
Enhancing Software Reuse through Application-
level Component Approach

Jin Guojie, Yin Baolin, Zhao Qiyang

Chinese State Key Laboratory of Software Developing Environment
Beihang University

Beijing, China, 100191
Email: {jinguojie, yin, zhaoqiyang}@nlsde.buaa.edu.cn

Abstract—Current component reusability is not as high as
previously expected. Although third-party component
providers are in present, large quantity of reduplicative
programming effort is still needed in system development
process. As conventional component technologies are not
flexible enough to deal with requirement diversity and
variability, a new type of Application-Level Component
(ALC) approach is proposed. The functional granularity of
ALC is larger than that of previous components, thus
lowering the effort for reusing a component. By separating
the stable and instable part of domain requirement, a
collection of stable requirement elements can be
summarized and implemented by ALCs. The instable part
can then be described with a formal language according to
the differences in various user cases. A novel reuse process
of “selection and description” is established. The description
language covers overall aspects of application system
requirements, including user interface, computation logic,
and database access. The description content for a system is
parsed and executed by ALC to fulfill corresponding
requirement. By providing different description contents,
ALC can be reused in environments full of differences and
changes. Evaluations reveal that the reusability of ALC is
enhanced to a higher degree of 92.5~95.7%.

Index Terms—Application-level Component; Reusability;
Component Granularity; Requirement Description
Language; UI patterns

I. OVERVIEW

Component technology plays an important role in
software reuse research. As expected in Component-
Based Software Development (CBSD) methodology, one
can develop a system simply by selecting and assembling
current-existing components. However, this goal is far
from reality. In real development environments, large
amount of reduplicated programming effort is still needed,
because of the lack of appropriate components [1]. In Ref.
[2], an investigation is undertook in 2005 aiming at 25
software projects form NASA, and the average
reusability is measured at a degree of just 32%. Peer
results can also be found in Ref. [3], which investigates
the current situation of software reusability in China. The
result is no better than the former. A significant
conclusion is that, different styles of components have
different degrees of reusability. The fundamental
computation components have the highest degree of
99.5%, but the business-oriented UI components only

have a degree of 8.4%. In average, the reusability reaches
only 27.7%, which means almost 3/4 components in
systems are not able to be implemented by direct reuse
and are needed to be created by the developers
themselves.

There can be many reasons for such phenomena. An
important point is observed that, components are always
prevented from being reused because of the differences
between its predefined function and the system
requirements. In this paper, we focus on two natures of
requirement which frequently cause such differences.
Those are diversity and variability. According to the
nature of diversity, different organizations are running
various business rules. It’s theoretically impossible to
provide a finite component repository covering all the
business rules around the world. Even in the relatively
matured domains, like ERP and OA, there are
unavoidable differences which are hard to be unified in a
foreseeable period. The second nature means that the
business rules of an organization is changing all the time,
to cope with the external influences originated by
variable economic circumstance, new marketing trends,
etc. Once the requirement changes, the software system
must change its function in parallel to fulfill new business
rules.

Research efforts are not made enough to provide
flexibility in software components, resulting in the lack of
power to handle requirement diversity and variability.
More sufficient reasons can be shown by comparing the
following three typical component technologies.

1. UML/Catalyst method [4]. UML is a representation
tool extensively incorporated in Object-Oriented Analysis
& Development (OOA/OOD) processes like Catalyst.
The design processes all start from the observation
towards the functional requirements of an object system.
Since the system is likely to serve the business rules of a
dedicated organization, it is usually hard to directly reuse
parts of the system for other organizations. As
requirement changes, the design documents and the
components implemented are all forced to be modified.
This prevents the components to be “reused without
modification”.

2. Feature-Oriented Component Model (FOCM) [5].
FOCM is a typical method for domain requirement
modeling. With FOCM, requirements of different
application systems can be combined to one model via a

374 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.374-385

series of modeling elements which represents differences
and variations. Compared with UML, FOCM effectively
extends the knowledge scale of the modeling tool to a
business domain, which causes the components to be able
to be reused in different organizations instead of just one
organization. But, problems remain that it does not
provide flexibility to handle future requirement changes.
Using FOCM, designers have to endlessly catch the
requirement changes, but always lag behind requirement
changes.

3. Framework-based Development (FBD) [6]. FBD
attempts to enlarge the representation ability towards
requirement differences at the level of software
architecture. FBD utilizes FOCM as its description tool
for software components, so it has the same problem with
FOCM, e.g., lacking of ability to support unforeseen
requirements probably emerging in the future.

As current component technologies do not provide
effective supports for requirement differences and
changes, third-party components cannot be reused
straightforwardly as expected by researchers. To reuse a
component, modification effort makes up most of the cost
to eliminate the difference between its predefined
function and actual object requirement. Furthermore, the
modification frequency is judged by different stability
degrees of requirement elements. Observation shows that
the components with the highest reusability lie in the
levels adjacent to computer implementation [3]. Such
components include conventional computing routines,
basic UI controls, etc. The components fall into this
category usually take up a smaller functional granularity
compared with the high-level business-oriented
components assembling the ultimate system, and their
abstract level is lower than that of the latter. When one
needs to create an ERP or OA system, and there is
probably lack of appropriate components supporting his
specific requirement (this is a frequently-seen phenomena
in application development), he has no choice but to
create his own business-oriented components by
assembling the small-granularity components with
programming codes. Such is a kind of “selection and
programming” reuse process. Since the programming
codes are usually designed for solving his private needs
instead of being reused in public situations, they form the
non-reusable part of software systems. The reusability
cannot be enhanced until new technology tackles this
problem.

A novel design process named Application-level
Component (ALC) is proposed to enhance software
reusability. By utilizing new design methods, ALC is
responsible for implementing the stable elements and
construction mechanisms of domain requirements.
Customization ability is also equipped to support future
requirement variations. Compared with conventional
components, ALC takes up a higher degree of reusable
functional granularity, thus lowering the effort for dealing
with requirement diversity and variability.

