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Abstract—In gene analysis, finding approximate tandem 
repeats in DNA sequence is an important issue. SUA_SATR 
is one of the latest methods for finding those repetitions, 
which suffers deficiencies of runtime cost and poor result 
quality. In order to detect approximate tandem repeats in 
genomic sequences more efficiently, we propose a new 
model based on a novel algorithm MSATR and an 
optimized algorithm mMSATR in this paper. The model 
uses the Motif-Divide method to improve the performance, 
which results in the proposal of algorithm MSATR. By 
introducing the definition of CASM to reduce the searching 
scope and optimizing the original mechanism adopted by 
MSATR, the mMSATR algorithm makes the detecting 
process more efficient and improves the result quality. The 
theoretical analysis and experiment results indicate that 
MSATR and mMSATR is able to get more results within 
less runtime. These algorithms are superior to other 
methods in finding results, and it greatly reduces the 
runtime cost, which is of benefit when the gene data 
becomes larger. 

Index Terms- DNA sequence mining; approximate tandem 
repeat; motif-similarity 

I.  INTRODUCTION 
Bioinformatics defined as the application of 

computational techniques to understand and organize the 
information associated with biological macromolecules 
[1] is a discipline that combines Biology, Computer 
Science, Mathematics and knowledge in other 
realms[2][3][4]. DNA, the mystical sequence where life 
starts, has been one of the major research objects in 
Bioinformatics. In those DNA sequences disperse 
iterations of nucleotide motifs called Tandem Repeats 
(TRs). TRs’ genetic and evolutionary mechanisms remain 

controversial; however it is believed that they are 
functionally important for gene transcription, translation, 
chromatin organization, recombination, DNA replication, 
cell cycle, etc[4][5][6][6][15]. Currently TRs, as important 
genetic makers, has been prevalently applied in realms 
such as paternity testing, forensic investigations and so on. 
Therefore, it is essential to find and study those TRs by 
using Data Mining technologies[2][15]. 

The TRs that current algorithms are trying to find 
include those that are totally similar to one another and 
those that are partially similar. An exact tandem repeat in 
a genomic sequence is a string of nucleotides that consists 
of multiple consecutive occurrences of a substring called a 
motif. For instance, AAATTAAATT is an exact tandem 
repeat of a motif, AAATT, of length 5. Algorithm 
[7][10][11][15] are aimed to detect the TRs that are 
completely similar. However, because of the mutation, 
migration, inversion of gene, those tandem repeats 
commonly are not completely similar. Thus, the concept 
Approximate Tandem Repeat (ATR) was brought up. It is 
defined as a string of nucleotides repeated consecutively at 
least twice with small differences between the instances. 
Finding ATRs in a sequence is a more complicated task 
than finding TRs and has been addressed by several 
papers during recent years[13][14][15][17]. One of them 
is algorithm SUA_SATR (Succeeding Unit Array_ Search 
segment-similarity based Approximate Tandem 
Repeats)[4] that uses Succeeding Unit Array (SUA) as the 
index structure and a new similarity measurement, and it 
is shown that SUA_SATR is superior to traditional 
algorithms in both runtime and result quality.  

Based on the ground work of SUA_SATR, this paper 
put forward a new model, which leads to a novel 
algorithm MSATR (Motif-divide based Search 
Approximate Tandem Repeats) and an optimized *Corresponding Author, email: qjiang@xmu.edu.cn.
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algorithm mMSATR (modified MSATR). By introducing 
a new index structure based on Motif-Divide method, this 
model can achieve better efficiency both in runtime and 
result quality, which has been demonstrated by the fact 
that MSATR outweighs SUA_SATR in runtime efficiency 
as well as result quality. To further optimize the 
performance of MSATR, during dividing sequence into 
motifs, mMSATR implements some analysis for each 
motif to reduce the searching scope for later process, 
which results in less runtime. Besides, mMSATR made 
some effort to improve the result quality. Experiments 
have shown that mMSATR and MSATR costs much less 
runtime and detects more ATRs when compared with 
SUA_SATR. Meanwhile, mMSATR is superior to 
MSATR.  

The remainder of this paper is organized as follows. 
Section II would introduce the related work and Section 
III then would elaborate the new model and algorithms 
MSATR and mMSATR. After that, Section IV would 
compare three algorithms by analyzing the experimental 
results and demonstrate the system based on the research. 
At last it is the conclusions by Section V. 

