
A Generic Software Monitoring Model and
Features Analysis

Chang-Guo Guo

1. School of Computer Science, National University of Defense Technology, Changsha, China
2. China Electric Equipment and Systems Engineering Ltd., Beijing, China

Email: cgguo@163.net

Jun Zhu, Xiao-Ling Li
1. School of Computer Science, National University of Defense Technology, Changsha, China

Email: mail_zhujun@nudt.edu.cn, lxl_19851210@163.com

Abstract—Software runtime monitoring has been used to
increase the dependability of software. This paper focuses
on software runtime monitoring techniques and tools. A
generic software runtime monitoring model is presented,
which consists of five basic elements, i.e., Monitored Object
Features, Monitoring Access Methods, Execution
Relationships, Runtime Monitor and Platform
Dependencies. This model is an innovation in software
monitoring fields. This paper gives some features of each
element. Based on these features, researchers can use the
model to comprehend and analyze runtime monitoring
techniques and tools. The objective of this paper is to help
researchers and users to identify the difference and the
basic principles of software runtime monitoring techniques
and tools. This paper also shows a result of relationship
between techniques and features, through the result, we can
understand the development trends of the techniques and
tools, such as, what features are concerned more, and what
features are concerned less.

Index Terms—software runtime monitoring, dependability,
monitoring access methods, monitored object features,
runtime monitor

I. INTRODUCTION

Recent years, with the rapid development of
information technology, software is increasingly
presenting more and more important role in this
information society. However, because of the growing
scale and complexity of software and the growing
dependence on software, software faults have a great
impact on the information society.

On one hand, errors in safety-critical system have a
huge impact. For example, the unsuccessful maiden
launch of the Ariane-5 missile on July 1996 [1], the steep
and off target landing of the Russian Soyuz-TMA1 April
5, 2003 [2], incorrectly aligning account numbers of
A2LL software used by Germany’s social services in
2004 [3] etc. On the other hand, apart from safety aspect,

software errors can be very expensive. For instance, the
error in Intel’s Pentium floating-point division unit is
estimated to have caused a loss about 500 million US
dollars [4]. On June 28 2002, the National Institute of
Standards and Technology of America published an
inquiry report about software faults in which showed the
average national loss of 59.5 billion dollars for the reason
of software faults, equivalent to 0.6% of GDP in America
[5]. In a word, constructing dependable software, this
ensures that the software does what people expect it to
do, is becoming an increasingly important activity.

Pointing to the safety of software, researchers have put
forward a series of methods to solve this problem, such as
model checking, software testing technology, and
software monitoring [6]. However, model checking
ordinary checks the model, not the software; even if the
model is checked without problems, software faults may
still exist in the software design and implementation
phases [7]. Software testing technology may eliminates
the software faults at a certain extent, but the test
scenarios are limited, cannot test the software when it is
running [8].Therefore, software monitoring is used more
and more frequently to pledge the dependability of
software, especially software runtime monitoring.

This paper summarizes common points and extracts
common grounds in software runtime monitoring
techniques, and presents a unified generic software
runtime monitoring model, which comprises five basic
elements. These elements are essential for constructing
runtime monitoring systems. This paper also studies some
features of the runtime monitoring model. Based on these
features, this paper analyzes 40 existing monitoring
techniques and tools. Through analyzing features of the
techniques and tools, we can identify the difference
among these different techniques and tools. This paper
also shows a result of relationship between techniques
and features, through the result, we can understand the
development trends of the techniques and tools, such as,
what features are concerned more, and what features are
concerned less.

II. RELATED WORK

This work is supported by the National Natural Science Foundation of
China under Grant No. 90818028, the National “Core electronic devices
high-end general purpose chips and fundamental software” project
under Grant No.2009ZX01043-002-004 and the National High-Tech
Research and Development Plan of China under Grant No.
2007AA010301

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 395

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.395-403

Nelly Delgado gives out a three components generic
monitoring model, which contains software requirements,
monitors, and event handlers [9]. Software requirements
are implementation-independent descriptions of the
external behavior of a computation. The definition of
monitor which is widely accepted is, “A monitor is a
system that observes the behavior of a system and
determines if it is consistent with a given specification”
[10]. Nelly Delgado considers that a monitor takes an
execution trace and a software property specification and
checks that the execution trace meets the property. The
event-handler is the mechanism that captures and
communicates the monitoring results to the system or
user and possibly responds to a violation.

Nelly Delgado’s monitoring model is applicable for
most runtime monitoring tools and techniques, based on
common elements of monitoring systems: specification
language, monitor, and event-handler. However, with the
increasing appearance of distributed computing systems,
more and more application platforms are used to support
these systems, for example, some systems are executing
in certain operating system, some use middleware to
exchange messages among different nodes, some must be
applied in Virtual Machine, some use large database to
store information, etc. Besides, the objective of
monitoring is to guarantee software running as what
people expect it to do, so if software running in some
exceptions, monitoring techniques must have some
measures to recover the software. Therefore, monitoring
techniques must have the abilities to obtain the software
runtime state information and do some response to the
software. Previous monitoring models don’t consider the
platform dependencies and response mechanism between
monitor and software.

