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Abstract—Existing methods for QoS-aware services 
composition only consider web services whose service class 
is specified in the process definition as the candidate. 
However, there may exist some services that could also 
accomplish partial goal of the web service composition but 
their service classes do not appear in the process definition. 
In this paper, we propose a new QoS-aware service 
composition approach, which expands the choice for 
services selection by allowing web services of various 
granularities to be available for selection. A method based 
on Mixed Integer Linear Programming (MILP) is proposed 
to solve the QoS-based Multi-Granularity Service Selection 
Problem (QMGSSP), which optimizes the user-defined 
objective and meets the end-to-end QoS constraints as well. 
Experiments show the effectiveness of our approach.  
 
Index Terms—web service, service composition, QoS, multi-
granularity 
 

I.  INTRODUCTION AND RELATED WORK 

In Service-Oriented Computing (SOC) paradigm, WS1 
can be composed to form value-added services through 
the process of web service composition. Web service 
composition can be staged in two phases. The first phase 
is functionality-oriented, in which the process definition 
is generated. The process definition is a specification that 
consists of service classes aggregated by composition 
patterns, and the service class is an abstraction of web 
services, which specifies the interface and functionality. 
Fig. 1 shows major composition patterns for WS.  

 
Figure 1.  Web Service Composition Patterns 

                                                           
1 WS is used as shorthand for "web service" or "web services" in the 
paper. 

Since many existing WS could provide equivalent 
functionality, although with different QoS values, a 
selection should be executed in the second phase to 
choose a WS for each service class, which optimizes the 
user-defined objective and meets the end-to-end QoS 
constraints as well. The process is called QoS-aware 
services composition, which is a hot research topic. QoS-
based services selection methods can be classified into 
local and global approaches. The former approach is done 
at the task level, where component WS are selected for 
each task individually [1-3]. Although simple and 
efficient, this approach cannot guarantee the end user's 
QoS constraints. On the other hand, the latter approach 
aims at achieving global optimum solution for the 
composition, which is NP-hard in strong sense [3]. A lot 
of effort has been devoted to enhance this key technology 
in recent years. Reference [2, 4] use linear integer 
programming method to dynamically find the best 
solution for the composition. Similarly to this approach, 
Reference [3, 5] extend previous work by introducing 
advanced techniques, such as loop peeling, negotiation 
and web service dependencies constraints allowing the 
execution of stateful WS. Reference [6] presents the 
VRESCo runtime that supports an end-to-end approach 
for QoS-aware service composition, where constraint 
programming and integer programming methods are used 
to search the best solution. Other techniques are also 
applied to optimize the QoS-aware services composition, 
such as genetic programming [7, 8], negotiation [9], 
workflow partition strategy [10]. 

However, current methods for QoS-aware services 
composition is lack of flexibility in that only WS whose 
service class is specified in the process definition will be 
available for selection, while there may exist other WS 
that could also accomplish partial goal of the web service 
composition but their service classes do not appear in the 
process definition. For example, consider a simple 
process definition composed by two service classes in 
sequence. In traditional service selection process, service 
classes are fixed once the process definition is given and 
each service class will be instantiated with its candidate 
WS. Assume service classes sc1 and sc2 are bound with 
WS ws1, ws2 respectively, meanwhile there exists another 
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WS ws12, which could complete the task that is 
performed by ws1 and ws2 in sequence. Current service 
selection process will not consider ws12 even if its QoS is 
better than the aggregated QoS of ws1 and ws2, since the 
process definition does not contain a service class that 
can accommodate ws12.  

To overcome this shortcoming, our work aims at 
expanding the choice space for services selection to 
achieve better solution. We propose an approach for QoS-
aware services composition, which is capable of selecting 
from multi-granularity web services. In our context, 
granularity denotes the extent to which the web service 
composition is broken down into small parts. In above 
example, ws12 is more large-grained compared with ws1, 
ws2. Our approach breaks through the restriction imposed 
by the structure of the given process definition by 
allowing WS of various granularities (e.g. ws1, ws2 and 
ws12) to be considered for selection. 

Our contributions are threefold: 
• Introduce the concept of "granularity" to WS and 

define related terminology. 
• Propose and formally define the QoS-based Multi-

Granularity Service Selection Problem (QMGSSP). 
• Present the MILP-based approach to solve QMGSSP. 

The rest of this paper is arranged as follows. Section II 
briefly introduces WS QoS modeling as preliminary 
knowledge. In Section III, we present related concepts 
and the problem statement. Our approach for QMGSSP is 
proposed in Section IV and experiments are discussed in 
Section V. The final section concludes our research and 
discusses the future work. 

II.  WEB SERVICE QOS MODELING 

The QoS modeling for WS includes four primary QoS 
dimensions but is extensible: 

Response Time: the elapsed time between the moment 
the user requests a service and the moment that a 
response is returned. 

Cost: the fee has to be paid to the service provider in 
order to fulfill a service request. 

Reputation:  a measure of trustworthiness of the WS, 
which is generally calculated based on the consumers' 
feedbacks, with a value range of [0, 10]. 

Reliability: the probability that a response will be 
returned within a reasonable duration after invoking the 
WS, with a value range of [0, 1]. 

We use a 4-tuple to denote the QoS values of WS: 
QoS(ws) = [RT, Cost, Rep, Rel] 

where RT, Cost, Rep, Rel are the values of response 
time, cost, reputation and reliability respectively. 

 
 

QoS aggregation methods for web service composition 
have been researched extensively, which are generally 
based on workflow patterns. Due to space limitation, we 
refer interested readers to existing literature [11-13] about 
QoS aggregation rules for the composition. 