II. RELATED WORK 

Earlier algorithms use the Edit Distance as the 
measurement of similarity [13]. It suffers deficiency of 
low efficiency and it is only applied for finding short TRs 
in DNA sequence with a limited length. Later, Kurtz [14] 
etc. proposed the algorithm REPuter which is based on 
structure of suffix-tree, and its efficiency is improved; 
however, the result is not satisfactory. In 2007, algorithm 
SUA_SATR(Succeeding Unit Array_ Search segment-
similarity based Approximate Tandem Repeats)[15] was 
proposed, which uses Succeeding Unit Array (SUA) as the 
index structure and Hamming Distance as the similarity 
measurement. Compared to the REPuter [14], 
SUA_SATR has a smaller space complexity, and it is 
easier and faster to build up the index structure. What is 
more, the similarity of SUA_SATR is more reasonable, 
and the efficiency is improved one step further. The model 
of finding ATRs is shown in Fig. 1. 

 
Figure 1. The model of finding ATRs 

The steps of finding ATRs are as follows: 
1. Defining different similarities of ATRs, such as 

Edit Distance and Hamming Distance etc; 
2. Building up different index structure, for instance, 

the structure of suffix-tree and the succeeding 
array; 

3. Scanning and Finding ATRs from the index 
structure according to similarity function; 

4. Growing the motif; 

5. Repeating from step 2 to 4 until no ATRs can be 
found. 

Algorithm SUA_SATR [15] uses Succeeding Unit 
Array (SUA) as the index structure and Hamming 
Distance as the similarity measurement. SUA_SATR is 
superior to traditional algorithms in finding results and 
saving runtime. 

Considering the influence of the gene lengths on 
similarity measurement, SUA_SATR algorithm 
introduces a new similarity measurement which is more 
reasonable. Furthermore, SUA_SATR proposes SUA as 
an index, and it reduces the times of irrelevant 
subsequence comparison thereby improving the time 
efficiency. In addition, SUA_SATR can mine more TRs 
which conform to the similarity measurement than 
traditional methods. 

SUA_SATR applied SUA to find segment-similarity 
based approximate tandem repeats (ATR) in DNA 
sequence seq. SUA_SATR finds ATRs by the following 
steps: 

1. Defining the similarity function based on 
Hamming Distance; 

2. Dividing seq into motif units, putting them and 
their corresponding position relationships into an 
array, Sorting the array by the order of alphabet, 
and then the index structure of SUA is obtained; 

3. Finding ATRs by traversing the index structure.  
4. Growing the motif. Motif growth increases the 

length of each motif unit which is in SUA. 
5. Repeating the above steps until no ATRs can be 

found. 

During the process of finding SATRs from the index 
structure, comparisons between pairwise motif units are 
required.  

The algorithm SUA_SATR is summarized as follows: 

Algorithm SUA_SATR 
Input:  DNA sequence seq, similarity function S, similarity 

threshold r, minimum periods p; 

output:  SATRs 
Begin 

While (the motif in SUA can be grown) do 
   for (each row in index structure) do 
      If (the similarity between current row and the motif of 

existing similar segment ≥ r) 
      { 
          the depth of current similar segment ++; 
          Signing the row as the ID of current similar 

segment; 
} else signing the row as a new ID 

   for (each row which has no sign) 
     Choosing the row of lowest starting position as current 

row; 
     Successor = the succeeding motif of current row; 
     While(Successor and current row are in the same 

segment) 
     { 
        SATR period ++; 
        Signing current row; 
        Successor = the succeeding motif; 

} 
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     end while 
     if (successor meets the conditions of similarity) 
        SATR period ++; 
     if (SATR period >p) 
        Output SATR; 
     Growing motif; 

end for 
end while 
Output SATRs; 

End 

From the pseudo code of SUA_SATR, we can see 
that the core of SUA_SATR is building up the index 
structure of SUA. According to similarity function, 
SATRs can be formed by finding and joining the similar 
motif which is adjacent. However, attention should be 
paid to the following problems: 

1. During the process of finding SATRs from the 
index structure, pairwise motif units need to be 
compared, even though they are nonadjacent. The 
efficiency of algorithm SUA_SATR remains to be 
improved. 