This paper proposes another generic monitoring model,
consider which not only comprises the components of
previous monitoring model, but also comprises platform
dependencies and response mechanism. Consequently,
research this model is very significant.

III. DEFINITIONS AND ILLUSTRATIONS

First of all, it is necessary to know what is software
runtime monitoring. Various definitions for software
runtime monitors exist. In paper [32], one of the most
popular definitions is given out:“a monitor is a system
that observes the behavior of a system and determines if
it is consistent with a given specification”. However, in
our opinion the definition should contain five important
aspects: (1). Observe the actual states and behaviors of
executing software system, and express the monitoring
information in a proper format; (2). Acquire the expected
states and behaviors of executing software system; (3).
Check the actual monitoring information with expected
ones, and gain the analysis results, which can be used to
analyze, diagnose and evaluate the healthiness of
executing system; (4). Take specific measurements and
control operations, in order to recover from errors; (5).
The goal is to keep software system in correct states and
to increase the dependability of software system.

For easy understanding of the definition, we raise
several typical illustrations at first. Totally speaking,
there are diverse approaches which can be used to
implement software runtime monitoring. Software
runtime monitoring can achieve the goal by creating an
observer process to monitor the execution of software.
During the execution of software, software can send state
information to the observer process, and then the observer
do necessary analysis on this information. There is
another similar approach which uses event specifications.
It associates state information with events in high abstract
levels. One advantage of such an approach is to make
modification of original source code as little as possible
and try to decrease the impact on execution of software as
much as possible. For example, BEE++ [17], DB-Rover
[20], HiFi [27], Issos [29], Hy+ system [28] etc.

One approach of software runtime monitoring is to
insert assertions to the program for the need of checking.
These assertions will take effect during the execution of
program. In usual ways, programmers write these
assertions by hand which are developed together with
programs, and insert them into the source code of
programs. Assertions can also be written in the way of
annotation of program, which will be automatically
translated to constraints checking code at the point of
annotation when compiling. For example, Design by
Contract (DbC) [33] and Monitoring-Oriented
Programming (MOP) [34].

There is another kind of software runtime monitoring,
such as MaC (Monitoring and Checking) [31], JPaX
(Java PathExplorer) [35] and so on. MaC and JPaX are
two logic methods based monitoring tools, both of which
generate monitoring systems from formal specifications.
MaC uses a special interval temporal logic based
language to specify the program behaviors, while JPaX
supports just LTL. In order to send the application’s
states to the monitor, these systems need to instrument
the Java bytecodes, which is hard to achieve in some
other languages such as C++. Anyway, the examples
mentioned above are very typical in software runtime
monitoring. However, different software runtime
monitoring techniques and tools exist in different forms,
by employing different mechanisms. Thus, it is
meaningful to extract a runtime monitoring model for
comprehending and analyzing the related techniques and
tools.

IV. RUNTIME MONITORING MODEL

Although software runtime monitoring techniques
differ in thousands of ways, there is still something in
common. This paper is trying to present a unified generic
runtime monitoring model, which includes all common
grounds of diverse techniques and tools. And then the
basic elements of this model are described in details.

As Fig.1 shows, this software runtime monitoring
model consists of five elements: Monitored Object,
Monitoring Access Method, Execution Relationships,
Runtime Monitor and Platform Dependencies. Besides
these five elements, the Requirements and Evaluations
are considered as the inputs and outputs of the monitoring

396 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

model. So this paper doesn’t consider them as element of
the model. Requirements imply the demand of users, such
as, the properties that users want to monitor. Evaluations
imply the monitor information which can be deal with by
user.

M
onitoring A

ccess M
ethod

Figure 1. Software Runtime Monitoring Model

The five elements construct the Software Runtime
Monitoring Model; each element is indispensable for the
model. Function of each element is listed as follows.

• Monitored Object: Software entities which are
focused on by users and need monitoring, such
as, programs, components, service and distributed
software systems. From the figure 1, we can
know Monitored Object consists of one or more
objects, this illuminates that the monitoring
model can monitor distributed software system.

• Monitoring Access Method: Similar to a
component interface between Runtime Monitor
and Monitored Object. It consists of two aspects,
On the one hand, Runtime Monitor invoke
Monitoring Access Method to obtain the states
and behaviors of executing programs or software
systems. On the other hand, specific feedback or
control operations would be sent back to
monitored object.

• Execution Relationships: Execution relationship
should tell us in which kind of interaction
methods between Runtime Monitor and
Monitored Object can be implemented. It also
consists of two aspects, Runtime Monitor how to
obtain the monitoring information and Runtime
Monitor how to control the Monitored Object.

• Runtime Monitor: Takes responsibility of
monitoring software objects and its process can
be divided into three steps. Firstly, observing the
states and behaviors of runtime software, and
collecting the information of runtime software.
Secondly, analyzing the collected monitoring
information and checking the consistency
between monitoring information and expected
states of users, the judgments decide whether it is
necessary to do some responds or control
operations. Lastly, if the system appears some
exceptions or failures, how to control the system
in order to pledge the software recover to normal
runtime states.

