maintenance often consists of small
incremental changes [1]. To accommodate such changes,
Web testing approaches must be automatable and test sets
must be adaptable. However, Web applications raise
important and challenging test issues that cannot be
solved directly by existing test techniques for
conventional programs [2-3]. Testing aims at finding
errors in the tested object and giving confidence in its
correct behavior by executing the tested object with
selected input values. We propose an approach to testing
Web applications based on functional components
according to the functional requirements of Web
applications.

The remainder of this paper is organized as follows.
Section II illustrates how to model a Web application
according to functional components. Section III presents
a modeling approach to dealing with the interactions of
functional components. Section IV details the test case
generation process. A survey of related work is given in
Section V. Section VI draws some concluding remarks
and highlights the future work.

II. FUNCTIONAL COMPONENTS FOR A WEB
APPLICATION

A computation unit that offers a certain kind of Web
service is regarded as a functional component. In Web
applications, a functional component may be an
individual Web page, a software module, or collections of
Web pages and software modules. A software module
may be a Java applet, an ActiveX control, or a Java Bean.
Web application testing focuses on the relationship
among their computation units (functional components).
We presume that the computation units are adequately
tested before proceeding with any further test in this work.
Two important concepts are given as follows.

 Functional component. A functional component
is a completely-encapsulated unit, which can
accomplish a function of the Web application
independently. It consists of component name
and two types of interfaces (Input and Output).
Data are sent to Output or received from Input
through different actions. A functional
component may be composed of several other
fine-grained functional components. In the view
of users, a Web application is regarded as a
black box, which can be divided into a set of
components according to its functions.

 Component connector. A component connector
is an abstract mechanism of communication,
mediation or coordination among components. It
is a bridge among components.

We take a miniature News Publishing Web application
as an example. The Web application is divided into a set
of functional components according to the functional
requirements. The Component Dependency Diagram
(CDD) is shown in Fig. 1. The dependent relationship
among components is represented by component
connectors. In Fig. 1, each arrow shows that if an event is
triggered by one component, then the component it
depends on must be executed first. For example, Login

740 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.4.740-745

must be run first to guarantee PublishNews to work
normally. The PublishNews consists of two functional
components: EditNews and NewsEditor. EditNews is a
component, which converts the news that the user edits
into the corresponding format and passes the result as an
output to NewsEditor. Then, NewsEditor adds the title,
date and the writer’s information to this news. While
NewsEditor transfers nothing to EditNews.

The News Publishing Web application can be defined
as a set of functional components. The top level set is
WebSet={PublishNews, UserManager, Login, Main,
Exit}; the UserManagerSet is a set of UserManager, i.e.,
UserManagerSet={ChangePassword,
ChangeUserName}; the PublishNewsSet is a set of
PublishNews, i.e., PublishNewsSet={EditNews,
NewsEditor}.

Figure 1. An example component dependency diagram

A functional component communicates with other
components asynchronously and synchronously by
passing messages that exchange data and activity state
information. The interactive relationship between two
components can be expressed by a Component Relation
Table (CRT), denoted as К={C, R}, where C is a set of all
the functional components; R={R1, R2, R3} is a set of
relations between any two specified functional
components with R1, R2, R3: C↔C, and

 (c1, c2)∈R1 iff c1∈c2;
 (c1, c2)∈R2 iff ∃ c∈C·c1∈c∧c2∈c;
 (c1, c2)∈R3 iff (c1, c2)∉R1∧(c1, c2)∉R2.

In Table I, the relationship among the components of
News Publishing Web application is clearly described, as
can also guide the test case generation. According to the
CDD and CRT given above, we can construct its formal
testing model based on FSM (without considering the
actions of components, see section III for the details of
the interactions of components), as is shown in Fig. 2.

TABLE I. THE COMPONENT RELATION TABLE

Component A
Components
B

Relation
Is
Interactive?

Login Main R3 No
Login Exit R3 No
ChangePassw
ord

ChangeUserN
ame

R2 No

NewsEditor EditNews R2 Yes
PublishNews UserManager R3 No
EidtNews NewsEditor R2 Yes
… … … … … … … …

Figure 2. The top FSM for the example component dependency diagram

The FSMs for the inner components of PublishNews
and UserManager are shown in Fig. 3 and Fig. 4
respectively.