2. During building the index structure of SUA, 
genomic sequences are divided according to the 
order of alphabet. Therefore, the motif units in the 
SUA of SUA_SATR must have the same first 
letter, which makes the motifs in each ATRs share 
the same attribute. Namely, the result it can find is 
limited. 

In order to solve two above problems, we propose a 
new index structure which is based on the idea of Motif-
Divide[2]. 

A. Related Concept 

A DNA sequence is a sequence of symbols from the 
nucleotide alphabet ∑={A, C, G, T}. Tandem repeats 
exist in DNA sequences generally can be divided into two 
class, which are (exact) tandem repeats and approximate 
tandem repeats defined as follows: 

Definition 1 (Exact) Tandem Repeats: An exact 
tandem repeat (TR) is a sequence that contains two or 
more contiguous copies of identical segments (referred as 
to motifs). 

Copying errors happen in DNA sequences due to 
different external and internal factors, such as substitution, 
insertion, deletion, duplication, and contraction. Thus, the 
definition of approximate tandem repeats is given as; 

Definition 2 Approximate Tandem Repeats: An 
approximate tandem repeat (ATR) is a sequence that 
contains two or more contiguous copies of similar 
segments. 

Examples of TR and ATR are listed in Error! 
Reference source not found.. 

TABLE I.   
EXAMPLES OF TR AND ATR 

Type Sequence Motif 

TR AGG AGG AGG AGG AGG 

ATR AGG AGC AGG AGT AGG 

MSATR uses the same similarity measure as 
SUA_SATR [15] algorithm, the definitions are given as 
follows: 

Definition 3 Hamming Distance: For two segments X, 
Y of length n, the distance between X and Y, dH(X, Y), is 
the number of sites where the corresponding nucleotides 
differ, or equivalently, the minimum number of 
substitutions required to convert X to Y. 

Definition 4 Motif-similarity[2]: For two motifs X 
and Y of length n, the similarity between the two motifs is 
dH(X, Y) / n. 

And in order to find ATRs, the definitions are given as 
follows. 

Definition 5 MATR (Motif-similarity based 
Approximate Tandem Repeats)[2]: For 
sequence )2(...21 ≥= pTTTT p , if the similarity of any two 
motifs Ti and Tj ( pji ≤≤ ,0 ) meets the similarity 
threshold r, then T is a MATR, and p is its periods.  

For example, for a sequence 
S=ACCT|AGCT|AACT|ATCT, where r=0.75 and the 
length of motif is 4. The Motif-similarity of any two 
motifs is (4-1)/4=0.75, so the motifs in S form a MATR. 

Definition 6 Motif-Divide Method [2]: For a 
sequence of length n, seq, it is divided k times according 
to k, which is the length of motif. Every division starts 
from the ith (0 1)i k≤ ≤ −  position and seq is divided into 

( ) /n i k−⎢ ⎥⎣ ⎦  successive motifs. Then these motifs are put 
into arrays in turn. There will be k arrays after dividing. 
Obviously, the total number of elements in k arrays is less 
than n. 

For example, for a sequence 
S=AGTTCTAACAGGAA GACGT, where k=4. 
According to k, S is divided into motifs of length 4. After 
putting these motifs into 4 arrays, the index structure 
consisting of 4 arrays is listed in TABLE II. . 

TABLE II.   
MOTIF-DIVIDE INDEX STRUCTURE OF S 

Array Motifs 

Array1: AGTT CTAA CAGG AAGA 

Array2: GTTC TAAC AGGA AGAC 

Array3: TTCT AACA GGAA GACG 

Array4: TCTA ACAG GAAG ACGT 

III. THE NEW MODEL FOR FINDING ATRS 

 To solve the problems mentioned above in 
SUA_SATR, we propose a new model of finding ATRs 
to improve the performance. The new model shows as 
Fig. 2.  

The steps of the new model to find ATRs are as 
follows: 

1. Defining different similarities of ATRs, such as 
Edit Distance and Hamming Distance etc; 

2. According to the length of motif, sequence is 
divided into many motifs of same length; 
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3. Building up different index structure based on 
Motif-Divide; 

4. Scanning and Finding ATRs from the index 
structure according to similarity function; 

5. Growing the motif; 
6. Repeating from step 2 to 5 until no ATRs can be 

found. 

