
A New Model for Finding Approximate Tandem
Repeats in DNA Sequences

Qingshan Jiang*

Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
Software School, Xiamen University, Xiamen, China

Email: qjiang@xmu.edu.cn

Sheng Li
Software School, Xiamen University, Xiamen, China

Email: gerry11@tom.com

Shun Guo
School of Information Science and Technology, Xiamen University, Xiamen, China

Email: gsgowell@gmail.com

Dan Wei
Cognitive Science Department, Xiamen University, Xiamen, China

Fujian Key Laboratory of the Brain-like Intelligent Systems (Xiamen University), Xiamen, China
Email: danweiwd@yahoo.cn

Abstract—In gene analysis, finding approximate tandem
repeats in DNA sequence is an important issue. SUA_SATR
is one of the latest methods for finding those repetitions,
which suffers deficiencies of runtime cost and poor result
quality. In order to detect approximate tandem repeats in
genomic sequences more efficiently, we propose a new
model based on a novel algorithm MSATR and an
optimized algorithm mMSATR in this paper. The model
uses the Motif-Divide method to improve the performance,
which results in the proposal of algorithm MSATR. By
introducing the definition of CASM to reduce the searching
scope and optimizing the original mechanism adopted by
MSATR, the mMSATR algorithm makes the detecting
process more efficient and improves the result quality. The
theoretical analysis and experiment results indicate that
MSATR and mMSATR is able to get more results within
less runtime. These algorithms are superior to other
methods in finding results, and it greatly reduces the
runtime cost, which is of benefit when the gene data
becomes larger.

Index Terms- DNA sequence mining; approximate tandem
repeat; motif-similarity

I. INTRODUCTION
Bioinformatics defined as the application of

computational techniques to understand and organize the
information associated with biological macromolecules
[1] is a discipline that combines Biology, Computer
Science, Mathematics and knowledge in other
realms[2][3][4]. DNA, the mystical sequence where life
starts, has been one of the major research objects in
Bioinformatics. In those DNA sequences disperse
iterations of nucleotide motifs called Tandem Repeats
(TRs). TRs’ genetic and evolutionary mechanisms remain

controversial; however it is believed that they are
functionally important for gene transcription, translation,
chromatin organization, recombination, DNA replication,
cell cycle, etc[4][5][6][6][15]. Currently TRs, as important
genetic makers, has been prevalently applied in realms
such as paternity testing, forensic investigations and so on.
Therefore, it is essential to find and study those TRs by
using Data Mining technologies[2][15].

The TRs that current algorithms are trying to find
include those that are totally similar to one another and
those that are partially similar. An exact tandem repeat in
a genomic sequence is a string of nucleotides that consists
of multiple consecutive occurrences of a substring called a
motif. For instance, AAATTAAATT is an exact tandem
repeat of a motif, AAATT, of length 5. Algorithm
[7][10][11][15] are aimed to detect the TRs that are
completely similar. However, because of the mutation,
migration, inversion of gene, those tandem repeats
commonly are not completely similar. Thus, the concept
Approximate Tandem Repeat (ATR) was brought up. It is
defined as a string of nucleotides repeated consecutively at
least twice with small differences between the instances.
Finding ATRs in a sequence is a more complicated task
than finding TRs and has been addressed by several
papers during recent years[13][14][15][17]. One of them
is algorithm SUA_SATR (Succeeding Unit Array_ Search
segment-similarity based Approximate Tandem
Repeats)[4] that uses Succeeding Unit Array (SUA) as the
index structure and a new similarity measurement, and it
is shown that SUA_SATR is superior to traditional
algorithms in both runtime and result quality.

Based on the ground work of SUA_SATR, this paper
put forward a new model, which leads to a novel
algorithm MSATR (Motif-divide based Search
Approximate Tandem Repeats) and an optimized *Corresponding Author, email: qjiang@xmu.edu.cn.

386 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.386-394

algorithm mMSATR (modified MSATR). By introducing
a new index structure based on Motif-Divide method, this
model can achieve better efficiency both in runtime and
result quality, which has been demonstrated by the fact
that MSATR outweighs SUA_SATR in runtime efficiency
as well as result quality. To further optimize the
performance of MSATR, during dividing sequence into
motifs, mMSATR implements some analysis for each
motif to reduce the searching scope for later process,
which results in less runtime. Besides, mMSATR made
some effort to improve the result quality. Experiments
have shown that mMSATR and MSATR costs much less
runtime and detects more ATRs when compared with
SUA_SATR. Meanwhile, mMSATR is superior to
MSATR.