• Platform Dependencies: Some software,
especially distributed software systems relies on
some certain platforms. Such as, need certain

operating system to support its running, running
on Virtual Machines, delivers messages through
Middleware, etc.

V. FEATURES OF THE RUNTIME MONITORING MODEL

As described above, Software Runtime Monitoring
Model comprises five different elements, Monitored
Object, Runtime Monitor, Monitor Access Method,
Execution Relationships, and Platform Dependencies. In
order to help researchers and users to identify the
differences in software runtime monitoring techniques
and tools, we need to define some features.

A. Monitored Object Features
There are so many features, which Monitored Object

owns, such as performance, programming languages,
architectures, platforms etc. However, this paper mainly
focuses on distributed feature, which includes distributed
software and non-distributed software.

Non-distributed. Some techniques and tools can only
be used in monitoring non-distributed software systems.
For example, Alamo [11], Annotation PreProcessor
(APP) [13], DynaMICs [22], Java with Assertions (Jass)
[36], Java PathExplorer [35], jMonitor [37], MOP [34]
and so forth.

Distributed. The other techniques and tools can be
used to monitor distributed software systems. BEE++
[17] is a typical example, that is used to dynamically
analyze distributed programs. And it regards the
execution of program as a stream of events. Meta
monitoring system [38] is a collection of tools used for
constructing distributed application management software
in conjunction with a distributed toolkit. Meta enables
management applications to observe and control
functional behaviors of monitored programs.

With the birth of Web services and their compositions,
some monitoring tools and techniques, which aim at Web
services, come out. For example, Li et al. [39] proposed a
Runtime Monitoring and Validation Framework for Web
Service Interactions (called RMVF4WSI in this paper) .
This framework can monitor the runtime interaction
behaviors of Web service and validating the behavior
against pre-defined interaction constraints. Qianxiang
Wang et al. [40] introduced another Web Service Online
Monitoring Framework (WSOMF) that collects quality
sensitive events by multiple kinds of probes and agents.
The framework, which focuses on quality of Web
services, can also do some analysis according to the pre-
specified constraints, so as to evaluate the quality of Web
service. Paper [41] focuses on Web service compositions.
It proposed a solution to monitor Web services
implemented in BPEL, and devised an architecture that
separates the business logic of a Web service from its
monitoring functionality.

B. Monitoring Access Methods Features
Monitoring Access Method is presented in the

following two aspects: Monitoring Code Instrument
Methods (MCIM) and Response Mechanisms (RM).

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 397

© 2011 ACADEMY PUBLISHER

MCIM always through inserting aspect codes into the
software to obtain the monitoring information. Due to the
different strategies of inserting aspect codes, it consists of
None (without inserting the code), Manual (insert by
hand) and Automatic (inserting the code by specific
tools). Automatic is also classified into two kinds,
Dynamic and Static, which based on the state of the
software when inserting the codes. If the software is
running, it belongs to Dynamic, otherwise it belongs to
Static.

None. Only a few runtime monitoring techniques and
tools can acquire monitoring information without any
instrument methods. Thus, in order to implement
monitoring information collecting mechanisms, they rely
upon some other specific tools. For example, a program
debugger is used to obtain required monitoring
information about the dynamic behaviors of actual
software system. Meanwhile, interceptor mechanism,
which has the capability of intercepting messages, can be
used as monitoring probes. For example, JVMTI in Java
Virtual Machine, Handler in AXIS, and Interceptor in
CORBA etc. To monitor the behaviors of Web service, a
SOAP Monitor utility in the Apache Axis1.2 toolkit is
used to intercept the SOAP messages going in and out of
the service, without requiring any special instrumentation
on Web service itself, in RMVF4WSI [39].

Manual. Manual instrumentation is the easiest method
in common use, which depends on programmers who
manually instrument monitoring code into programs or
software which needs monitoring. This method has many
drawbacks, such as low effectiveness, high randomness
and so on. For example, the Annalyzer [42] uses
ANNotated Ada to specify properties as annotations,
which are instrumented by hands by programmers. In
addition, early MOP [34] technique and DbC [33] belong
to this type.

Automatic(Static). Before execution of programs and
software, monitoring code can be automatically
instrumented without any intervention of programmers.
Once program is compiled and executed, the source code
cannot be inserted or changed again. A part of techniques
and tools utilize AOP (Aspect-Oriented Programming) as
the instrument methods, such as J-LO [30].

Automatic(Dynamic). During runtime and execution,
monitoring code can still be instrumented into software
without any interrupt on execution. This type of methods
can be categorized to runtime instrumentation, interpreter
instrumentation, instrumenting compilers, and virtual
machine (VM) etc. Runtime instrumentation refers to the
modification of the monitored program code immediately
prior to or during execution. For example, Valgrind [43]
is a framework for dynamic binary instrumentation,
which can be used to build dynamic binary analysis tools
including runtime monitors.

RM reflects the way how Runtime Monitor affects the
states and behaviors of Monitor Object, especially when a
violation or exceptions happens. It consists of None, User
Customized, and Automated. None, means this
techniques and tools cannot change the states and
behaviors of software. User Customized, the states and

behaviors are changed by users. Automated, the monitor
cannot only analyze the states and behaviors of software,
but also can control and change the states and behaviors.