 

Figure 2. The new model of finding ATRs 

Based on the new model of finding ATRs, we discuss 
on MSATR algorithm and MSATR’s optimized algorithm 
mMSATR to improve the performance of SUA_SATR 
algorithm. 

A. Algorithm MSATR 
We introduce the idea of Motif-Divide to build up the 

array index in which each unit is a motif divided from the 
DNA sequence and adjacent to the one next to it. By 
checking the similarity of adjacent motifs and joining 
similar ones, algorithm is able to find the ATRs more 
efficiently. What is more, the ATRs found are not limited 
by the rule in SUA_SATR that the first letter must be the 
same. 

In order to find all the MATRs in DNA sequence seq, 
MSATR consists of two steps, dividing and joining [2].  

Dividing: First, seq should be divided into short motifs 
of length k. Because where the dividing starts matters, 
algorithm needs to do the dividing k times. Each time 
starts from position i ( ki <≤0 ), and the motifs divided 
each time are stored in a separate array. However, the end 
of the seq could be divided into a motif whose length is 
less than k. For those motifs, algorithm chooses to ignore 
them, instead of putting them in the array for further 
detecting.  

Joining: Each array needs to be scanned, and MSATR 
calculates the similarity among motifs to see whether they 
should be joined.  

Given the DNA sequence seq, the length scope (a, b) 
of ATRs that we want to find, the minimum periods pmin 
that MATR should have and the similarity S(segment, 
motif, r) where segment is the current ATR candidate, 
motif is the one next to the last motif in the segment and r 
is the similarity threshold, the detail of the MATR is as 
follows:  

Algorithm MSATR 
Input:  DNA sequence seq, motif length scope (a, b),  
             similarity threshold r, minimum periods pmin; 
output: MATRs 

Begin 
1 set k=a; 
Repeat 
2 Dividing 

1) Divide seq by length k in k times from index 0 to k-
1, each time return an array of divided motifs;  

2) Return all the k arrays. 
3 Joining 

for each array M, do 
1) let m0 be the first motif in M and set periods=1, put 

m0 in the buffer, and for each motif mi in M 
( Mi <<0 ), do ),,( rmbufferSf i= , and  

2) if 1−==f , buffer.add(mi), periods++; 
3) else  

if (periods >= pmin), add buffer to MATRs; 
clear buffer, and buffer.add(mi);  
periods=1; 

End for; 
4 Clear buffer, k++; 
Until k = b; 
5 Output MATRs; 
End 

B. Complexity Analysis of  the MSATR  
According to the pseudo code above, the runtime of 

MSATR is related to the scope of the length of motif.  The 
larger the scope is, the more time MSATR would cost. 
However, if the scope is limit (<<n), the time complexity 
of MSATR is linear. Since MSATR contain two steps 
(dividing and jointing), we can estimate the complexity 
separated.  

If the set the length of motif is k, then MSATR needs 
dividing k times to find all MATRs with that motif length. 
And in i th   dividing, MSATR divides the sequences into 

( ) /n i k−⎢ ⎥⎣ ⎦ parts (n is the length of sequences), and put the 
motifs into arrays.  In this process, the complexity is 

( ( ) / )k n i k n− <⎢ ⎥⎣ ⎦ .  
In jointing step, MSATR scans all motifs with k length 

in the arrays and compare each motif to the buffer. Hence, 
the complexity is still O (n). If the scope of the length of 
motif is m (m<<n), then MSATR’s complexity is O 
(m(n+n)) = O ( 2mn) = O(n).  

The space MSATR needs contains: the arrays to store 
n motifs from dividing step and the arrays to store 
MATRs which is detected from n motifs. So, the space 
complexity of MSATR is O (n). 

C. Related Concept 

According to the MSATR, most of the time cost lies in 
the repetitive similarity tests. And a large amount of the 
tests are vain, because large quantities of MATR 
candidates whose periods are less than pmin are not 
qualified.  