II. PROBLEM IN EXISTING CBSD PROCESSES

Being focused on the common natures, different kinds
of current CBSD processes can be summarized as a
unified process, as shown in Fig. 1. In Ref. [4], [5] and
[6], different kinds of design processes based on UML,
FOCM or FBM are proposed. They all comply with the
unified process discussed as follows. A completed
process cycle consists of four steps. First is Requirement
Modeling, in which developers investigates the
requirement of a system or an application domain, and
define it as R1; Second is Component Analysis, where R1
is separated into a series of functional modules, and
specifications for each module’s function and interfaces
are defined; Third is Component Implementation, where
all the components are developed according to the
specifications, resulting in a component repository C1. In
the final step of System Assembling, C1 can then be used
to assemble a system A1, the function of which is exactly
equivalent to the original requirement.

For two reasons, the reusability of components is
limited by such a process.

1. From the perspective of time, the requirements of
the components are relatively stable instead of absolutely
stable. As the system requirement will change forever, R1
is only a snapshot at a dedicated time t1. Suppose the
requirement changes to R2 when it comes to t2. Since R1

≠ R2, it cannot be guaranteed theoretically that the
components designed according to R1 can
straightforwardly be reused in the new situation. So,
some items in C1 need to be modified, and new items
need to be appended into C1. As time goes, this appears at
any time and never stops. One can never provide a
component repository that can fit all the requirements in
the future.

2. From the perspective of organization domain, the
requirements of the components are relatively complete
instead of absolutely complete. Because of the natural
limitation of human’s far-sight and the economical
constraints of development cost, any component
repository can only cover a part of the whole organization
space. By contrast with the openness and diversity of
requirement space, the function of any component
repository is incomplete.

R1

System
Requirement

Time

t1 t2

Changed
Requirement (R2)

Software
Modules

Component
Collection (C1)

Requirement
Modeling

Application
System (A1)

Mismatch

Component
Analysis

Component
Implementation

System
Assembling

Figure 1. Problem of Existing CBSD Processes

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 375

© 2011 ACADEMY PUBLISHER

As a result, only when the predefined function fits
exactly in the object requirement can the components be
reused. This only reflects a small portion of the real
situations in system development. It also brings a side-
effect, that the reusability of components is decided by
the stableness of different requirement levels [4]. In the
level adjacent to computer implementation, the stableness
of requirement elements gains a high degree. The
components at this level, including mathematical routines
and UI controls, form the most frequently reused part of
software resource in reality. But, as the abstract level
rises, the probability of requirement changes increases
proportionately due to the enlargement of business scale
and complexity, and the reusability gradually drops to a
low degree. Just because of this, the business-oriented
components residing at this level, including ERP and OA
components, gain a low reuse degree of only 32%, as Ref.
[2] claimed.

As far as granularity is concerned, the business-
oriented components are usually in larger scale than the
low level components. When developing systems, great
amount of effort is needed to program assembling codes
for grouping small components into larger business-
oriented components. In actual circumstances, the total
efforts made to reuse the components may even exceed
the benefit gained through reuse. Meanwhile, as such
effort is usually specific to cope with private requirement
and not conducted according to the principle of “design
for reuse”, such single-time efforts are reduplicated in
each time of development. Our goal is to transform such
efforts into once-for-all software resources, so as to
effectively enhance the potential of reuse.

III. APPLICATION-LEVEL COMPONENT APPROACH

The starting point of Application-level Component
(ALC) approach is to enlarge the functional scale of
reusable software module, while at the same time
decreasing the effort for providing business-oriented
components. In this way, the reusability of software
resources can be enhanced. To enlarge the scale of
reusable software module, ALC approach investigates the
commonness in high-level business-oriented components.
Then, such commonness is undertaken by ALC
components, which cover a larger part of reusable
constitutions in systems. As the result of the approach,
the scale of reusable components is finally enlarged to the
peer level of business-oriented user cases.

Definition 1. Application-level Component (ALC).
Application-level component is a kind of reusable
software module, the functional scale of which is
equivalent with that of business- oriented user cases.

As the definition claims, ALC can provide reusable
modules at a larger granularity and higher abstract level
than conventional components. These are exactly the
granularity and level of business-oriented components
that are in short of in systems like ERP and OA. As the
reusable functional scale increases, the effort for reuse
could definitely be lowered. The key point is how to

increase the reusability of components at this granularity
and level. For two reasons, the feasibility of the approach
can be guaranteed.

1. Although the requirements differ in various
organizations and at different time, there exists a finite set
of stable elements and construction mechanism among
them. These form the commonness of different system
instances within a domain. The set of elements includes
the three aspects of system constitutions, e.g., UI
elements, computing logic elements, and data access
elements. Such elements reside at a high abstract level,
e.g., the requirement level. The abstract degree is far
higher than that of the implementation level, where the
fundamental small components exist. Based on the stable
elements, every system instance can be constructed via
the common construction mechanism, by conducting
different behaviors of elements and communications
among the elements. This ensures the feasibility that a
finite set of common features can be summarized from
present system instances, and can be utilized to construct
all the system requirements in the future.

2. Once the set of common features are summarized,
ALC components can be developed to implement the
functions of requirement elements. They actually take on
the commonness of requirements. When constructing a
system, the only effort needed is to provide the
information of the way that a dedicated system is
constructed from the requirement elements. Since the set
of common elements is finite, a formal language can be
established to describe the construction information. An
instance described by the language can be parsed and
automatically executed by the ALC components to fulfill
the corresponding requirement. In this way, the functions
of ALC components are aimed at requirement level, and
their granularity is enlarged to capsule a set of basic
elements, which are capable of constructing a complete
business-oriented user case, or even a whole system.

According to the process, the requirement of a system
is separated into two parts. One part contains the stable
and common requirement elements, which are undertaken
by ALCs; the other part is described in a kind of
Requirement Description Language (RDL), which
represents the dedicated construction way of a system. A
standard ALC, along with a piece of description instance,
make an ALOC, which has the granularity of business-
oriented user cases and can be assembled in the final
system.

Definition 2. Application-level Object Component
(ALC). Application-level object component is a standard
ALC as well as a requirement description instance DESC
which represents the function of a business-oriented user
case. So

ALOC ::= <ALC, DESC>
In an ALOC, the ALC part is a component directly

reused; the DESC part is necessary for describing the
differences among various systems, including the
activities that the elements performed, and the
communication actions occurred among elements.