None. Although these techniques or tools can not
affect the execution of software apart from execution
effectiveness, they have many ways to help users analyze
the states of monitored objects by warning reports, trace
records etc. Post-mortem analysis is such a typical
approach. In post-mortem analysis, sequences of states
(execution trace) from a particular execution of software
are examined and stored. After the program completes,
the execution trace will be analyzed. The advantages are
that performance degradation is minimized, and some
temporal constraints can be verified at any state in the
execution trace. The disadvantage is that failures are not
prevented from occurring.

User Customized. On one hand, as have been
mentioned above, the monitoring techniques which adopt
DbC approach [33], such as JML [23], Jass [36] and so
on, can define exception handling mechanism by users. In
addition, MOFRM [44] is an extension of DbC approach.
On the other hand, user-customized method can also be
implemented as a program debugging systems, in which
breakpoints can be set and users can interaction with the
executing software, so as to ensure normal executing state
of the system.

Automated. In order to fully control the execution of a
program, part of runtime monitoring techniques and tools
are endowed with automated control and steering
mechanisms. For example, exception handling, rollback,
recovery operations or termination and so forth can be
used as automated response mechanisms. Falcon provides
online monitoring and steering of distributed software. Its
steering system help users to implement online control
software systems. Each steering server can read
monitoring events and then decide what actions to take
[25]. Issos System provides a lot of hooks for action
specifications, which can be used for exception handling
[29].

C. Execution Relationships Features
The execution relationship Features consists of two

parts: interaction methods (IM) and monitoring execution
models (MEM).

The interaction method defines the interaction or
communication ways between runtime monitor and
monitored object. It shows how runtime monitor and
monitored object can get in touch with each other. It
should be said that the selection of interaction methods
depends on the execution models to some extent. For
example, if single-process model is employed,
monitoring information can be acquired through utilizing
procedures or function libraries. However, when monitor
is a separate process, it may need the support of IPC
techniques, or other methods. According to different
techniques, interaction mechanisms can be classified into
the following groups:

Shared Variables. Monitoring systems, which adopt
single-process execution model, usually depend upon
shared variables. Because the runtime monitoring
information can be obtained by directly accessing shared

398 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

variables. In addition, different threads in the same
process share the same execution space. As a result,
thread model can get monitoring information through
shared variables. For example, Alamo owns an access
library that allows monitors to directly manipulate target
program states [11].

InterProcess Communication. Monitoring systems
using multi-process execution model usually utilize
InterProcess Communication mechanism to realize the
communication needs between monitor and monitored
object. IPC consists of pipe, semaphore, shared memory,
socket and so on. For example, in JPaX, checking module
can execute on different machines, and concerned
monitoring events can be transmitted by socket interface
[35]. Meta monitoring system [38] makes use of the ISIS
distributed toolkit to construct distributed application
management software.

Middleware. Strictly speaking, middleware is one of
IPC mechanisms. However, in this paper, middleware is
excluded from IPC, for its particularity. Middleware can
be utilized as an interaction method. Programmers do not
need to pay any attention to the distributed features of
monitored objects, no matter whether monitor and
monitored object locate in the same machine or in a
distributed environment. This implementation can greatly
decrease workload and take communication and
execution effectiveness of monitoring system into
consideration. Paper [45] describes another typical
example, called Model-based Runtime Monitoring of
End-to-End Deadlines (RMoEED), in which RT CORBA
is applied for interaction mechanism.

At first, monitoring process is implemented by using
procedures or function libraries. In this way, runtime
monitor and monitored software are in the same process.
And then, runtime monitor is peeled off from process of
monitored object, forming a separate observer or monitor
process. After thread techniques appear, runtime monitor
can exist as a thread, which can greatly decrease the
system expenditure of running runtime monitor. Among
the possible relationships between monitor and the
program being monitored, three are commonly used: one-
process model, multi-process model, and thread model.

Single-Process Model. Runtime monitor and
monitored object are in the same process space. Monitor
can use procedure library to get the monitoring
information from monitored object. A monitor is a library
of procedures linked to the program being monitored or
integrated into the runtime system. The one-process
model has good performance and access characteristics,
but it does not prevent the target program and monitor
code from affecting each other in critical ways. In
addition, the control flow logic within the monitor is
somewhat inverted, since the monitor is activated through
callbacks. For example, Annalyzer [42], APP [13], Jass
[36], JML [23], jMonitor [37] etc.

Multi-Process Model. In the multi-process model, the
monitor is a separate process from the program being
monitored, reducing the problem of intrusion at the
expense of complicating monitor access and reducing
performance. The communication methods between

monitor and program are usually implemented through
IPC. One of the design goals in BEE++ is the support of
dynamic program analysis for distributed heterogeneous
target applications at runtime. The design is based on a
symmetric peer-peer architecture [17]. Falcon [25], JPaX
[35], Issos [29], Meta [38], Fabio Barbon et al.’s
monitoring system [16], ComPol [19], GAMMA system
[26], WSOMF [40] and so on use multi-process model
too.