Besides, some MATRs are not able to be found by the 
mechanism above. That is because when a certain motif m 
is not similar to the motif me in the MATR candidate, the 
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buffer is cleared and the finding starts over again with m. 
However, m could be similar to all the motifs after me and 
enough motifs after m itself, which makes a qualified 
MATR. For example, let pmin = 6, there is a MATR 
candidate m1m2m3m4m5, and m6 is not similar to m2. 
However, m6 is similar to m3m4m5 and m7m8. In that case, 
m3m4m5m6m7m8 is a MATR which cannot be found by 
MSATR algorithm. 

Considering the deficiencies above, this paper put 
forward the optimized algorithm mMSATR to reduce the 
runtime cost and improve the result quality. 

To understand how algorithm mMSATR works, a new 
concept, which is essential to improve the runtime 
efficiency of algorithm, needs to be defined. 

Definition 6 CASM (Chain of Adjacently Similar 
Motifs)[16]: For sequence )2(...21 ≥= pTTTT p , if the 
similarity of any two adjacent motifs Ti and Ti+1 
( pi <≤0 ) meets the similarity threshold r, then T is a 
CASM, and p is its length. 

D. Algorithm mMSATR 
In order to solve the deficiencies existing in MSATR 

algorithm, an optimal algorithm mMSATR adopts two 
tactics in the dividing and joining steps[16]. 

One of the major improvements is introducing the 
concept of CASM into the algorithm. It is obvious that 
being a CASM whose length is not less than the minimum 
periods pmin is a prerequisite for being a qualified MATR. 
By finding all the CASMs first, what is left is to find all 
the MATRs from the CASMs by almost the same 
mechanism of MSATR’ joining step, which means the 
searching scope is cut down to the CASMs as shown in 
Fig. 3. In that case, less similarity tests need to be 
implemented in the second step, not only because the 
searching scope is reduced, but also because the adjacent 
motifs in CASMs are already proved to similar to each 
other. As a result, the runtime efficiency is improved. 

 

 

Figure 3. Workflow of the  mMSATR Algorithm 

Besides, when checking similarity between a new 
motif m and the motifs in the MATR candidate, MSATR 
compares m with every motif. However, when m is totally 
the same as one motif in the MATR candidate, the right 
thing to do is to stop the similarity test and return true, 

instead of continuing comparing m with the motifs left 
when it is obvious that the similarities between m and 
them will meet the threshold. This would benefit reducing 
runtime cost, when most motifs in the MATR are the same 
to one another. 

Another major improvement is aimed to solve the 
problem of missing results. When algorithm mMSATR 
comes across motif mc that is not similar with me in the 
MATR candidate, instead of clearing the buffer and 
starting over with mc, mMSATR replaces buffer with a 
new MATR candidate me+1…mc-1 and checks mc again. By 
doing such, no possible MATRs will be missed out. In 
order to know the index of me, the similarity function 

),,( rmbufferS c  needs to return the index e when mc is not 
similar with me; and return -1 when no dissimilarity is 
detected.  

By implementing the two major improvements in 
dividing and joining steps, mMSATR is able to reduce the 
searching scope and find more qualified MATRs. 
Algorithm mMSATR can be described as follows: 

 
Algorithm mMSATR 
Input:  DNA sequence seq, motif length scope (a, b),  
             similarity threshold r, minimum periods pmin; 
output: MATRs 

Begin 
1 set k=a; 
Repeat  
2 Dividing 

   for(i=0; i<k; i++)  do 
1) Starting from index i, divide seq by length k; let m0 

be the first motif divided from seq, set length=1, 
put m0 in the buffer, and for each motif mc divided 
from seq later(c starts from 1), do 

),,( 1 rmmSf cc−= , and  

2) if 1−==f , buffer.add(mi), length ++; 
3) else  

if (length >= pmin), add buffer to CASMs; 
clear buffer, and buffer.add(mi);  
length =1;  

End for 
4) Clear buffer, and return all the CASMs; 

3 Joining 
for each CASM M in CASMs, do 

1) let m0 be the first motif in M and set periods=1, put 
m0 in the buffer, and for each motif mi in M 
( Mi <<0 ), do ),,( rmbufferSf i= , and  

2) if 1−==f , buffer.add(mi), periods++; 
3) else  

if (periods >= pmin), add buffer to MATRs; 
replace buffer with motifs from mf+1 to mi-1; 
periods= 1−− fi , i--; 

End for; 
4 Clear buffer, k++; 
Until k = b; 
5 Output MATRs; 
End 
 
In the next section, experiments on SUA_SATR, 

MSATR and mMSATR would show that MSATR and 
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mMSATR is advanced in saving time and detecting more 
qualified MATRs. 