376 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

A novel reuse process of “selection and description” is

then formed and shown in Fig. 2. The RDL uses
predefined requirement elements as its syntax symbols.
Each element has a set of attributes and actions
representing different business semantics. A user case can
then be described by a sequence of element behaviors and
communications. The ALCs are responsible for parsing
the RDL syntax and transforming the element behaviors
into software semantics. The whole description instance
can thus be mapped into computer implementation.

IV. ANALYSIS OF ALC’S REUSABILITY

Enhanced component reusability can be gained from
the new ALC-style “selection and description” process.
Compared with the conventional reuse style of “selection
and programming”, there is no need for reduplicated
programming work In ALC-style process. Instead, only
the requirement description content is needed to be
provided to create business-oriented components. The
ALC components have the same granularity with object
user cases, which is larger than that of conventional
components, thus reducing the scale of additional
information needed for use. Furthermore, as RDL is
oriented at the business level, it is much more concise
than traditional programming language, and requires
smaller description scale when describing the same
requirement. These simultaneously form the basis of
ALC's reusability enhancement effect.

Here we analysis the reusability of ALC with a semi-
quantitative method. To compare the degrees induced by
different design processes, a unified reusability criterion
is defined.

Definition 3. Component Reusability. r(U)refers to
the proportion of functional scale reused from
components in a user case U,

 %100)(∗=
u

c

E
EUr (1)

where Ec is the functional scale reused, and Eu is the
whole functional scale of user case U.

When creating a business-oriented component
responsible for a dedicated user case, benefits can be
gained by reusing some appropriate components. Apart
from the functions reused, other functions exist which
cannot be borrowed from existing components, due to the
nature of requirement diversity and variability. Therefore,
unavoidable efforts should be made to provide remain
information supporting those functions. For these two
parts, suppose Ec is the function scale reused from
components and Ee is the scale of additional information
provided, so the scale of overall functions Eu is the sum of
these two parts,

 Eu =Ec + Ee (2)

From (1) and (2),

 %100)(∗
+

=
ec

c

EE
E

Ur (3)

The nature of reusability is revealed in (3) that, the
more effort we need to create a user case, the lower the
reusability of the components is; on the other hand,
keeping the effort Ee at a certain level, the larger scale of
functions can be reused from existing components, the
higher the reusability is gained.

For a whole system A, Eq. (3) can be slightly extended
to measure the overall reusability reflected in the system.
When calculating r(A), Ec is calculated by summing up
the function scale that is reused in each user case, and Ee
is the sum of the function scale of the remaining portion.
Considering the apparent common nature between r(U)
and r(A), we will focus on r(U) for simplicity in the
following discussions.

In conventional component design processes shown in
Fig. 1, assuming there exists a component C which
exactly matches the requirement of user case U, only a
small quantity of customization effort is needed for
reusing the component. According to Eq. (3), Ee can be
ignored against Ec, therefore r(U) reaches the theoretical
upper bound of 100%.

However, things are different in reality. Due to the
enormous diversity of user requirements, there is a great
chance that such “perfect” component cannot be found in
the market. To avoid developing a component from
scratch, one should usually undertake modification work
based on an “approximately suitable” component. In
general, two kinds of modifications can be performed.
First, developers may directly modify some business-
oriented components which are distributed along with
their source codes; second, developers can create new
business-oriented components by reassembling some
low-level fundamental components. According to Eq. (3),
we get

 Ee = Emodification+ Eassembling (4)

e.g., the reuse effort Ee consists of two parts, where
Emodification stands for the effort for modification work, and
Eassembling stands for the effort for assembling existing
low-level components. The reusability of conventional
components can be defined by combining Eq. (3) and (4).

System Instances

Requirement
Description
Language

(RDL)

Commonness
Summarization ALC Repository

……

System
Requirement

User Cases

 ……

DESC1 DESC2

ALC1 ALCn

ALOC1 Parse

Application Domain

ALOC2

Requirement
Analysis

Figure 2. Reuse process of ALC

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 377

© 2011 ACADEMY PUBLISHER

Definition 4. Reusability of Traditional Component
(RT). The reusability of components through
conventional processes is measured as rt(U), which is
defined as

 () %100)(∗
++

=
assemblingonmodificatic

c

EEE
EUrt (5)

For ALC approach, the measurement method differs
due to the different reuse process utilized. Based on the
principles adopted by ALC approach, all the common
elements and constructing mechanism in a domain
requirement are supported by a collection of ALC
components C. Such a collection C covers the
requirements of current and future systems in the domain.
For any user case U in a system A, there exists a couple
of components in C which provide some functions
capable of being reused in C. Benefited from the reuse
style of “selection and description”, only the effort of
describing the requirement instead of modifying the
component is needed. As a result, the reusability of ALC
components can be defined.

Definition 5. Reusability of Application-level
Component (RA). The reusability of components
defined and reused through ALC process is measured as
ra(U), which is defined as

 %100)(∗
+

=
ndescriptioc

c

EE
E

Ura (6)

where Edescription is the effort for describing the
requirements of object-oriented components
corresponding to each user case.

By comparing Eq. (5) with (6), it can be seen that the
difference between two kinds of reusability lies only in
Emodification + Eassembling and Edescription. In the next analysis,
it is proved that the latter is smaller than the former
because of three qualitative reasons.

1. The technical complexity of ALC-style reuse process
is lower. In the conventional reuse process of “selection
and modification”, developers should be familiar with the
technical details of both existing components and current
requirements; the modification work is primarily done
through a long-period streamline consisting requirement
planning, implementation design, code programming,
verification, and maintaining. Whereas in ALC process,
the developing streamline contains only one stage of
“describing”; the style of developing work is changed
into a more concise way of “what you describe is what
you get”. The time cost of requirement description work
is significantly lower than that of conventional processes.