Thread Model. In the thread model, the monitor is a
separate thread in a shared address space occupied by the
program and possibly other monitors, providing a
reasonable compromise between the characteristics of the
one-process and multi-process models for many
monitoring applications. For example, Alamo adopts a
model called coroutine, which is exact thread model in
fact [11]. Alamo provides an execution model in which a
target program and the execution monitor are coroutines
executing within a single address space. And the context
switches within a single address space are lightweight.
With the development of multi-core techniques in micro-
electronics, more and more computers will use multi-core
CPU, and the runtime monitoring techniques, which
adopt thread model, will be much more popular.

D. Runtime Monitor Features
This paper mainly pays close attention to the method

how to implement the monitoring mechanism, includes
Algebra, Automata, Logic, Policy Rule, and Statistics.
Due to article space reasons, the concrete realization of
these methods is not detailed here.

Algebra. Algebra is utilized as their basic mechanism
of runtime monitors by Jass [36], JPaX [35], MOP [34]
and some other monitoring techniques.

Automata. MOP can use a standard CFGto-
pushdown-automata algorithm which will be
implemented as an MOP logic-plugin. Therefore, MOP
can also support CFG specifications that cannot be
expressed using parametric extended regular expressions
or temporal logics [34]. Meanwhile, ComPol is based on
specifications, and its specifications are expressed in
communicating finite state automata (FSA) based
formalism [19]. And so is RMVF4WSI [39], which
adopts FSA as the representation methods of interaction
constraints, and executes automatic consistency checking
of interaction against these constraints.

Logic. By counting the number of monitoring
techniques which adopt logic as their runtime monitoring
mechanism implementation, it is concluded that logic is
the most popular method in this research field. For
example, Evolvable System employs a revision-based
first order logical framework as its monitoring and
evolution mechanism [24]. EAGLE is a rule-based
framework, which is capable of defining and
implementing finite trace monitoring logics, including
future and past time temporal logic, extended regular
expressions, real-time and metric temporal logics (MTL),
internal logics, linear temporal logic and so on [12]. J-LO
also specifies its properties in linear-time temporal logic
[30]. MOP [34], DB-Rover [20], DynaMICs [22], JPaX
[35], jMonitor [37].

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 399

© 2011 ACADEMY PUBLISHER

Policy Rule. In Meta monitoring system, programmers
write a set of policy rules in data model to specify the
desired system behaviors, by using a language called
Lomita. Therefore, the programmers may make direct
calls to sensors, actuators or other functions defined in
data model [38]. Control flow checking (CFC) unit is one
of basic blocks of EASIS. CFC utilized a lookup table,
which stored all the possible predecessor/successor
relationships of the monitored components, to compare
real executed successors with the possible successor set
of the predecessors.

Statistics. One of the typical techniques which employ
statistics as its monitoring mechanism implementations is
Artemis [15] that is a practical runtime monitoring
mechanism for execution anomalies. The Artemis
framework can guide baseline monitoring techniques
toward regions of the program where bugs are likely to
occur, yielding a low asymptotic monitoring overhead.
Artemis also facilitates system-load aware runtime
monitoring that allows the monitoring coverage to be
dynamically scaled. Argus [14] is another typical
example, which is an online statistical bug detection and
monitoring tool. Argus that constructs statistics at
runtime using a sliding window over the program
execution, is capable of detecting bugs in a single
execution and can raise an alert at runtime when bug
symptoms occur. SOBER [46] is another statistical
model-based approach, which can localize software bugs
without any prior knowledge of program semantics, by
modeling evaluation patterns of predicates in both correct
and incorrect runs respectively.

E. Platform Dependencies Features
Platform dependencies mean that the execution of

monitoring system must rely on the support of some
specific platforms, in order to implement software
runtime monitoring. It contains two meanings: on one
hand, the implementation of software monitoring function
itself needs platform. On the other hand, the whole
monitoring system execute on the platform, which
provides system with runtime supports. There are four
categories: operating system, virtual machine, database,
and middleware.

Operating System. Most of runtime monitoring
techniques cannot execute without the support from
operating system. A performance and reliability monitor
is integrated into the operating system of Microsoft Vista.
It can collect runtime information, which will be simply
provided to users in a specific and legible format. This
tool can help user monitor memory access, disk request,
CPU time, running process and other related information,
which is embedded in Windows operating system. By
fully surveying, every runtime monitoring technique and
tool needs the support of OS platform.

Virtual Machine. In Section 4.2, it is mentioned that
virtual machine can be used to monitor the program
which is running on this VM. Besides, some instrument
methods also can utilize Java byte instrumentation in Java
virtual machine. For example, JPaX can instruments Java
byte code to transmit a stream of relevant events to the
observation module which can perform logic-based

monitoring [35]. Moreover, jMonitor [37], J-LO [30],
EAGLE [12] etc. also depend upon VM.

Database. In DB-Rover, it is possible to capture
monitoring information data in a database. These data can
be used for analysis at a later time. So DB-Rover relies
very much on the platform of database [20]. In addition,
the Hy+ system [28] and GAMMA system [26] are very
similar to the database approach in which monitoring
information is stored in a database and manipulated after
collection.