Figure 3. The FSM for the inner components of PublishNews

Figure 4. The FSM for the inner components of UserManager

These two models are some different, for there is
dependent relationship among the inner components of
PublishNews (i.e., if we want to complete the execution
of PublishNews, then NewsEditor must be executed
before EditNews), while there is no dependent
relationship among the inner components of
UserManager (i.e., we can selectively execute
ChangeUserName or ChangePassword). However, the
interactions among components exist in all these two
situations.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 741

© 2011 ACADEMY PUBLISHER

III. MODELING THE INTERACTIONS OF
FUNCTIONAL COMPONENTS

A Web application is a highly interactive system,
which can be regarded as a set of interactive functional
components. The functional components interact with
each other according to their actions. When the output
action of one functional component corresponds to the
input action of another, it shows that an interaction occurs.
The behaviors and their interactions of functional
components can be described by FSMs. An FSM is a
quintuple (S, Act, δ, I, H), where

 S is a finite set of states;
 Act is a finite set of actions;
 δ ⊆ S × Σ × S is a finite set of transitions;
 I ⊆ S is a nonempty set of initial states and
 H is a tree-like structure corresponding to a

hierarchy of functional component IDs.
Additionally, we define Σ = ((C�{−}) × Act ×

(C�{−}))\({−} × Act × {−}), where C = {c�c is the
name of a functional component, c occurs in H} and the
symbol “−” specifies no component. The symbol (−, b,
B)∈Σ represents that the component B receives an action
b as an input; the symbol (A, a, −)∈Σ represents that the
component A sends an action a as an output; the symbol
(A, a, B)∈Σ, called internal symbol, represents that the
component A sends an action a as an output, and
synchronously the component B receives the action a as
an input.

The FSM of PublishNews is shown in Fig. 5 and the
actions table of functional components is given in Table
II.

Figure 5. The FSM for the interaction between NewsEditor and
EditNews

According to the constructing method in Fig. 5 and the
component actions table in Table 2 (note that, each action
of components corresponds to an actual operation), some
instances of FSMs for component interactions can be
given as follows:

 The FSM for NewsEditor with only one Output
action can be specified as:
FSM_NewsEditor = ({q0}, {a013}, {(q0,

(NewsEditor, a013, -), q0) }, {q0}, {NewsEditor});
 The FSM for Login with only one Input action

can be specified as:
FSM_Login = ({q0}, {a001}, {(q0, (-, a007,

Login), q0)}, {q0}, {Login});
 The FSM for EditNews with one Input and one

Output action can be specified as:
FSM_EditNews = ({q0, q1}, {a014, a015}, {(q0,
(-, a014, EditNews), q0), (q0, (EditNews, a015,
-), q1)}, {q0}, {EditNews}).

TABLE II. COMPONENT ACTIONS TABLE

Component Name Component
ID Component Action

Login 1 <Login, a001, ->

Main 2

<-, a002, Main>,
<Main, a003, ->,
<Main, a004, ->,
<Main, a005, ->,
<Main, a006, ->

PublishNews 3
<-, a007, PublishNews>,
<PublishNews, a008, ->,
<PublishNews, a009, ->

UserManager 4
<-, a010, UserManager>,
<UserManager, a011, ->,
<UserManager, a012, ->

NewsEditor 5 <NewsEditor, a013, ->

EditNews 6
<-, a014, EditNews>,
<EditNews, a015, ->

ChangePassword 7
<ChangePassword, a016,
->

ChangeUserName 8
<ChangeUserName,
a017, ->

….. ….. ……

IV. GENERATING TEST CASE

The behaviors of components can be manifested by the
services provided for the outside through their interfaces
(input actions), the called services of other components
(output actions) and the execution of inner operations
(internal actions). We can generate component interaction
test sequences satisfying EC (Each Choice) coverage,
t-wise (t-way) coverage or their combinations, etc. [4-5].
The ideal way of testing the component interactions is to
use the AC (All Combinations) strategy [6] to generate all
test cases. The AC strategy generates all possible
combinations of interesting values of the input parameters.
However, it takes too much. So, we often choose the least
test sequences to cover most component interactions as
possible.

Usually, there exists some sequential relation or
constraint among functional components. So, when
testing these components, we must take their executing
order into account. In executing the functional
components, the combinatorial orders may be several.
Take the components A, B and C for example, if A is
executed first, then B and C are executed, we can get an
executing sequence A→B→C, denoted by <A, B, C>; or
the executing sequences may be B→A→C or C→A→B
and so on, i.e., totally 6 cases exist. We regard abstract
test cases as the executing sequences of components.
Therefore, the following two important concepts are
given.