2. The requirement of developers’ technical skill is
lowered in ALC process. In conventional reuse processes,
developers perform modification activities using some
kind of traditional programming language. In ALC
process, the language utilized changes to RDL. As RDL
is a tool aiming at straightforwardly describing ultimate
requirements, such high-level language is easier for
developers to comprehend and manipulate than general-
purpose programming languages. In our experiences,
even some business users can be taught using RDL to

create relatively preliminary software tools independently.
Furthermore, there can be fewer chances for developers
to misunderstand the users’ requirements by using RDL
as a communication tool, which is more precise and can
be understood by both sides. With this more effective
language, development task can always be accomplished
in a shorter period.

3. The scale of information provided for reuse is
reduced by ALC approach. RDL is characterized by its
problem-oriented and business-oriented features. It aims
at a higher abstract level than programming languages.
As a result, when implementing the same requirement of
a user case, small description scale is needed by using
RDL than traditional programming languages. As the
scale of description information decreases, the reuse
effort is accordingly lowered. The following two
examples are presented to aid this opinion.

Example 1. A basic instruction of “SUM(array A)”
is provided in RDL, which implements the semantic of
“counting the sum of elements within an array A”. With
programming languages, at least a looping structure
should be coded to represent the execution details of the
traversing logic, which may occupy approximately
several code lines.

Example 2. Consider more complex requirements
emerge in user interfaces. It is well recognized that
developers are obliged to make enormous effort to deal
with the complicated coupling logic among small UI
controls and dialogues. References claim that 70% scale
of code lines in a system are occupied by UI requirements
[7]. Owing to the UI description language discussed in
Section 5, such UI requirements can be expressed in a
much more concise style, and considerable scale of
description lines is saved.

The above three aspects of analysis jointly give
evidences that, when developing a business-oriented
component for a dedicated user case, the ALC process
reduces the effort for reuse.

 Edescription < Emodification + Ecomposition (7)

An essential conclusion can be drawn by combining
Eq. (5), (6), (7) that, the reusability of ALC components
is enhanced.

Conclusion 1. The advantage of reusability
enhancement through ALC approach. For the
construction of a user case U, the reusability gained in
ALC process is higher than that in conventional processes.

 ra(U) > rt(U) (8)

Considering the common nature between a user case
and a system, Eq. (8) can be extended to form the next
conclusion applied to system scale.

Conclusion 2. The advantage of reusability
enhancement through ALC approach. For the
construction of a system A, the reusability gained in ALC
process is higher than that in conventional processes.

 ra(A) > rt(A) (9)

378 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

V. REQUIREMENT DESCRIPTION LANGUAGE

RDL aids the ALC process by providing an approach
to formalizing the requirements of common elements and
the construction mechanism in an application domain.

Definition 6. Requirement Description Language
(RDL). RDL is a formal language which is capable of
describing the requirement of application systems within
a domain. RDL is defined as a 2-tuple <RE, CM>, where

1. RE is a finite collection of elements, say,
Requirement Elements. Each re ∈RE corresponds to a
reusable entity constituting the requirements in a domain.
A requirement element is given a specific name, and is
characterized by its other two parts, that is, P and M. P is
a collection of data properties and M is a collection of
behaviors. Therefore re=<Name, P, M>.

2. CM is the construction mechanism for creating
system instances based on the requirement elements.
Generally, the requirement of a system can be described
as an executing sequence of all the elements participating
in it. Such a sequence is composed of flows of element
behaviors as well as communications among elements,
and CR is defined as the mechanism to establish a
sequence of elements behaviors. By referring to the
context-free grammar structures of conventional
programming languages, the sequence can be described
using three basic control structures: sequential executing,
conditional branching, and looping.

The design process for an applicable RDL is based on
extensive observation of in-existing systems. Several
types of commonness in requirements are summarized,
and the collection of reusable elements RE is derived
from such commonness reflected in a large amount of
particular instances. The common characters investigated
involve at least the following types of commonness 1~8.

Commonness 1. The commonness of function
specifications for user cases. Treating a user case as a
black box, developers can understand its function only
through the data items it manipulates and the functions it
implemented. Using RDL as the description tool, all user
cases’ external requirements can be described as <D,
Actions>, where D is the collection of input/output data
items, and Actions is the executing sequence of element
behaviors involved in the user case.

Commonness 2. The commonness of requirement
parameterization. There exists in requirement an
inherent character of parameterization. Taking user
interface for example, it is common to see that a couple
of dialogs can be parameterized from a common UI
pattern [8], such as table-like pattern, navigation pattern,
explore-like pattern, etc. By customizing appropriate
attribute values of the pattern, a particular dialog instance
can be created. For the elements in RDL, the data
property collection P provides the mechanism of
customization. The common function of an element is
conducted by property values to perform distinct
behaviors according to diverse requirement instances.

Commonness 3. The commonness of information
structures. There exist the same structure styles of
information in requirements. Consider a dialog receiving
the user’s input of his birth place, where three cascaded

pull-down menus jointly represent the input items of
“country - state - city”. Such cascaded structure can be
copied, and the contents can be slightly modified to
represent the input item of the user’s organization,
displayed as “company - department - team - workgroup”.
Only the contents displayed in each menu are different.
Regarding this commonness, a UI element named
“cascaded input” is derived from these two instances.
This element gains a larger granularity by grouping
multiple pull-down menus, and provides properties which
can be customized to adjust the levels and contents for a
dedicated instance.

Commonness 4. The structural commonness of
behavior sequences. Common structures exist in the
executing flows of different requirement instances.
Considering the UI validating task generally used to
check the validation of users’ input, a typical logic
structure is: “At the moment of [a dialog’s submission],
check [each control] to see whether its content is validate;
if there exists a control whose [value] doesn’t matching a
predefined [condition], cancel the submission and display
some [error message] at [somewhere]”. Regarding this
commonness in diverse instances, the UI validating task
can be derived as a common structure plus some
attributes for customizing the structure. This structure is
assigned as a standard logic all UI elements.

Commonness 5. The structural commonness of
elements assembling. There exist common structures of
the ways low-level elements are grouped into larger
elements. For example, a typical UI structure of “pull-
down menu + textbox” is frequently used for receiving
approval results, where the pull-down menu provides
several options for choice, and the textbox is used to fill
in additional comments. This grouping structure is
commonly seen in other requirements such as document
review, application management, etc, therefore a UI
element named “approval input” can be derived, which
groups several small items to provide a pattern of user
interface.