The remainder of this paper is organized as follows.
Section II would introduce the related work and Section
III then would elaborate the new model and algorithms
MSATR and mMSATR. After that, Section IV would
compare three algorithms by analyzing the experimental
results and demonstrate the system based on the research.
At last it is the conclusions by Section V.

II. RELATED WORK

Earlier algorithms use the Edit Distance as the
measurement of similarity [13]. It suffers deficiency of
low efficiency and it is only applied for finding short TRs
in DNA sequence with a limited length. Later, Kurtz [14]
etc. proposed the algorithm REPuter which is based on
structure of suffix-tree, and its efficiency is improved;
however, the result is not satisfactory. In 2007, algorithm
SUA_SATR(Succeeding Unit Array_ Search segment-
similarity based Approximate Tandem Repeats)[15] was
proposed, which uses Succeeding Unit Array (SUA) as the
index structure and Hamming Distance as the similarity
measurement. Compared to the REPuter [14],
SUA_SATR has a smaller space complexity, and it is
easier and faster to build up the index structure. What is
more, the similarity of SUA_SATR is more reasonable,
and the efficiency is improved one step further. The model
of finding ATRs is shown in Fig. 1.

Figure 1. The model of finding ATRs

The steps of finding ATRs are as follows:
1. Defining different similarities of ATRs, such as

Edit Distance and Hamming Distance etc;
2. Building up different index structure, for instance,

the structure of suffix-tree and the succeeding
array;

3. Scanning and Finding ATRs from the index
structure according to similarity function;

4. Growing the motif;

5. Repeating from step 2 to 4 until no ATRs can be
found.

Algorithm SUA_SATR [15] uses Succeeding Unit
Array (SUA) as the index structure and Hamming
Distance as the similarity measurement. SUA_SATR is
superior to traditional algorithms in finding results and
saving runtime.

Considering the influence of the gene lengths on
similarity measurement, SUA_SATR algorithm
introduces a new similarity measurement which is more
reasonable. Furthermore, SUA_SATR proposes SUA as
an index, and it reduces the times of irrelevant
subsequence comparison thereby improving the time
efficiency. In addition, SUA_SATR can mine more TRs
which conform to the similarity measurement than
traditional methods.

SUA_SATR applied SUA to find segment-similarity
based approximate tandem repeats (ATR) in DNA
sequence seq. SUA_SATR finds ATRs by the following
steps:

1. Defining the similarity function based on
Hamming Distance;

2. Dividing seq into motif units, putting them and
their corresponding position relationships into an
array, Sorting the array by the order of alphabet,
and then the index structure of SUA is obtained;

3. Finding ATRs by traversing the index structure.
4. Growing the motif. Motif growth increases the

length of each motif unit which is in SUA.
5. Repeating the above steps until no ATRs can be

found.

During the process of finding SATRs from the index
structure, comparisons between pairwise motif units are
required.

The algorithm SUA_SATR is summarized as follows:

Algorithm SUA_SATR
Input: DNA sequence seq, similarity function S, similarity

threshold r, minimum periods p;

output: SATRs
Begin

While (the motif in SUA can be grown) do
 for (each row in index structure) do
 If (the similarity between current row and the motif of

existing similar segment ≥ r)
 {
 the depth of current similar segment ++;
 Signing the row as the ID of current similar

segment;
} else signing the row as a new ID

 for (each row which has no sign)
 Choosing the row of lowest starting position as current

row;
 Successor = the succeeding motif of current row;
 While(Successor and current row are in the same

segment)
 {
 SATR period ++;
 Signing current row;
 Successor = the succeeding motif;

}

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 387

© 2011 ACADEMY PUBLISHER

 end while
 if (successor meets the conditions of similarity)
 SATR period ++;
 if (SATR period >p)
 Output SATR;
 Growing motif;

end for
end while
Output SATRs;

End

From the pseudo code of SUA_SATR, we can see
that the core of SUA_SATR is building up the index
structure of SUA. According to similarity function,
SATRs can be formed by finding and joining the similar
motif which is adjacent. However, attention should be
paid to the following problems:

1. During the process of finding SATRs from the
index structure, pairwise motif units need to be
compared, even though they are nonadjacent. The
efficiency of algorithm SUA_SATR remains to be
improved.