Definition 1. An executing sequence is a sequence of
functional components that are executed in a certain
order.

Definition 2. A complete executing sequence is an
executing sequence that starts from the initial state to the

742 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

end state.
According to Definition 2, we present a test criterion:

complete executing sequence coverage.
Definition 3. A test set TS satisfies complete executing

sequence coverage, if and only if for any complete
executing sequence seq, there is one test case t in TS and t
passes seq.

Example 1. In the top FSM for the example CDD in
Fig. 2, Login is in an initial state, and Exit is in an end
state. The test set TS={<Login, Main, Exit>, <Login,
Main, PublishNews, Exit>, <Login, Main, UserManager,
Exit>} satisfies complete executing sequence coverage.

According to Table 2, running each test case in TS
means that each action in the components in the test case
is triggered in a given order.

In Example 1, PublishNews is a composite component,
which consists of NewsEditor and EditNews, whose
relation type is T2 according to Table 1, and there is an
interaction between NewsEditor and EditNews (see Fig.
3). Then, <Login, Main, PublishNews, Exit> can be
represented as <Login, Main, <NewsEditor, EditNews>,
Exit> (i.e., <Login, Main, NewsEditor, EditNews, Exit>),
but not as <Login, Main, <EditNews, NewsEditor>, Exit>,
for NewsEditor must be executed before EditNews
according to Fig. 3; UserManager is also a composite
component, which consists of ChangeUserName and
ChangePassword, whose relation type is also T2
according to Table 1. However, there is not an interaction
between ChangeUserName and ChangePassword (see
Fig. 4). Then, <Login, Main, UserManager, Exit> can be
represented as either <Login, Main, <ChangeUserName>,
Exit> or <Login, Main, <ChangePassword>, Exit>.

Therefore, TS is partitioned into two test sets, which
are:

TS1={<Login, Main, Exit>, <Login, Main,
<NewsEditor, EditNews>, Exit>, <Login, Main,
<ChangeUserName>, Exit>} and

TS2={<Login, Main, Exit>, <Login, Main,
<NewsEditor, EditNews>, Exit>, <Login, Main,
<ChangePassword>, Exit>}.

Both TS1 and TS2 satisfy complete executing sequence
coverage, however, whichever can not test all the
components. For example, ChangePassword can not be
tested in TS1, while ChangeUserName can not be tested
in TS2. So, to cover all the complete executing sequences,
and all the components are passed at least once, the
following test criterion is proposed.

Definition 4. A test set TS satisfies component
complete executing sequence coverage, if and only if for
any complete executing sequence seq, there is one test
case t in TS, t passes seq and every component is passed
at least once.

Example 2. TS12 = TS1∪TS2 = {<Login, Main, Exit>,
<Login, Main, <NewsEditor, EditNews>, Exit>, <Login,
Main, <ChangeUserName>, Exit>, <Login, Main,
<ChangePassword>, Exit>} is one of the test sets, which
satisfy component complete executing sequence
coverage.

Additionally, there are often many test cases in testing
a Web application, for representing a test set in a reduced

way, we introduce the following several notations:
 [c1, c2], which represents that either c1 or c2 is

selected to execute each time;
 (c1, c2), which represents that both c1 and c2 are

executed in any order;
 <c1, c2>, which represents that both c1 and c2

are executed and c1 is executed before c2 (as
shown above).

For example, the test set TS12 can be represented as
{<Login, Main, Exit>, <Login, Main, [<NewsEditor,
EditNews>, [ChangeUserName, ChangePassword]],
Exit>}, which is a reduced way.

V. RELATED WORK

A Web application is a very complex, distributed,
multi-tier, interactive system, which provides a
brand-new way for users to deploy software application.
The isomerism, dynamics, diverse connections, variant
control flows, and rapid development and deployment of
Web applications have brought the new challenge for
their testing. At present, there are no systematic method
and tool that are employed to test Web applications
efficiently. The improved traditional methods or a new
method appropriate for Web application testing are
desired urgently for all the characteristics of Web
applications. Since the current testing methods depend
primarily on the testers’ intuition and experience, the
testing of Web applications is regarded as a
time-consuming and expensive process. Therefore, a new
methodology for Web application testing is required
imminently to automate the testing.

A number of Web testing techniques for Web
applications have been already proposed [7-20], each of
which has different origins and pursues different test
goals for dealing with the unique characteristics of Web
applications.