Commonness 6. The commonness of moments at
which specific requirements are handled. In different
requirement instances, some kinds of functions are
usually performed at the same moments and by the same
elements. For the example of UI validating task discussed
above, it is usually handled at the moment of dialog
submission; moreover, in dialog initialization, it is always
the appropriate moment for loading initial data and
preparing for display. Considering such commonness,
specific functions are assigned as standard logic to be
executed by an element at some moment.

Commonness 7. The commonness of object
relationships. A series of common patterns can be
derived to represent different kinds of relationships
among requirement elements. The approach utilized in
design patterns for object-oriented programming [4] gives
a strong hint to the design of relationship patterns among
business objects. For example, “Master-details”
relationship extensively exists in business objects like
product orders, which consists of a master record and
several detailed records. Each detailed record represents a

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 379

© 2011 ACADEMY PUBLISHER

product attached to the order. Such a pattern can be
derived as an element representing the relationship of
different requirement elements, which can be easily
customized to represent business objects at a larger
granularity.

Commonness 8. Mixed types of different
commonness. Some requirements may have several types
of above-mentioned commonness at the same time.
Consider the dialogs displaying product orders in
different systems. Although the attributes of orders can be
different due to diverse business rules, all of them comply
with a common “Master-detailed” relationship pattern.
Meanwhile, the dialogs are usually designed according to
an approximately the same layout style, that is, an area of
controls displaying the master record plus a table
displaying multiple detailed records. By summarizing
such mixed types of commonness, requirement elements
can be derived to take on larger granularity of reusable
requirements.

According to above commonness, the common
constitutions of system requirements are summarized, and
a collection of requirement elements RE is derived. RE is
composed of elements covering common features among
domain systems. Considering the different abstract levels
of elements, RE can be basically divided into two parts.
The first part consists of fundamental elements which are
atomic and rest in the lowest level of requirement; the
second part consists of higher-level elements that are
constructed by assembling the atomic elements in the first
part through various types of requirement patterns.

A. Fundamental Requirement Elements
The collection of fundamental elements summarizes

the basic constitutions at the lowest level of system
requirements. In this level, each element is atomic and
cannot be divided into other lower-level elements. As
application systems can generally be separated into three
distinct aspects, e.g. user interface, computational logic
and external data access, the collection of fundamental
elements can also be divided into three kinds.

1. UI elements: this kind of elements defines common
constitutions which represents the interaction logic
between users and systems. Each element acts as a
displaying item or an interaction item, which has a larger
granularity than conventional graphical controls, as
shown in the previous examples of “cascaded input” and
“approval input”.

2. Computational elements: defining the common
elements representing computation and calculation logic
in system requirements. A series of large-granularity
elements aiming at business data types along with
corresponding operating rules are summarized in this
collection, including multiple-attribute list, relational
record set, structured documents, etc. Furthermore, a
series of business-oriented computational instructions are
equipped, including relational calculus, finance/statistics
algorithms, traversing/iteration, etc.

3. Data access elements: defining the constitutions
supporting data access logic occurring between systems
and data sources. For generality, a series of data access
primitives are defined. The requirements of access to

several types of standard data sources can be described,
such as relational databases and structured documents.

B. Requirement Patterns
Requirement patterns are a method to further promote

the advantages of RDL. The patterns are derived based on
the inherent commonness of different constructing styles
in system instances. Such commonness refers to the
previous Commonness 3~8. Each pattern characterizes a
dedicated cooperating style of multiple fundamental
elements. According to the three aspects of systems, three
kinds of requirement patterns are derived, e.g., UI
patterns, computational patterns, and data access patterns.

By grouping the fundamental elements, the scale of a
pattern is naturally larger than that of each element it
contains. As the functional scale is enlarged, the effort
needed for reuse decreases. Therefore, patterns generally
gain a higher degree of reusability than that of the
fundamental elements.

It is notable that the collection of patterns has no
absolute boundary. Due to the opening nature of
requirements, higher level of patterns can be constructed
at the basis of existing lower-level patterns. Therefore,
new patterns can be appended to RDL in an incremental
style, providing a method to hieratically expand RDL as
needed. Plus the fundamental elements at the lowest
level, the collection of all requirement elements are
organized in a layering architecture. An architecture
prototype and actual description instances can be found in
Section 8 of this paper.

VI. SYSTEM ASSEMBLING

System assembling mechanism is supported in ALC
process through composition of multiple user cases. As
the user cases can each be implemented by a large-
granularity component, say, application-level component,
a whole system can be constructed by assembling the
group of ALC components implementing the
corresponding user cases.

The user cases in a system may not be absolutely
independent with each other. Instead, there may be
couplings and interactions among some user cases; a
higher-level user case may be composed by a series of
lower-level user cases, where the latter provides
functional services being requested by the former. This
kind of relationships forms an aspect of application
requirement at the level of system assembling, and is
necessary to be supported by ALC.

Several current-existing methods for assembling of
components can be referred to, such as framework [6] and
connector [9]. The methods based on frameworks require
additional assembling platforms aside from the
component repositories; the methods based on connectors
rely on specific representation elements to express the
composition relationships and coupling details. They can
all be classified into the category of heavy-weight
assembling methods. In ALC process, a distinct
assembling mechanism is utilized in a relatively lighter-
weight style. This mechanism is aided by only one

380 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

description primitive in RDL, which describes the calling
logic between each pair of two components.

Definition 7. Component Calling Primitive (CCP).
CCP is a basic primitive provided in RDL to describe the
assembling relationships of user cases within a system. In
the DESC which describes the requirement of a user case,
a calling primitive may appear in the executing sequence
as the form of

CCP = <Invoked_ALOC, DM>
where Invoked_ALOC indicates a component to be called
by the current-running component, and DM describes the
data mapping relationship between the caller and the
invoked component. DM is a series of 2-typle
<Caller_Data, Invoker_Data>.

Generally, the executing semantic of CCP is as follows:
when a CCP is parsed and executed by the current-
running component, it first launches the component
indicated by Invoked_ALOC into a ready-to-run state;
second, the caller prepares initial input data for the
invoked component according to DM, delivers the data to
it, and triggers its running; next, the caller suspends itself
and waits for the invoked component’s completion of
running; then, when the invoked component ends up, the
caller takes over its output data; the data are finally
transformed back to the caller as the service result of one
request.