2. During building the index structure of SUA,
genomic sequences are divided according to the
order of alphabet. Therefore, the motif units in the
SUA of SUA_SATR must have the same first
letter, which makes the motifs in each ATRs share
the same attribute. Namely, the result it can find is
limited.

In order to solve two above problems, we propose a
new index structure which is based on the idea of Motif-
Divide[2].

A. Related Concept

A DNA sequence is a sequence of symbols from the
nucleotide alphabet ∑={A, C, G, T}. Tandem repeats
exist in DNA sequences generally can be divided into two
class, which are (exact) tandem repeats and approximate
tandem repeats defined as follows:

Definition 1 (Exact) Tandem Repeats: An exact
tandem repeat (TR) is a sequence that contains two or
more contiguous copies of identical segments (referred as
to motifs).

Copying errors happen in DNA sequences due to
different external and internal factors, such as substitution,
insertion, deletion, duplication, and contraction. Thus, the
definition of approximate tandem repeats is given as;

Definition 2 Approximate Tandem Repeats: An
approximate tandem repeat (ATR) is a sequence that
contains two or more contiguous copies of similar
segments.

Examples of TR and ATR are listed in Error!
Reference source not found..

TABLE I.
EXAMPLES OF TR AND ATR

Type Sequence Motif

TR AGG AGG AGG AGG AGG

ATR AGG AGC AGG AGT AGG

MSATR uses the same similarity measure as
SUA_SATR [15] algorithm, the definitions are given as
follows:

Definition 3 Hamming Distance: For two segments X,
Y of length n, the distance between X and Y, dH(X, Y), is
the number of sites where the corresponding nucleotides
differ, or equivalently, the minimum number of
substitutions required to convert X to Y.

Definition 4 Motif-similarity[2]: For two motifs X
and Y of length n, the similarity between the two motifs is
dH(X, Y) / n.

And in order to find ATRs, the definitions are given as
follows.

Definition 5 MATR (Motif-similarity based
Approximate Tandem Repeats)[2]: For
sequence)2(...21 ≥= pTTTT p , if the similarity of any two
motifs Ti and Tj (pji ≤≤ ,0) meets the similarity
threshold r, then T is a MATR, and p is its periods.

For example, for a sequence
S=ACCT|AGCT|AACT|ATCT, where r=0.75 and the
length of motif is 4. The Motif-similarity of any two
motifs is (4-1)/4=0.75, so the motifs in S form a MATR.

Definition 6 Motif-Divide Method [2]: For a
sequence of length n, seq, it is divided k times according
to k, which is the length of motif. Every division starts
from the ith (0 1)i k≤ ≤ − position and seq is divided into

() /n i k−⎢ ⎥⎣ ⎦ successive motifs. Then these motifs are put
into arrays in turn. There will be k arrays after dividing.
Obviously, the total number of elements in k arrays is less
than n.

For example, for a sequence
S=AGTTCTAACAGGAA GACGT, where k=4.
According to k, S is divided into motifs of length 4. After
putting these motifs into 4 arrays, the index structure
consisting of 4 arrays is listed in TABLE II. .

TABLE II.
MOTIF-DIVIDE INDEX STRUCTURE OF S

Array Motifs

Array1: AGTT CTAA CAGG AAGA

Array2: GTTC TAAC AGGA AGAC

Array3: TTCT AACA GGAA GACG

Array4: TCTA ACAG GAAG ACGT

III. THE NEW MODEL FOR FINDING ATRS

 To solve the problems mentioned above in
SUA_SATR, we propose a new model of finding ATRs
to improve the performance. The new model shows as
Fig. 2.

The steps of the new model to find ATRs are as
follows:

1. Defining different similarities of ATRs, such as
Edit Distance and Hamming Distance etc;

2. According to the length of motif, sequence is
divided into many motifs of same length;

388 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

3. Building up different index structure based on
Motif-Divide;

4. Scanning and Finding ATRs from the index
structure according to similarity function;

5. Growing the motif;
6. Repeating from step 2 to 5 until no ATRs can be

found.