IV. EXPERIMENTS AND RESULT ANALYSIS 
To verify the improvements made by mMSATR 

works, experiments are set to evaluate the runtime 
efficiency and result number of different methods. We 
evaluate the quality for real-world data and synthetic data. 
The real-world data sets, for which the complete list of 
ATRs is not known, consisted of four genomes: 
chromosome I of yeast (230,203 bp) and the complete 
genomes of two types of E. coli: K–12 (4,639,221bp) and 
O157:H7 (5,498,450 bp) and the DNA sequence of 
Human’s 22nd DNA chromosome from GenBank 
(http://www.ncbi.nlm.nih.gov/Genbank). The output 
quality is compared against SUA_SATR describe in [15].  
The simulated data consisted of MATRs planted into a 
synthetic sequence of length 100,000 bp. For the 
simulated data we also compare the run times of the 
different programs.  

As for the running environment, we use the Windows 
7 OS with Intel(R) Core(TM) 2 Duo CPU P7350 @ 
2.00GHZ and 2GB main memory, and the code was 
written on the platform of Eclipse 3.4.1 by Java.  

A. Evaluation of Searching Scope 
First experiment is conducted to verify that mMSATR 

is able to reduce the searching scope by introducing the 
concept of CASM, and how the scope changes with value 
pmin. In this experiment, we use the segment of the 
Human’s 22nd DNA, and the size of the dataset is 200Kb, 
and the motif length k is set to 4, and similarity threshold r 
is 0.75. 

In MSATR, the searching scope is all the motifs that 
divided by length k. While in mMSATR, as shown in 
Fig.4, when the pmin is small, like value 5, the scope has 
261 CASMs, while the number of MATRs found is only 
153.  However, as the pmin increases, the number of 
CASM, the searching scope, keeps decreasing. When pmin 
reaches the value 10, the scope has 11 CASMs, out of 
which 10 MATRs are found. 

 

Figure 4.  Evaluation of CASM and MATR. 

Experiment has shown that the searching scope can be 
successfully reduced by finding all the CASMs in the 
dividing step of mMSATR; if the pmin increases, the scope 
will decrease corresponsively, and it is closer to the final 
results. 

B. Comparisons with Growing Dataset 

The next experiment is aimed to compare the runtime 
efficiency and results of SUA_SATR, MSATR and 
mMSATR algorithms on the growing dataset of Human’s 
22nd DNA chromosome.  

In the experiment below, the minimum periods pmin is 
set to be 2, similarity threshold r is 0.75 and the motif 
length scope is (1, 80). 
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Figure 5. Evaluation of Runtime. 
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Figure 6．Evaluation of Result Number. 

Firstly, we evaluate the runtime efficiency of MSATR, 
mMSATR and SUA_SATR with the increasing of dataset. 
Fig.5 shows that MSATR, mMSATR are much more 
efficient than SUA_SATR with the increasing of dataset. 
The larger the dataset is, the more time SUA_SATR 
spends. That is because SUA_SATR algorithm needs to 
compare each pair of motif even if they are not adjacent in 
the process of searching. So with the motif growth, 
SUA_SATR would spend more time to find MATRs. 
Compared to MSATR, mMSATR is more efficient. That 
is because the searching scope is reduced due to the 
introduction of CASM in mMSATR, less time is spent on 
the similarity test.  

Secondly, according the improvement mMSATR 
made in the joining step, we compare the results of three 
algorithms. Fig.6 shows that MSATR and mMSATR 
found more MATRs than SUA_SATR in the growing 
datasets. That is because SUA_SATR can only search the 
MATRs with the special case in which the first element 
of each motif are the same.  mMSATR is able to find 
more MATRs than MSATR in which those MATRs are 
missing. 
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To sum up, experiments have shown that MSATR and 
mMSATR are much more efficient than SUA_SATR 
with the increasing dataset in the same sequence. The 
larger the dataset is, the more obvious the superiority is. 
The main reason is that using the idea of Motif-Divide to 
avoid comparing motifs that are not adjacent in the 
process of searching MATRs. Besides that, MSATR and 
mMSATR can detect MATRs with different first letter 
motifs which cannot be found by SUA_SATR.  
Compared to MSATR, by using the concept of CASM, 
mMSATR reduces the searching scope and modifies the 
mechanism of MSATR to further improve the 
performance of MSATR. 