Such process provides a unified service-requesting
mechanism which is business-independent. In this way,
all kinds of couplings and relationships among user cases
can theoretically be described with CCP. In RDL, CCP is
designed as a shared instruction which is supported by all
the requirement elements. Therefore, all user cases
implemented by ALOCs gain the ability of assembling
higher-level compound modules.

Because there are different types of requirement
aspects in systems, the semantic of calling logic is
slightly different according to the types of the caller and
the invoked components. There are totally six supported
calling types, shown in Fig. 3. The applicable occasions
and semantic rules for each type are as follows.

Calling Type 1. UI → UI. Requesting lower-level UI
service from a higher-level UI component. In this type, a
portion of requirements in a business-oriented UI
component can be fulfilled by invoking another UI
component. The UI of the invoked component is entirely
embedded the caller’s UI. In this way, the invoked
component’s UI is reused as a whole, at the granularity of
an user case. This mechanism enhances the reusability
degree of UI resources which cannot be achieved by
conventional small-grained graphical controls such as
“textbox” and “button”.

Calling Type 2. UI → Computation. Requesting
service of computation logic from a UI component. In
application systems, it is frequently required to execute
computational operations inside user interfaces. As many
computational operations are self-contained and have the
potential of being reused in different occasions, this
calling type enables components responsible for
computational logic to be called by UI components, to
fulfill the requirements as requested.

Calling Type 3. UI → Data Access. Providing data
access services for UI components. By invoking data
access components, data loading and persisting logic can
be reused inside user interfaces.

Calling Type 4. Computation → UI. Calling UI
components during computational logic, to provide
necessary interaction interfaces as needed.

Calling Type 5. Computation → Computation. In a
computation component, lower-level computation
components can be called. This calling type can be used
in a nesting style, which enables components to
encapsulate computation requirements at different
abstract levels.

Calling Type 6. Computation → Data Access.
Loading and saving business data in computation
operations whenever needed.

The above six calling styles jointly provide the ability
to describe the assembling requirements for systems. By
indicating the calling activities between each two
components, the relationships among all user cases can be
described in a bottom-up way. All the user cases can be
assembled increasingly, and the whole system can
eventually be constructed.

VII. ALC STRUCTURE MODEL

Application-level components have a common
structure with which to realize their tasks. The basic task
of ALC is declared in previous sections as parsing and
implementing the requirement described in DESC, by
executing the behaviors of requirement elements
involved. All components implemented in the prototype
comply with a structure model represented in Fig. 4. As
discussed in Section 3, an ALOC consists of two parts
which are separately defined as

ALC = <D, A, C, Cm, If>
DESC = <D’, A’, Actions>

1. The data properties of a requirement element is
defined as two parts, e.g., D and A. D is the collection of
data, and A is the collection of attributes. For each data
property of a requirement element, if its value can be
determined at the design time, it should be put into A;
otherwise, if its value can only be determined at run time,
it should be put into D. In accordance with this rule, the
values of all the members in A should be tuned by
developers at describing stage, according to the known
requirement of the user case; whereas the members of D
are generally treated as input/output data whose values
are passed through from their calling components at
runtime.

Computation

UI

Data Access

(2)
(3)

(4) (5)

(6)

(1)

Figure 3. Component Calling Types

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 381

© 2011 ACADEMY PUBLISHER

2. The behaviors of a requirement element are defined
as C. Each member in C is implemented an executable
routine, which performs the equivalent software activity
of a corresponding behavior.

3. Cm is a collection of executable routines which
implements the standard running mechanism of the
structure model. Four kinds of tasks are carried out by
Cm: booting and establishing runtime environments at
startup moment; responding to interface requests during
runtime; parsing and executing DESC to implement the
desired requirement; executing component calling
primitives appearing in DESC.

4. If is the definition table of interface commands.
Each command defines a kind of communication service
which is supplied by the component. In practice, a
minimum collection of If is shared by all the components,
providing interface commands to supply declaration
information for the developers. By invoking such
commands, developers can inquire the contents of D, A
and DESC from the component.

5. DESC is the essential part which implements
description mechanism. The requirement of a user case is
described by three parts. First, D’ is used for describing
the collection of data which is not publicly defined in D
but is manipulated by a dedicated user case. Second, A’
contains the values of all the members in A indicated by
developers, according to the requirement of the user case.
Finally, Actions describes the executing behavior of the
user case by defining a sequence of executable routines
selected from Cm.

The above constitutions each take different
responsibilities in different development stages: the
mechanism provided by Cm is shared by all the
components based on the structure; D, A, C and If are
specialized in each ALC, implementing the reusable
function of a requirement element; DESC provides the
description mechanism for implementing a dedicated user
case, by providing requirement description information
which is parsed by ALC. They jointly accomplish the
task of creating business-oriented components by reusing
existing ALCs.

The assembling mechanism discussed in Section 6 is
supported by a portion of routines in Cm, that is, the
routines executing CCP. As the semantic of CCP is
basically defined from the viewpoint of running behavior,
a collection of routines is adequate for completing the
component invoking and data exchanging tasks. In this
way, no additional constitution is needed for the
assembling mechanism. This verifies the simplicity and
light-weight nature of CCP method.

VIII. EXPERIMENTS AND EVALUATION

A. The Prototype of ALC Repository
To evaluate the practicability of ALC approach, an

ALC repository prototype is established, shown in Fig.5.
The prototype is reused in several system development
processes, where measurements are carried out
simultaneously.

Although the proposed repository is oriented to the
domain of information application systems, efforts are
currently being made to extend the reuse scope of ALC
approach to more diverse domains, including operating
systems, embedded systems, distributed middleware
systems, etc. Preliminary evidences have been obtained,
which reveal the promising effectiveness of utilizing
ALC approach in various domains.

By observing the commonness of a large scope of
practical system instances, a finite collection of basic
requirement elements are summarized, and a series of
patterns are derived subsequently.

B. System Construction
A medium-scale enterprise management system is

selected to be built with the repository. The system
consists of 85 user cases. Developers implement each
user case by reusing an appropriate ALC and describing
the desired function requirement with RDL.