Middleware. Middleware can be used to shield from
the differences of platforms. As for RMoEED [45], the
authors create an infrastructure for validation based on
RT CORBA. So it can provide a distributed monitoring
facility, which can observe interaction deadlines. In [39],
a runtime validation tool of RMVF4WSI is based on
CORBA. Moreover, there are more typical examples,
such as WSOMF [40].

Fig. 2 shows the features which are considered in this
paper of Software Runtime Monitoring.

Software Runtime
Monitoring

Monitored Objects

(Distributed Feature)

Monitoring Access
Methods

Monitoring Mechanism
Implementation

Execution
Relationships

Platform
Dependencies

Monitoring Code

Instrument Methods

Response Mechanisms

Monitoring
Execution Models

Interaction
Methods

 Shared Variables
InterProcess Communication

Middleware

Thread Model

One-Process Model
Multi-Process Model

 Operating System
Middleware

Database
Virtual Machine

Algebra

Automata
Logic

Statistics

User Customized
None

Automated

Automatic (Dynamic)

Manual
Automatic (Static)

 Distributed

Non-Distributed

Policy Rule

None

Figure 2. Features of Software Runtime Monitoring

VI. A CASE STUDY

This section analyzes the features of Software Runtime
Monitoring through 40 monitoring techniques and tools.
This case would show the features of some techniques
and tools. Results would help us realize the
characteristics of the modern monitoring techniques and
tools.

The 40 techniques and tools are, Alamo[11], EAGLE
[12], Jass[36], APP[13], Meta[38], Argus[14], MOP[34],
Artemis[15], Barbon[16], RMVF4WSI[39], BEE++[17],
CBI[18], ComPol[19], SOBER[46], JPaX[35], DB-
Rover[20], Deep Space[21], DynaMICs[22], JML[23],
Evolvable System[24], Falcon[25], GAMMA[26],
HiFi[27], Hy+[28], Issos[29], J-LO[30], EASIS,
jMonitor/jContractor[37], MaC[31], MOFRM[44],
RMoEED[45], WSOMF[40].TABLE I shows the features
of some common techniques and tools, such as Argus,
ComPol, GAMMA, MaC, and JPaX. From this table, we
can know clarity that, the types of software that the
techniques and tools can monitor. For example, Argus
can monitor the software that has these features,
including Non-Distributed, Dynamic, Shared Variables,
and Statistics.

400 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

TABLE I. Typical Examples of Software Monitoring Techniques and Tools
Name Monitor

Object Features
Monitoring Access Methods Execution Relationships Runtime

Monitor
Features

Platform
Dependency MCIM RM MEM IM

Alamo Non-Distributed Static User Customized Thread Shared Variables Other None
Argus Non-Distributed Dynamic None Single-Process Shared Variables Statistics None
Artemis Non-Distributed Dynamic None Single-Process Shared Variables Statistics None
ComPol Distributed Static None Multi-Process IPC Automata None
CBI Non-Distributed Manual None Single-Process Shared Variables Statistics None
EAGLE Non-Distributed Manual None Single-Process/Thread Shared Variables Logic VM
HiFi Distributed Static User Customized Multi-Process IPC Logic None
Issos Distributed Manual User Customized Multi-Process IPC Automata None
GAMMA Non-Distributed Dynamic User Customized Multi-Process IPC Logic Database
MaC Non-Distributed Static User Customized Single-Process Shared Variables Logic VM
Meta Distributed Manual User Customized Multi-Process IPC Policy None
MOFRM Non-Distributed Static User Customized Multi-Process IPC Logic/

Statistics
None

jMonitor Non-Distributed Dynamic None Single-Process Shared Variables Logic VM
JPaX Non-Distributed Dynamic None Multi-Process Shared Variables Algebra VM
RMoEED Distributed Static None Multi-Process IPC Automata Middleware
WSOMF Distributed Manual None Multi-Process IPC Other Middleware

As Fig.3 shows, Consider 15 different features, x-
coordinate represents different features, and y-coordinate
represents the number of techniques and tools that
possess the relevant feature. From Fig.3, we can know
something about the existing runtime monitoring
techniques and tools. For example, we can know the
number which support distributed software is 17, and the
number which support non-distributed software is 27.
Thereby, the techniques and tools support non-distributed
software is more than that support distributed software.

Figure 3. Relations between Features and Techniques

VII. CONCLUSIONS

Owing to the increases in scale and complexity of
software, software systems become much more difficult
to ensure the constant correctness in long time running.
As a result, software runtime monitoring has been entered
the vision of researchers again. It becomes very
meaningful to propose a generic monitoring model for
software runtime monitoring techniques and tools. This
paper can help us to lay solid foundation for future
research work.

In conclusion, this paper completes the following
contributions: proposes a unified generic runtime
monitoring model, which can be used to comprehend
monitoring systems and their principles by researchers,
through analyzing related techniques and tools; according
to the five elements of runtime monitoring model; gives
out the application scopes of the runtime monitoring

techniques and tools, which can clearly tell the
differences between these techniques and tools; discusses
the obstacles and prospects of runtime monitoring as
open issues, so as to indicate the developing trends and
prompt the development of the research field.