Figure 2. The new model of finding ATRs

Based on the new model of finding ATRs, we discuss
on MSATR algorithm and MSATR’s optimized algorithm
mMSATR to improve the performance of SUA_SATR
algorithm.

A. Algorithm MSATR
We introduce the idea of Motif-Divide to build up the

array index in which each unit is a motif divided from the
DNA sequence and adjacent to the one next to it. By
checking the similarity of adjacent motifs and joining
similar ones, algorithm is able to find the ATRs more
efficiently. What is more, the ATRs found are not limited
by the rule in SUA_SATR that the first letter must be the
same.

In order to find all the MATRs in DNA sequence seq,
MSATR consists of two steps, dividing and joining [2].

Dividing: First, seq should be divided into short motifs
of length k. Because where the dividing starts matters,
algorithm needs to do the dividing k times. Each time
starts from position i (ki <≤0), and the motifs divided
each time are stored in a separate array. However, the end
of the seq could be divided into a motif whose length is
less than k. For those motifs, algorithm chooses to ignore
them, instead of putting them in the array for further
detecting.

Joining: Each array needs to be scanned, and MSATR
calculates the similarity among motifs to see whether they
should be joined.

Given the DNA sequence seq, the length scope (a, b)
of ATRs that we want to find, the minimum periods pmin
that MATR should have and the similarity S(segment,
motif, r) where segment is the current ATR candidate,
motif is the one next to the last motif in the segment and r
is the similarity threshold, the detail of the MATR is as
follows:

Algorithm MSATR
Input: DNA sequence seq, motif length scope (a, b),
 similarity threshold r, minimum periods pmin;
output: MATRs

Begin
1 set k=a;
Repeat
2 Dividing

1) Divide seq by length k in k times from index 0 to k-
1, each time return an array of divided motifs;

2) Return all the k arrays.
3 Joining

for each array M, do
1) let m0 be the first motif in M and set periods=1, put

m0 in the buffer, and for each motif mi in M
(Mi <<0), do),,(rmbufferSf i= , and

2) if 1−==f , buffer.add(mi), periods++;
3) else

if (periods >= pmin), add buffer to MATRs;
clear buffer, and buffer.add(mi);
periods=1;

End for;
4 Clear buffer, k++;
Until k = b;
5 Output MATRs;
End

B. Complexity Analysis of the MSATR
According to the pseudo code above, the runtime of

MSATR is related to the scope of the length of motif. The
larger the scope is, the more time MSATR would cost.
However, if the scope is limit (<<n), the time complexity
of MSATR is linear. Since MSATR contain two steps
(dividing and jointing), we can estimate the complexity
separated.

If the set the length of motif is k, then MSATR needs
dividing k times to find all MATRs with that motif length.
And in i th dividing, MSATR divides the sequences into

() /n i k−⎢ ⎥⎣ ⎦ parts (n is the length of sequences), and put the
motifs into arrays. In this process, the complexity is

(() /)k n i k n− <⎢ ⎥⎣ ⎦ .
In jointing step, MSATR scans all motifs with k length

in the arrays and compare each motif to the buffer. Hence,
the complexity is still O (n). If the scope of the length of
motif is m (m<<n), then MSATR’s complexity is O
(m(n+n)) = O (2mn) = O(n).

The space MSATR needs contains: the arrays to store
n motifs from dividing step and the arrays to store
MATRs which is detected from n motifs. So, the space
complexity of MSATR is O (n).

C. Related Concept

According to the MSATR, most of the time cost lies in
the repetitive similarity tests. And a large amount of the
tests are vain, because large quantities of MATR
candidates whose periods are less than pmin are not
qualified.

Besides, some MATRs are not able to be found by the
mechanism above. That is because when a certain motif m
is not similar to the motif me in the MATR candidate, the

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 389

© 2011 ACADEMY PUBLISHER

buffer is cleared and the finding starts over again with m.
However, m could be similar to all the motifs after me and
enough motifs after m itself, which makes a qualified
MATR. For example, let pmin = 6, there is a MATR
candidate m1m2m3m4m5, and m6 is not similar to m2.
However, m6 is similar to m3m4m5 and m7m8. In that case,
m3m4m5m6m7m8 is a MATR which cannot be found by
MSATR algorithm.