Two user cases implemented by reusing the same ALC
are shown in Fig. 6. The default interface of “Master-
Detailed Pattern” is shown in Fig. 6(a). This pattern
summarizes the commonness of “1:N” object relationship
in systems, and provides a frequently seen UI framework
supporting the necessary operations such as
displaying/editing the master object, appending a new
detailed object, selecting and deleting detailed objects, etc.
By customizing the attributes of the pattern, more
concrete business-oriented components can be created.
The values of the attributes provide differentiated
information for the two user cases. As shown in Fig. 6(b)
and Fig. 6(c), the interfaces of two user cases, e.g.,
“document submitting” and “order entering” are all

D A C Cm If

DESC

D’ A’ Actions

Figure 4. ALC Structure Model

ALC
Basic

UI
Elements

Table Pattern
SearchableTable Pattern

Navigation Pattern

 EditableTable PatternLayout Patterns
Master-Detailed Pattern

Cascaded Pattern

A
LC

 R
epository

Basic
Computation

Elements
Mail
Print

Basic
Data Access

Elements

Version Generator
Serial-number Generator

Single Record Writer
Single Table Reader
Single Table Writer

Single Record Reader

Multiple Tables Query
Master-Detail Reader
Master-Detail Writer

Figure 5. Prototype of an ALC Repository

382 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

created by reusing and customizing the same “Master-
Detailed Pattern” component.

Revealed by the above example, at least two
advantages are embodied by ALC approach:

1. Only one component is needed to create a user case,
which means the enlarged scale of granularity in ALC
components. Therefore, a majority part of the user case’s
requirement has been implemented by a component,
resulting in the sharp decrease of the description effort. It
can be seen from the description content shown in Table

1 that, only 64 text lines are needed to create a user case,
which can easily be done in several minutes.

2. Not only the effort for creating user cases decreases,
the effort of modifying existing components to deal with
requirement changes are also reduced. The effort for
maintaining dozens lines of description content is
definitely lower than the effort for maintaining
complicated programming codes which are needed in
conventional reuse processes.

Table 1. Description Instance of “Document Submitting” User Case
/* System: Enterprise Management System

* User case: Document submitting
* Base component: Master-Detailed */

.args {
 Master_Title=Order Submitting
 Detail_Table_Title=Documents:
 Add_Detail_Title=Add Document
 Del_Detail_Title=Remove Document

 Master_Form={
 <Table rows="4" cols="4" align="R,L,R,L">
 (0,0)Document No.:
 (0,1)<Input id="DocumentNo" readonly>
 (1,0)Category:
 (1,1){CascadedInput "Category", ITEMS("Design specifications,
Meeting notes, Test reports, Applications, References")}
 (1,2)Enter new category if not provided in the list:
 (1,3)<Input id="NewCategory">
 (2,0)Name:
 (2,1)<Input id="Name">
 (2,2)Version:
 (2,3)<Input id=" Version" text="1.0">
 (3,0)Date:
 (3,1){DateInput "SubmissionDate"}
 </Comp:Table>

 Comments:<p>
 <Input id="Comments" rows="6" cols="70">
 }

 DetailTableColumns=<File Name>
 Item_Add_Form={
 Select File: {File "FileName" SIZE(80)}
 }

 FormPreprocessor={
 SubmissionDate := $FULL_DATE
 DocumentNo := CALL_COMP(‘SerialGenerator’,
‘DOC_$DATETIME’)
 NewVersion := CALL_COMP(‘VersionGenerator’,
$OriginVersion)
 }
 FormPostprocessor={
 Category := $NewCategory IF strlen($NewCategory) > 0
 Documents := PACK_FILES($DetailTable)
 CALL_COMP(‘IO_SR_Writer’, ‘INSERT files@db,
<$DocumentNo, $NewVersion, $Category, $SubmissionDate,
$Documents>’)
 }

 FormChecks={
 strlen("$Name") == 0 ? Alert(“Document name must not be
empty”)
 $Version <= $OriginVersion ? Alert(“New version must be
larger than the initial version”)
 db_num_rows("$DetailTable") == 0 ? Alert(“At least one file
should be choosn”)
 }
}.args

.data {
 OriginVersion, String, I
 NewVersion, String, O

 DocumentNo, String, O
 Category, String, O
 NewCategory, String, L

Name, String, L
SubmissionDate, String, O
Comments, String, O

FileName, File, L

 Documents, Files, O
}.data

(a) Default UI of Master-Detailed Pattern

(b) UI of “Document Submitting” User Case

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 383

© 2011 ACADEMY PUBLISHER

(c) UI of “Order Entering” User Case

Figure 6. Reuse Examples of “Master-Detailed” Component

C. Reusability Measurements
Four kinds of measurements are carried out along with

the development cycle.
1. Practicability of the ALC repository. As families of

commonness in a domain are summarized and
implemented by the ALC repository, the development
task of the enterprise management system is successfully
accomplished by reusing the repository. Following the
same way, future systems in the same domain can
promisingly be built at a low cost. The diversity nature of
requirements will never be an unbreakable obstacle for
reuse.

2. Entity Reusability. This kind of reusability reveals
the degree of reuse benefits obtained in system building
stage. When creating a user case, the reusability of the
component is measured according to Eq. (6) in Section 3.
In practice, the efforts of Ec and Edescription are measured
respectively according to the lines of ALC source code
and the lines of description instance DESC, so the entity
reusability is measured as

 100%
LOC(DESC)LOC(ALC)

LOC(ALC)er(U) ∗
+

= (10)

3. Alternation Reusability. This kind of reusability
reveals the degree of reuse benefits obtained during
system maintaining stage. When modifying a user case to
fit the changed requirements, as there is no need to
modify the ALC, the reuse effort lies only in the
modification scale of DESC, so the alternation reusability
is measured as

 100%
)LOC(DESCLOC(ALC)

)LOC(DESCLOC(ALC)
ar(U)

nAlternatioAfter

unchanged ∗
+

+
=

_
 (11)

These two kinds of reusability are measured at each
time of reuse, and the degrees revealed are shown in Fig.
7. The entity reusability of ALC reaches a high degree of
91.4~93.8%, while the alternation reusability reaches
92.5~95.7%. Compared with the average reusability of
17~32% from NASA [2] (or 81.9% at the maximum level),
our method effectively gains a higher degree.