ACKNOWLEDGMENT

The authors wish to thank their past and present
colleagues, Tao Wang, Yue-Peng Yin etc., who
contributed to the research described in this paper. They
are also very thankful to their current research sponsors.

REFERENCES
[1] Inquiry Board, “Ariane 5 Flight 105 Inquiry Board

Report,” tech. rep., European Space Agency Press, July
1996.

[2] “http://space.kursknet.ru/cosmos/english/machines/stma1.s
ht.”

[3] W. Hasselbring and R. Reussner, “Toward Trustworthy
Software Systems,” Computer, vol. 39, no. 4, pp. 91–92,
2006.

[4] “EX-13: Annual or Quarterly Report to Security Holders,”
tech. rep., Intel Corp, 1996.

[5] NIST, “Software Errors Cost U.S. Economy $59.5 Billion
Annually: NIST Assesses Technical Needs of Industry to
Improve Software-Testing,” 2002.

[6] H.wang CHEN, J.WANG, W. Dong. High Confidence
Software Engineering Technologies. ACTA
ELECTRONICA SINICA, 31(12A), December 2003.

[7] M. Kim, S. Kannan, I. Lee, O. Sokolsky. Java-MaC: A
run-time assurance tool for Java. In First International
Workshop on Run-time Verification. Paris, France. 2001.

[8] I. Lee, H. Ben-Abdallah. A Monitoring and Checking
Framework for Run-Time Correctness Assurance. Proc.
1998 Korea-U.S. Technical Conf. Strategic Technologies,
1998.

[9] N. Delgado, A. Q. Gates, and S. Roach, “A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools,”
IEEE Transactions on Software Engineering, vol. 30,
Decemer 2004.

[10] D. Peters, “Automated Testing of Real-Time Systems,”
Technical Report, Memorial University of Newfoundland,
Nov. 1999.

[11] C. Jeffery, W. Zhou, K. Templer, and M. Brazell, “A
Lightweight Architecture for Program Execution
Monitoring,” ACM SIGPLAN Notices, vol. 33, no. 7, pp.
67–74, 1998.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 401

© 2011 ACADEMY PUBLISHER

[12] H. Barringer, A. Goldberg, K. Havelund, and K. Sen,
“Program Monitoring with LTL in EAGLE,” in
Proceedings of 18th International Conference on Parallel
and Distributed Processing Symposium, 2004.

[13] D. S. Rosenblum, “A Practical Approach to Programming
with Assertions,” IEEE Transactions on Software
Engineering, 1995.

[14] L. Fei, K. Lee, F. Li, and S. P. Midkiff, “Argus: Online
Statistical Bug Detection,” in Proceedings of Fundamental
Approaches to Software Engineering 2006 (FASE’06), pp.
308–323, Springer-Verlag, 2006.

[15] L. Fei and S. P. Midkiff, “Artemis: Practical Runtime
Monitoring of Applications for Execution Anomalies,” in
The ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation (PLDI’06), (Ottawa,
Ontario, Canada), June 2006.

[16] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
Time Monitoring of Instances and Classes ofWeb Service
Compositions,” in IEEE International Conference on Web
Services (ICWS’06), 2006.

[17] B. Bruegge, T. Gottschalk, and B. Luo, “A Framework for
Dynamic Program Analyzers,” ACM SIGPLAN Notices,
vol. 28, no. 10, pp. 65–82, 1993.

[18] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan,
“Scalable Statistical Bug Isolation,” in Proceedings of the
2005 ACM SIGPLAN conference on Programming
Language Design and Implementation, pp. 15–26, ACM
Press New York, NY, USA, 2005.

[19] M. Zulkernine and R. E. Seviora, “A Compositional
Approach to Monitoring Distributed Systems,” in
Proceedings of the International Conference on
Dependable Systems and Networks (DSN’02), 2002.

[20] M. Diaz, G. Juanole, and J. Courtiat, “Observer– A
Concept for Formal On-Line Validation of Distributed
Systems,” IEEE Transactions on Software Engineering,
vol. 20, no. 12, pp. 900–913, 1994.

[21] M. James and L. Dubon, “An Autonomous Diagnostic and
Prognostic Monitoring System for NASA’s Deep Space
Network,” 2000.

[22] A. Q. Gates and P. J. Teller, “DynaMICs: An Automated
and Independent Software-Fault Detection Approach,” in
Proceedings of the Fourth International High-Assurance
Systems Engineering Symposium, 1999.

[23] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary
Design of JML: A Behavioral Interface Specification
Language for Java,” in ACM SIGSOFT Software
Engineering Notes, vol. 31, March 2006.

[24] H. Barringer and D. Rydeheard, “Modelling Evolvable
Systems: A Temporal Logic View,” in We will Show
them: Essays in Honour of Dov Gabbay, vol. 2, pp. 195–
228, College Publications, 2005.

[25] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter, “Falcon:
On-Line Monitoring for Steering Parallel Programs,”
Concurrency: Pract. Exper, vol. 10, no. 9, pp. 699–736,
1998.