Subraya and Subrahmanya [21] presented object driven
performance testing. They illustrated a new testing
process that employs the concept of decomposing the
behavior of a Web application into testable components.
Different from theirs, our approach decomposes a Web
application according to its functional requirements, not
its behavior.

Andrews, et al. [22] illustrated an approach to
modeling and testing Web applications based on FSMs
after analyzing eight kinds of connections among Web
pages and software components of Web applications.
They partitioned a Web application into several
functional clusters and logical pages, and tried to use
hierarchical constrained FSMs to represent the logical
pages and their navigations. However, the interactions
and composition of components are not considered
further.

Elbaum, et al. [23] proposed a method to use what they
called user session data to generate test cases for Web
applications. Instead of looking at the data kept in J2EE
servlet session, their user session data is the input data
collected and remembered from previous user sessions.
The user session data is captured from HTML forms and
includes name-value pairs. Our approach is flexible, and

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 743

© 2011 ACADEMY PUBLISHER

the user input data can be produced by various methods
presented by existing research work.

Ricca and Tonella [24] suggested a UML model of
Web applications and proposed that all paths that satisfy
selected criteria should be tested. They also presented an
analysis model and corresponding testing strategy. Their
strategy is mainly based on static Web page analysis and
some preliminary dynamic analysis. Liu, et al. [25]
extended traditional data flow testing techniques to
support Web application testing. A test model, WATM,
which consists of an object model and a structure model,
is presented to capture the data flow information of Web
applications. These studies [24-25] consider only the
underlying structure and semantics of Web applications
towards a white-box testing approach. They focus on the
internal structural aspect and involve in the details of a
Web application. While our approach concerns mainly the
functional aspect towards a black-box testing (a
functional test of some sort) at a functional level of
abstraction.

Lucca and Fasolino [3] surveyed Web application
testing. They presented the main differences between
Web applications and traditional ones, how these
differences impact the testing of the former, and some
relevant contributions in the field of Web application
testing developed in recent years.

VI. CONCLUSIONS AND PERSPECTIVES

As we all know, software testing in general and Web
application testing in particular are knowledge-driven,
labor intensive activities, which require the testers with
quite experiences and professional abilities, and also need
a systematical way to guide the testing process.

This work describes a functional component-based
approach to generating test cases for Web applications
described by CDDs. A Web application is assumed to be
composed of interacting functional components. It
employs an FSM to describe each component behavior
and the composition of FSMs to depict the interacting
actions. Two test criteria are presented, according to
which the test generation process is illustrated.

The next step is to develop a prototype to automate the
testing process and evaluate the approach to dividing a
Web application into a sequence of interacting functional
components.

ACKNOWLEDGMENT

This work is supported by the Science and Technology
Program of the Education Department of Jiangxi Province
of China under Grant No. GJJ10120, and the Jiangxi
Provincial Natural Science Foundation of China under
Grant No. 2010GQS0048. The authors wish to thank the
anonymous reviewers for their detailed and helpful
suggestions.

REFERENCES

[1] E. Kirda, M. Jazayeri and C. Kerer, et al., “Experiences in
Engineering Flexible Web Services”, IEEE MultiMedia,
vol.8, no.1, pp. 58-65, 2001.

[2] E. Hieatt, R. Mee, “Going Faster: Testing the Web
Application”, IEEE Software, pp. 60-65, Mar. 2002.

[3] G. A. D. Lucca, A. R. Fasolino, “Testing Web-based
Applications: The State of the Art and Future Trends”,
Information and Software Technology, no.48, pp.
1172-1186, 2006.

[4] A. W. Williams, R. L. Probert, “A Measure for Component
Interaction Test Coverage”, The ACSI/IEEE International
Conference on Computer Systems and Applications,
Beirut, Lebanon, June 2001, pp. 304-311.

[5] M. Grindal, J. Offutt and S. F. Andler, “Combination Testing
Strategies: A Survey”, GMU Technical Report
ISE-TR-04-05, July 2004.

[6] M. Grindal, B. Lindstrom and J. Offutt, et al., “An
Evaluation of Combination Strategies for Test Case
Selection”, HS-IDA-TR-03-001, Department of Computer
Science, University of Skovde, Sweden, 2003.

[7] R. Hower. Web Site Test Tools and Site Management Tools.
Software QA and Testing Resource Center,
http://www.softwareqatest.com/qatweb1.html. Accessed
on Mar. 2011.