Another feature can be noticed in Fig. 7 that, the reuse
degrees of different types of components are
approximating balanced. This reflects the enhancement of

reusability for all the components composing different
aspects of requirements. This is once a problem not
resolved in existing methods, as revealed by the data CC
from Ref. [3].

4. Cross-domains system development. Aside from the
enterprise management system, we put the repository into
development for more domains, including ERP, OA, etc.
Because such domains are all sub-domains of information
systems, the repository can straightforwardly be reused in
those domains. The reusability is measured at the peer-
level with Fig. 7.

(a) Entity Reusability

(b) Alternation Reusability

Figure 7. Measurements of ALC Reusability

IX. COMPARISONS WITH RELATED METHODS

Software reuse has long been a research focus in
software engineering. Reference [4], [5] and [6] each
proposes a kind of reuse process along with a
corresponding component model. Although these models
are extensively used in long-term development practice,
the reusability of components is limited at a low level.
Other literatures such as [10], [11] and [12] all emphasize
different opinions on this phenomenon, but the problem
remains.

With ALC approach proposed in this paper, a new kind
of reuse process is established. Benefited from the
enlarged granularity and the description ability, the
degree of reusability obtained by ALC approach is
enhanced to a higher level. Overall, developers can take
two advantages from the new approach:

1. The granularity of ALC components is larger than
that of conventional components. As the abstract level of
both the basic requirement elements and the requirement
patterns is upgraded to business-oriented level, the
functional scale of such constitutions is larger than a low-
level component. As a result, a user case can be
implemented by only one ALC component. The effort
needed for reusing an ALC component is decreased.

2. ALC approach provides higher flexibility to deal
with requirement diversity and variability. An ALC
component repository provides a completed collection of
reusable elements for an application domain. Therefore,

384 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

an unbounded collection of diverse systems can be built
by reusing such repository. Particularly, unforeseen
system requirements can also be supported without
modifying the repository. Once the requirement changes,
the alternation effort for ALC approach is lower than
conventional methods. Related methods concerning
requirement describing language can be found in Ref.
[13], [14] and [15].

The reusability is enhanced because of a combination
of above factors. The ALC approach has the advantage of
enlarging the reusable granularity while at the same
lowering reuse effort. By incorporating ALC approach in
development practice, systems can be built in a more
efficient and lower-cost way.

X. CONCLUSION

A new kind of reuse process named application-level
component approach is proposed and proved to gain
higher reusability than existing methods. The process is
characterized by the new reuse style of “selection and
modification”. Compared with current methods, ALC
provides the ability to cope with diverse and variable
requirements on its own initiative, thus making it feasible
to provide a repository which can be reused for
implementing future unforeseen requirements. The
detailed process of the approach is discussed, including
the design of a requirement description language, the
summarization of requirement patterns, the assembling
mechanism, as well as the standard structure model.
Measurements reveal the enhanced reusability at
92.5~95.7%, which verify the effectiveness of the
approach.

ACKNOWLEDGMENT

This work is supported by the Chinese State Key
Laboratory Exploration Fund under Grant No. SKLSDE-
2009ZX-11.

REFERENCES
[1] Parastoo Mohagheghi. An Empirical Investigation of

Software Reuse Benefits in a Large Telecom Product,
ACM Trans of Software Engineering and Methodology,
2008.3

[2] Richard W. Selby. Enabling Reuse-based Software
Development of Large-scale Systems, IEEE Trans of
Software Engineering, 2005.6

[3] Huang Liuqing, Wang Manhong. New Software
Engineering: A Component-Oriented Approach, Tsinghua
University Press, ISBN 7-302-12925-8, 2006.5

[4] Alan W. Brown, Large Scale Component-Based Software
Development, Prentice Hall, 2001

[5] Kang K, Cohen S, el. FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures.
Annals of Software Engineering, 1998.5

[6] Elsenecker, K. Czarnecki, el. Generative Programming:
Methods, Techniques, and Applications, GPCE ’03

[7] Lin Liu, Fei Peng, el. Understanding Chinese
Characteristics of Requirements Engineering, Intl Conf of
Requirement Engineering 2009

[8] Trudy Levine. Reusable software components, ACM
SIGAda Ada Letters, ACM Press, NY USA, 2005.9

[9] S. Sentilles, el. A Component Model for Control-Intensive
Distributed Embedded Systems, CBSE ‘08

[10] Ciliane Redolfi, el. A Reference Model for Reusable
Components Description. 38th Hawaii Intl. Conf. System
Sciences, 2005

[11] Philip T Cox. A Formal Model for Component-Based
Software. HCC 2001

[12] Lin Liu, Fei Peng, Tomas Burda, el. Understanding
Chinese Characteristics of Requirements Engineering.
ICRE ‘09

[13] J.S. Lee, H.S. Chae. Domain-specific language approach
to modelling UI architecture of moblie telephony systems.
IEEE Proc. Software(online), 2006.6

[14] Pedro J. Molin. Just-UI: Using Patterns as concepts for UI
specification and code generation. CHI’2003 Workshop

[15] J. S. Cuadrado, J. G. Molina. A Model-Based Approach to
Families of Embedded Domain-Specific Languages. IEEE
Trans of Software Engineering, 2009.6

 Jin Guojie is now a PhD cadicate of
computer science in School of Computer
Science, Beihang University, Beijing, China.

His research interests includes component
technology, software reuse, and workfow
systems.

Zhao Qiyang received his PhD degree in
computer science from Beihang University,
Beijing, China, in 2008.

He is now an associate professor with
School of Computer Science, Beihang
University.

His main research interests include
software engineering, computer vision, and digital
watermarking.

Yin Baolin received his PhD degree from
Edinburgh University, UK, in 1984.

He is now a professor and PhD supervisor
with School of Computer Science, Beihang
University.

His main research interests include
distributed systems, software reuse, and

workflow systems.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 385

© 2011 ACADEMY PUBLISHER