[26] J. Bowring, A. Orso, and M. Harrold, “Monitoring
Deployed Software Using Software Tomography,” in
Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and
Engineering (PASTE’02), pp. 2–9, 2002.

[27] E. S. Al-Shaer, Hierarchical Filtering-Based Monitoring
Architecture For Large-Scale Distributed Systems. PhD
thesis, Old Dominion University, 1998.

[28] M. Consens, M. Hasan, and A. Mendelzon, “Using Hy+
for Network Management and Distributed Debugging,” in
Proceedings of the 1993 conference of the Centre for
Advanced Studies on Collaborative research: software
engineering, vol. 1, pp. 450–471, IBM Press, 1993.

[29] D. Olge, K. Schwan, and R. Snodgrass, “Application-
Dependent Dynamic Monitoring of Distributed Systems,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 4, pp. 593–622, 1989.

[30] E. Bodden, “J-LO A Tool for Runtime-Checking Temporal
Assertions,” Master’s thesis, RWTH Aachen University,
2005.

[31] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M.
Viswanathan, “Java-MaC: A Run-time Assurance Tool for
Java Programs,” Electronic Notes in Theoretical Computer
Science, vol. 55, no. 2, pp. 218–235, 2001.

[32] D. Peters, “Automated Testing of Real-Time Systems,”
tech. rep., Memorial University of Newfoundland,
November 1999.

[33] B. Meyer, Object Oriented Software Construction.
Prentice-Hall, 1998.

[34] F. Chen and G. Rosu, “MOP: An Efficient and Generic
Runtime Verification Framework,” in the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’07), 2007.

[35] K. Havelund and G. Rosu, “Java PathExplorer – A
Runtime Verification Tool,” in the 6th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space: A New Space Odyssey, pp. 18–21,
June 2001.

[36] D. Bartetzko, C. Fischer, M. M¨oller, and H. Wehrheim,
“Jass – Java with Assertions,” Electronic Notes in
Theoretical Computer Science, vol. 55, no. 2, pp. 103–117,
2001.

[37] M. Karaorman and J. Freeman, “jMonitor: Java Runtime
Event Specification and Monitoring Library,” in Runtime
Verification 2004 (RV’04), 2004.

[38] K. Marzullo, R. Cooper, M. D. Wood, and K. P. Birman,
“Tools for Distributed Application Management,” IEEE
Computer, vol. 24, pp. 42–51, August 1991.

[39] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and
Validation Framework for Web Service Interactions,” in
Proceedings of the 2006 Australian Software Engineering
Conference (ASWEC’06), vol. 6, pp. 70–79, 2006.

[40] Q.Wang, Y. Liu, M. Li, and H. Mei, “An Online
Monitoring Approach for Web services,” in Proceedings of
the 31st Annual International Computer Software and
Applications Conference (COMPSAC’07), vol. 1, pp. 335–
342, IEEE Computer Society Washington, DC, USA,
2007.

[41] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
Time Monitoring of Instances and Classes ofWeb Service
Compositions,” in IEEE International Conference on Web
Services (ICWS’06), 2006.

[42] D. Luckham, S. Sankar, and S. Takahashi, “Two-
Dimensional Pinpointing: Debugging with Formal
Specifications,” IEEE Software, vol. 8, no. 1, pp. 74–84,
1991.

[43] N. Nethercote and J. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” in The
ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation (PLDI’07), (San
Diego, California, USA), June 2007.

[44] K. Chan, I. Poernomo, H. Schmidt, and J. Jayaputera, “A
Model-Oriented Framework for Runtime Monitoring of
Nonfunctional Properties,” in the 1st International
Conference on the Quality Of Software Architectures
(QOSA’05), 2005.

[45] J. Ahluwalia, I. H. Kr¨uger, W. Phillips, and M. Meisinger,
“Model-Based Run-Time Monitoring of End-to-End
Deadlines,” in International Conference on Embedded
Software 2005 (EMSOFT’05), (Jersey City, New Jersey,
USA), September 2005.

[46] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, “SOBER:
Statistical Model-based Bug Localization,” SIGSOFT
Software Engineering Notes, vol. 30, no. 5, pp. 286–295,
2005.

402 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Chang-Guo Guo was born in 1973.
He is an associate professor in School of
Computer Science, at the National
University of Defense Technology,
Changsha, China. Prof. Guo received his
Ph.D. degree in computer science at
National University of Defense
Technology in 2002. He has taken part in
several research projects of the National
High Technology Research and
Development 863 Program of China and

the National Natural Science Foundation of China. Till now, he
has published more than 15 papers. His current research
interests include software engineering, dependable software,
real-time systems and distributed computing.

Jun Zhu was born in 1981. He
received his M.S. degree in computer
science in 2006. He is currently a Ph.D.
candidate of computer science at the
National University of Defense
Technology. His research focuses on
software engineering, dependable software
and distributed computing.

Xiao-Ling Li was born in 1985. He
is currently a Ph.D. candidate in school
of Computer Science, at the National
University of Defense Technology. His
current research interests include
software engineering, dependable
software, distributed computing,
distributed constraint optimization
problem and artificial intelligence.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 403

© 2011 ACADEMY PUBLISHER