Considering the deficiencies above, this paper put
forward the optimized algorithm mMSATR to reduce the
runtime cost and improve the result quality.

To understand how algorithm mMSATR works, a new
concept, which is essential to improve the runtime
efficiency of algorithm, needs to be defined.

Definition 6 CASM (Chain of Adjacently Similar
Motifs)[16]: For sequence)2(...21 ≥= pTTTT p , if the
similarity of any two adjacent motifs Ti and Ti+1
(pi <≤0) meets the similarity threshold r, then T is a
CASM, and p is its length.

D. Algorithm mMSATR
In order to solve the deficiencies existing in MSATR

algorithm, an optimal algorithm mMSATR adopts two
tactics in the dividing and joining steps[16].

One of the major improvements is introducing the
concept of CASM into the algorithm. It is obvious that
being a CASM whose length is not less than the minimum
periods pmin is a prerequisite for being a qualified MATR.
By finding all the CASMs first, what is left is to find all
the MATRs from the CASMs by almost the same
mechanism of MSATR’ joining step, which means the
searching scope is cut down to the CASMs as shown in
Fig. 3. In that case, less similarity tests need to be
implemented in the second step, not only because the
searching scope is reduced, but also because the adjacent
motifs in CASMs are already proved to similar to each
other. As a result, the runtime efficiency is improved.

Figure 3. Workflow of the mMSATR Algorithm

Besides, when checking similarity between a new
motif m and the motifs in the MATR candidate, MSATR
compares m with every motif. However, when m is totally
the same as one motif in the MATR candidate, the right
thing to do is to stop the similarity test and return true,

instead of continuing comparing m with the motifs left
when it is obvious that the similarities between m and
them will meet the threshold. This would benefit reducing
runtime cost, when most motifs in the MATR are the same
to one another.

Another major improvement is aimed to solve the
problem of missing results. When algorithm mMSATR
comes across motif mc that is not similar with me in the
MATR candidate, instead of clearing the buffer and
starting over with mc, mMSATR replaces buffer with a
new MATR candidate me+1…mc-1 and checks mc again. By
doing such, no possible MATRs will be missed out. In
order to know the index of me, the similarity function

),,(rmbufferS c needs to return the index e when mc is not
similar with me; and return -1 when no dissimilarity is
detected.

By implementing the two major improvements in
dividing and joining steps, mMSATR is able to reduce the
searching scope and find more qualified MATRs.
Algorithm mMSATR can be described as follows:

Algorithm mMSATR
Input: DNA sequence seq, motif length scope (a, b),
 similarity threshold r, minimum periods pmin;
output: MATRs

Begin
1 set k=a;
Repeat
2 Dividing

 for(i=0; i<k; i++) do
1) Starting from index i, divide seq by length k; let m0

be the first motif divided from seq, set length=1,
put m0 in the buffer, and for each motif mc divided
from seq later(c starts from 1), do

),,(1 rmmSf cc−= , and

2) if 1−==f , buffer.add(mi), length ++;
3) else

if (length >= pmin), add buffer to CASMs;
clear buffer, and buffer.add(mi);
length =1;

End for
4) Clear buffer, and return all the CASMs;

3 Joining
for each CASM M in CASMs, do

1) let m0 be the first motif in M and set periods=1, put
m0 in the buffer, and for each motif mi in M
(Mi <<0), do),,(rmbufferSf i= , and

2) if 1−==f , buffer.add(mi), periods++;
3) else

if (periods >= pmin), add buffer to MATRs;
replace buffer with motifs from mf+1 to mi-1;
periods= 1−− fi , i--;

End for;
4 Clear buffer, k++;
Until k = b;
5 Output MATRs;
End

In the next section, experiments on SUA_SATR,

MSATR and mMSATR would show that MSATR and

390 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

mMSATR is advanced in saving time and detecting more
qualified MATRs.