[8] Huaikou Miao, Shengbo Chen, Zhongsheng Qian, “A
Formal Open Framework Based on Agent for Testing Web
Applications”, The 3rd International Conference on
Computational Intelligence and Security (CIS’ 2007),
IEEE CS, pp. 281-285.

[9] William G. J. Halfond, Saswat Anand, Alessandro Orso,
“Precise Interface Identification to Improve Testing and
Analysis of Web Applications”, The 18th International
Symposium on Software Testing and Analysis, ACM, NY,
USA, 2009.

[10] Liping Li, Huaikou Miao, Zhongsheng Qian, “A
UML-Based Approach to Testing Web Applications”,
2008 International Symposium on Computer Science and
Computational Technology, Shanghai, China, 2008, pp.
397-401.

[11] William G. J. Halfond, Alessandro Orso, “Improving Test
Case Generation for Web Applications Using Automated
Interface Discovery”, The 15th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
2007.

[12] Liping Li, Zhongsheng Qian, Tao He, “Test Purpose-Based
Test Generation for Web Applications”, The First
International Conference on Networked Digital
Technologies, Ostrava, The Czech Republic, 2009,
pp.251-256.

[13] M. Utting, A. Pretschner, B. Legeard, “A Taxonomy of
Model-based Testing”, Technical report, Department of
Computer Science, University of Waikato, New Zealand,
April 2006.

[14] Zhongsheng Qian, “Test Case Generation and Optimization
for User Session-based Web Application Testing”, Journal
of Computers, 2010, 5(11): 1655-1662.

[15] H. Reza, K. Ogaard, and A. Malge, “A Model based
Testing Technique to Test Web Applications Using
Statecharts”, In ITNG’ 08, Washington, DC, USA, 2008,
pp. 183-188.

[16] Zhongsheng Qian, “An Approach to Testing Web
Applications Based on Probable FSM”, 2009 International
Forum on Information Technology and Applications.
Chengdu, China, 2009, pp.519-522.

[17] P. Tonella, F. Ricca, “A 2-layer Model for the White-box
Testing of Web Applications”, International Workshop on
Web Site Evolution, Chicago, Illinois, 2004, pp. 11-19.

[18] Zhongsheng Qian, “Testing Component-based Web
Applications Using Component Automata”, 2009 WASE
International Conference on Information Engineering.

744 JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

© 2011 ACADEMY PUBLISHER

IEEE CS, Taiyuan, China, July, 2009, pp.455-458.
[19] A. Belinfante, L Frantzen, and C. Schallhart, “Tools for

Test Case Generation”, Model-Based Testing of Reactive
Systems, LNCS 3472, Springer, 2005, pp. 391-438.

[20] Huaikou Miao, Shengbo Chen, Huanzhou Liu, Zhongsheng
Qian, “An Approach to Generating Test Cases for Testing
Component-based Web Applications”, Workshop on
Intelligent Information Technology Application (IITA’
2007), IEEE CS, Zhang Jiajie, China, Dec. 2-3, 2007, pp.
264-269.

[21] B. M. Subraya, S. V. Subrahmanya, “Object Driven
Performance Testing of Web Applications”, The First
Asia-Pacific Conference on Quality Software, HongKong,
China, Oct. 2000, pp. 17-26.

[22] A. Andrews, J. Offutt and R. Alexander, “Testing Web

Applications by Modeling with FSMs”, Software Systems
and Modeling, vol.4, no.3, pp. 326-345, Aug. 2005.

[23] S. Elbaum, S. Karre and G. Rothermel, “Improving Web
Application Testing with User Session Data”, The 25th
International Conference on Software Engineering,
Portland, Oregon, May 2003, pp. 49-59.

[24] F. Ricca, P. Tonella, “Analysis and Testing of Web
Applications”, The 23rd International Conference on
Software Engineering, Toronto, Ontario, Canada, 2001,
pp.25-34.

[25] C. H. Liu, D. C. Kung and P. Hsia, “Object-based Data
Flow Testing of Web Applications”, The First Asia-Pacific
Conference on Quality Software, HongKong, China, Oct.
2000, pp. 7-16.

Qian Zhongsheng was born in 1977. He
received his M.S. degree from Nanchang
University of China in 2002, and Ph.D in
Computer Science at Shanghai University of
China in 2008. He has also been with the
School of Information Technology at Jiangxi
University of Finance & Economics of China
since 2002. His current research interests
include software engineering and Web

application testing, etc.

JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011 745

© 2011 ACADEMY PUBLISHER