C. Comparisons with Different Datasets 

To test the quality of our algorithm’s output in 
different cases, we ran on three real-world data sets: 
chromosome I of yeast (230,203 bp) and the complete 
genomes of two types of E. coli: K–12 (4,639,221bp) and 
O157:H7 (5,498,450 bp). 
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Figure 7．Number of MATRs found by SUA_SATR, MSATR  
and mMSATR on real data 

In these experiments, the minimum periods pmin is set 
to be 2, similarity threshold r is 0.75 and the motif length 
scope is (1, 200). To avoid finding some highly short 
MATRs which may not carry any biological information, 
we limit the length of MATRs should longer than 10. 

Fig.7 shows that MSATR and mMSATR found much 
more MATRs than SUA_SATR in the three genomic 
sequences, using MSATR’s definition of MATR. We can 
see that even in different sequences, MSATR and 
mMSATR detect considerably more MATRs. Namely, 
there are plenty of MATRs with the different first letter 
motifs in different sequences which SUA_SATR cannot 
detect. Some examples are uniquely found by MSATR 
and mMSATR in these sequences: a motif of length 5 
which repeats 5 times starting at position 241,403. In the 
E.coli–K12 genome, and 4 copies of a motif of length 17 
in the E.coli–O157:H7 genome starting at position 
358,919. In these cases, the MATRs did have different 
first letter motifs. Also, It can be seen that mMSATR is 
able to find more MATRs than MSATR. 

D. Comparisions with Synthetic Dataset 
We also use 10 synthetic sequences of length 100,000 

to evaluate the algorithms. In the experiment below, the 

minimum periods pmin is set to be 2, similarity threshold r 
is 0.75 and the motif length scope is (1, 100). 
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Figure 8．Number of synthetic MATRs found by SUA_SATR, 

MSATR and mMSATR on 10 sequences 

When we ran three algorithms with the same 
parameters, the follow facts emerge as Fig. 8 shows: 
MSATR and mMSATR is able to find more MATRs 
while SUA_SATR often miss some with different first 
letter motifs; meanwhile, the runtime efficiency of 
algorithms MSATR and mMSATR outweighs that of  the 
algorithm SUA_SATR. 

We also note that these three algorithms have some 
redundancies in the result. There is a case like that: a 
MATR contains x motifs with length y, another MATR 
contains y motifs with length x, however these two 
MATRs may be the same. 
E SYSTEM DEMONSTRATION 

Based on the work above, we developed a DNA 
Sequential Pattern Mining System (DSPMS) which 
implemented the function of mining tandem repeats. Fig. 
9 is the main frame of the system. 

 

Figure 9. Mainframe of DSPMS 

In the DSPMS system, the whole mining process is 
divided into several steps. The first step is to load data into 
the system as shown in Fig. 10, and then to configure the 
algorithm to implement the mining. 

The system also can compare algorithms under the 
circumstance of different variables (Figure 11).  

Then the results are presented to user by popping out 
a new dialog, containing results described by both text 
and graph. 

 

392 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER



 
Figure 10. Load Data in the System 

 
Figure 11. Results of comparison 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we describe a new model of which the 
essence is introducing the idea of Motif-Divide. Based on 
this model, a novel algorithm MSATR and an optimized 
algorithm mMSATR have been put forward for finding 
approximate tandem repeats. By introducing a new index 
structure based on Motif-Divide method, algorithm 
MSATR improves efficiency and result quality than 
SUA_SATR. Algorithm mMSATR introduced the 
concept of CASM to restrain the searching scope in order 
to promote its runtime efficiency. Besides, mMSATR 
adjusted the original mechanism in the joining step of 
MSATR to improve the deficiency of the result quality. 
Experiments have proved that this model is effectual, and 
the algorithms based on it have made positive effect as 
expected. Besides, we developed a DNA Sequential 
Pattern Mining System to facilitate future research. Future 
work is to find a more applicable similarity measurement 
for DNA sequence, so the ATRs we are trying to find can 
be more reasonable and useful in practical applications. 
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