IV. EXPERIMENTS AND RESULT ANALYSIS
To verify the improvements made by mMSATR

works, experiments are set to evaluate the runtime
efficiency and result number of different methods. We
evaluate the quality for real-world data and synthetic data.
The real-world data sets, for which the complete list of
ATRs is not known, consisted of four genomes:
chromosome I of yeast (230,203 bp) and the complete
genomes of two types of E. coli: K–12 (4,639,221bp) and
O157:H7 (5,498,450 bp) and the DNA sequence of
Human’s 22nd DNA chromosome from GenBank
(http://www.ncbi.nlm.nih.gov/Genbank). The output
quality is compared against SUA_SATR describe in [15].
The simulated data consisted of MATRs planted into a
synthetic sequence of length 100,000 bp. For the
simulated data we also compare the run times of the
different programs.

As for the running environment, we use the Windows
7 OS with Intel(R) Core(TM) 2 Duo CPU P7350 @
2.00GHZ and 2GB main memory, and the code was
written on the platform of Eclipse 3.4.1 by Java.

A. Evaluation of Searching Scope
First experiment is conducted to verify that mMSATR

is able to reduce the searching scope by introducing the
concept of CASM, and how the scope changes with value
pmin. In this experiment, we use the segment of the
Human’s 22nd DNA, and the size of the dataset is 200Kb,
and the motif length k is set to 4, and similarity threshold r
is 0.75.

In MSATR, the searching scope is all the motifs that
divided by length k. While in mMSATR, as shown in
Fig.4, when the pmin is small, like value 5, the scope has
261 CASMs, while the number of MATRs found is only
153. However, as the pmin increases, the number of
CASM, the searching scope, keeps decreasing. When pmin
reaches the value 10, the scope has 11 CASMs, out of
which 10 MATRs are found.

Figure 4. Evaluation of CASM and MATR.

Experiment has shown that the searching scope can be
successfully reduced by finding all the CASMs in the
dividing step of mMSATR; if the pmin increases, the scope
will decrease corresponsively, and it is closer to the final
results.

B. Comparisons with Growing Dataset

The next experiment is aimed to compare the runtime
efficiency and results of SUA_SATR, MSATR and
mMSATR algorithms on the growing dataset of Human’s
22nd DNA chromosome.

In the experiment below, the minimum periods pmin is
set to be 2, similarity threshold r is 0.75 and the motif
length scope is (1, 80).

0

20

40

60

80

100

120

100 200 300 400 500

Scale of Dataset(Kb)
R

un
tim

e(
s)

SUA

MSATR

mMSATR

Figure 5. Evaluation of Runtime.

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500

Scale of Dataset(Kb)

N
um

be
r o

f M
A

TR
s

SUA_SATR
MSATR
mMSATR

Figure 6．Evaluation of Result Number.

Firstly, we evaluate the runtime efficiency of MSATR,
mMSATR and SUA_SATR with the increasing of dataset.
Fig.5 shows that MSATR, mMSATR are much more
efficient than SUA_SATR with the increasing of dataset.
The larger the dataset is, the more time SUA_SATR
spends. That is because SUA_SATR algorithm needs to
compare each pair of motif even if they are not adjacent in
the process of searching. So with the motif growth,
SUA_SATR would spend more time to find MATRs.
Compared to MSATR, mMSATR is more efficient. That
is because the searching scope is reduced due to the
introduction of CASM in mMSATR, less time is spent on
the similarity test.

Secondly, according the improvement mMSATR
made in the joining step, we compare the results of three
algorithms. Fig.6 shows that MSATR and mMSATR
found more MATRs than SUA_SATR in the growing
datasets. That is because SUA_SATR can only search the
MATRs with the special case in which the first element
of each motif are the same. mMSATR is able to find
more MATRs than MSATR in which those MATRs are
missing.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 391

© 2011 ACADEMY PUBLISHER

To sum up, experiments have shown that MSATR and
mMSATR are much more efficient than SUA_SATR
with the increasing dataset in the same sequence. The
larger the dataset is, the more obvious the superiority is.
The main reason is that using the idea of Motif-Divide to
avoid comparing motifs that are not adjacent in the
process of searching MATRs. Besides that, MSATR and
mMSATR can detect MATRs with different first letter
motifs which cannot be found by SUA_SATR.
Compared to MSATR, by using the concept of CASM,
mMSATR reduces the searching scope and modifies the
mechanism of MSATR to further improve the
performance of MSATR.

C. Comparisons with Different Datasets

To test the quality of our algorithm’s output in
different cases, we ran on three real-world data sets:
chromosome I of yeast (230,203 bp) and the complete
genomes of two types of E. coli: K–12 (4,639,221bp) and
O157:H7 (5,498,450 bp).

0

20000

40000

60000

80000

100000

120000

140000

Yeast E.coil.K12 O157:H17

N
um

be
r o

f M
A

TR
s

SUA_SATR
MSATR
mMSATR

Figure 7．Number of MATRs found by SUA_SATR, MSATR
and mMSATR on real data

In these experiments, the minimum periods pmin is set
to be 2, similarity threshold r is 0.75 and the motif length
scope is (1, 200). To avoid finding some highly short
MATRs which may not carry any biological information,
we limit the length of MATRs should longer than 10.

Fig.7 shows that MSATR and mMSATR found much
more MATRs than SUA_SATR in the three genomic
sequences, using MSATR’s definition of MATR. We can
see that even in different sequences, MSATR and
mMSATR detect considerably more MATRs. Namely,
there are plenty of MATRs with the different first letter
motifs in different sequences which SUA_SATR cannot
detect. Some examples are uniquely found by MSATR
and mMSATR in these sequences: a motif of length 5
which repeats 5 times starting at position 241,403. In the
E.coli–K12 genome, and 4 copies of a motif of length 17
in the E.coli–O157:H7 genome starting at position
358,919. In these cases, the MATRs did have different
first letter motifs. Also, It can be seen that mMSATR is
able to find more MATRs than MSATR.

D. Comparisions with Synthetic Dataset
We also use 10 synthetic sequences of length 100,000

to evaluate the algorithms. In the experiment below, the

minimum periods pmin is set to be 2, similarity threshold r
is 0.75 and the motif length scope is (1, 100).

1500
1700
1900
2100
2300
2500
2700

1 2 3 4 5 6 7 8 9 10

Sequence

N
um

be
r o

f M
A

TR
s

SUA_SATR MSATR mMSATR

Figure 8．Number of synthetic MATRs found by SUA_SATR,

MSATR and mMSATR on 10 sequences

When we ran three algorithms with the same
parameters, the follow facts emerge as Fig. 8 shows:
MSATR and mMSATR is able to find more MATRs
while SUA_SATR often miss some with different first
letter motifs; meanwhile, the runtime efficiency of
algorithms MSATR and mMSATR outweighs that of the
algorithm SUA_SATR.

We also note that these three algorithms have some
redundancies in the result. There is a case like that: a
MATR contains x motifs with length y, another MATR
contains y motifs with length x, however these two
MATRs may be the same.
E SYSTEM DEMONSTRATION

Based on the work above, we developed a DNA
Sequential Pattern Mining System (DSPMS) which
implemented the function of mining tandem repeats. Fig.
9 is the main frame of the system.

Figure 9. Mainframe of DSPMS

In the DSPMS system, the whole mining process is
divided into several steps. The first step is to load data into
the system as shown in Fig. 10, and then to configure the
algorithm to implement the mining.

The system also can compare algorithms under the
circumstance of different variables (Figure 11).

Then the results are presented to user by popping out
a new dialog, containing results described by both text
and graph.

392 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Figure 10. Load Data in the System

Figure 11. Results of comparison

V. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a new model of which the
essence is introducing the idea of Motif-Divide. Based on
this model, a novel algorithm MSATR and an optimized
algorithm mMSATR have been put forward for finding
approximate tandem repeats. By introducing a new index
structure based on Motif-Divide method, algorithm
MSATR improves efficiency and result quality than
SUA_SATR. Algorithm mMSATR introduced the
concept of CASM to restrain the searching scope in order
to promote its runtime efficiency. Besides, mMSATR
adjusted the original mechanism in the joining step of
MSATR to improve the deficiency of the result quality.
Experiments have proved that this model is effectual, and
the algorithms based on it have made positive effect as
expected. Besides, we developed a DNA Sequential
Pattern Mining System to facilitate future research. Future
work is to find a more applicable similarity measurement
for DNA sequence, so the ATRs we are trying to find can
be more reasonable and useful in practical applications.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China under Grant No.10771176.

REFERENCES
[1] NM. Luscombe, D. Greenbaum, M. Gerste. What is

bioinformatics? A proposed definition and overview of
the field. Methods Information in Medicine, 2001,
40(4):346−358.

[2] Guo Shun, Guan Heshan, Jiang Qingshan. A novel
algorithm for finding approximate tandem repeats in DNA
sequences. Journal of Computer Research and
Development. 2008, 45(Suppl.):175-179 (in Chinese).

[3] Zhu Yangyong, Xiong Yun. DNA Sequence Data Mining
Technique. Journal of Software, 2007, 18(11): 2766-
2781(in Chinese).

[4] Y. Li, A. Korol, T. Fahima, A. Beiles, and E. Nevo.
Microsatellites: genomic distribution, putative functions
and mutational mechanisms. Molecular Ecology, 2002,
11(12): 2453 -2465.

[5] Y. Kashi, D. King, and M. Soller. Simple sequence
repeats as a source of quantitative genetic variation.
Trends in Genetics, 1997, 13(2): 74–78.

[6] S.Beleza, C.Alves,A. Gonzalez-Neira. Extending STR
markers in Y chromosome haplotypes. International
Journal of Legal Medicine, 2003, 117(1):27-33.

[7] S.Gilmore, R. Peakall, J.Robertson, Short tandem repeat
(STR) DNA markers are hypervariable and informative in
Cannabis sativa: implications for forensic investigations.
Forensic science international , 2003, 131(1): 65-74.

[8] Apostolico and F. Prefarata. Optimal off-line
detection of repetitions in a string. Theoretical
Computer Science, 1983, 22(3):297–315.

[9] Kolpakov R, Kucherov G. Finding maximal repetitions in
a word in linear time. In: Proc. of the 1999 Symposium
On Foundations of Computer Science. Washington: IEEE
Computer Society, 1999. 596−604.

[10] M. Crochemore. An optimal algorithm for computing the
repetitions in a word. Information Processing Letters,
1981, 12(5):244–250.

[11] M. Main and R. Lorentz. An O(nlogn) algorithm for
finding all repetitions in a string. Journal of Algorithms,
1984, 5(3):422–432.

[12] Delgrange O, Rivals E. STAR: An algorithm to search for
tandem approximate repeats. Bioinformatics, 2004,
20(16):2812−2820.

[13] G. Benson. Tandem repeats finder: a program to analyze
DNA sequences. Nucleic Acid Research, 1999,
27(2):573–580.

[14] S. Kurtz, JV. Choudhuri, E. Ohleb usch,
C.Schleiermacher, J. Stoye, R. Giegerich. REPuter: The
manifold applications of repeat analysis on a genomic
scale. Nucleic Acid Research, 2001, 29(22): 4633–4642.

[15] Wang D, Wang G, Wu QQ, Chen BC. Finding LPRs in
DNA sequence based on a new index SUA [C]. In: Proc.
of the IEEE 5th Symp. On Bioinformatics and
Bioenginerering (BIBE 2005). Washington: IEEE
Computer Science, 2005. 281−284.

[16] Li Sheng, Jiang Qingshan, Wei Dan. An optimized
algorithm for finding approximate tandem repeats in DNA
sequences. Second International Workshop on Education
Technology and Computer Science. Wuhan, 2010. 68-71.

[17] Wang D, Zhao Y, Chen BC, Wang GR. SUA-Based
algorithm for finding SATRs in DNA sequence. Journal
of Northeastern University (Natural Science), 2007,
28(2):209−212 (in Chinese).

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 393

© 2011 ACADEMY PUBLISHER

Qingshan Jiang is a professor at Xiamen
University, China. He received a Ph.D. in
Mathematics from Chiba University, Japan
in 1996, and a Ph.D. in Computer Science
from University of Sherbrooke, Canada in
2002. During his more than 25 years of
study and research, he has published over
100 scientific papers in international
journals and conference proceedings. His

research interests include Pattern Recognition, Data Mining,
Artificial Intelligence, and Bioinformatics

Sheng Li, born in China in 1984, received
his Master Degree majored in Computer
Software and Theory at Xiamen University
in June 2010. His research includes Data
Mining and is majorly focused on mining
sequential patterns from bio-sequences.

Shun Guo, born in 1982, Ph.D. candidate at
Xiamen University. Her main research
interests include data mining and
Bioinformatics

Dan Wei is a Ph.D. candidate at Xiamen
University. Her current research interests
include Artificial Intelligence, Data Mining
and Bioinformatics.

394 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