III.  DEFINITIONS AND PROBLEM STATEMENT 

In this section, we formally define relevant concepts 
and propose the QoS-based Multi-Granularity Service 
Selection Problem (QMGSSP) at the end. The 
comprehensive example of process definition in Fig. 2 
will be used for illustration. 

Definition 1: Service Class Region (SCR) 
Service Class Region is a well-formed sub-structure of 

a process definition, which contains one or more service 
classes. A sub-structure is well-formed if 

(1) it is connected; 
(2) for any SPLIT/MERGE node contained by the sub-

structure, its corresponding MERGE/SPLIT node and the 
nodes between them should also be contained; 

(3) for any LOOPSTART/LOOPEND node contained 
by the sub-structure, its corresponding 
LOOPEND/LOOPSTART node and the nodes between 
them should also be contained. 

Formally, Service Class Region with regard to a 
process definition can be notated using the following 
grammar: 

scr := sc | (op, <ordered list of scr>) 
where: 
• sc represents the original service class in the 

process definition; 
• op = { > , +, ⊗ , μ }, which represent the 

composition patterns for sequence, parallel, 
conditional and loop respectively. 

Following the definition, rules to identify SCR for a 
process definition can be listed straightforwardly (Table 
I). 

TABLE I.  SERVICE CLASS REGION IDENTIFICATION RULES 

ID Identification Rule Examples 

R1 An existing service class can be 
regarded as SCR. sc1, sc2, sc6 

R2
A well-formed split/merge 

structure (parallel or conditional 
pattern) is identified as a SCR. 

(+, sc7, sc8)

R3 A well-formed loop structure is 
identified as a SCR. (μ, sc9) 

R4
A SCR can be merged from any 

two adjacent SCR. Using this rule, 
SCR can be recursively identified. 

(> , sc6, (+, 
sc7, sc8)) 

 
 

 
Figure 2.  Comprehensive Example of Process Definition 

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 367

© 2011 ACADEMY PUBLISHER



If a SC sc is in the SCR scr, then we call scr contains 
sc, and the relation is expressed as sc∈scr. 

For two SCR scr1, scr2, if sc ∈scr2→ sc∈scr1, then 
we also call scr1 contains scr2, and the relation is 
expressed as scr1 scr2 or scr2 scr1. 

∀

f p
 
Definition 2: Virtual Service Class (VSC) 
Any Service Class satisfying the conditions below is 

called Virtual Service Class of the process definition: 
(1) can achieve partial or overall goal of the web 

service composition; 
(2) is or can be derived from existing Service Classes 

in the process definition.  
Compared with the service classes in the given process 

definition, Virtual Service Class can be more fine-grained, 
which is decomposed from an existing service class; or be 
more large-grained, which is merged from existing 
service classes. In this paper, we focus on the more large-
grained VSC, and this kind of Virtual Service Class can 
be defined based on the concept of SCR: 

  vsc = IF(scr)   (1) 
where the operation IF(scr) is used to get the interface 

and functional specification for the Service Class Region 
scr, which can be deduced from the service classes and 
their composition structures contained by scr. Examples 
of VSC in Fig. 2: vsc1 = IF(> , sc1, sc2), vsc2 = IF(> , sc6, 
(+, sc7, sc8)), vsc3 = IF(⊗ , ( , sc3, sc4, sc5), ( , sc6, (+, 
sc7, sc8))). 

> >

We also introduce SCR(vsc) to represent the Service 
Class Region for the Virtual Service Class vsc. For 
example, SCR(vsc1) = (> , sc1, sc2). 

 
VSC_SET(pd) is used to denote the complete set of 

VSC for the process definition pd. 
 
Corollary 1: The process definition for web service 

composition can be identified as VSC, which is the most 
large-grained service class. 

 
Definition 3: Trivial Virtual Service Class (TVSC) 
A Virtual Service Class vsc is trivial if SCR(vsc) is an 

existing service class or contains service classes 
aggregated only by sequence pattern. SCR for TVSC can 
be identified by using R1 and R4 only. 

 
Definition 4: Non-Trivial Virtual Service Class 

(NTVSC) 
A Virtual Service Class vsc is non-trivial if SCR(vsc) 

contains any parallel/conditional/loop pattern. 
 
With the notion of Virtual Service Class, process 

definition can be instantiated by WS of various 
granularities. The process definition can be denoted using 
a similar notation as SCR. For instance, the process 
definition in Fig. 2 can be represented as: 

    pd1 = ( , sc1, sc2, ( , ( , sc3, sc4, sc5), (> , sc6, 
(+, sc7, sc8))), (μ, sc9), sc10) 

> ⊗ >

Other possible process definitions for the same web 
service composition are listed as follows: 

    pd2 = (> , vsc1, (⊗ , (> , sc3, sc4, sc5), (> , sc6, (+, 
sc7, sc8))), (μ, sc9), sc10) 

    pd3 = (> ,vsc1, (⊗ , (> , sc3, sc4, sc5), vsc2), (μ, 
sc9), sc10) 

    pd4 = ( , sc1, sc2, vsc3, (μ, sc9), sc10) >
 
Definition 5: VSC Granularity 
The granularity of VSC is defined as the number of 

service classes in its SCR. We use Gra(vsc) to represent 
the granularity for the VSC vsc. For example, Gra(vsc1) = 
2, Gra(vsc2) = 3, Gra(vsc3) = 6. 

 
Definition 6: VSC Nesting Level 
The nesting level of VSC is defined as the maximum 

nesting level in its SCR. We use NL(vsc) to represent 
nesting level of VSC vsc. For example, NL(vsc1) = 0, 
NL(vsc2) = 1, NL(vsc3) = 2. 

 
Definition 7: VSC Search Space (VSS) 
Assume pd, gra and nl are used to represent the 

process definition, the threshold of VSC Granularity and 
the threshold of VSC Nesting Level respectively, then 
VSC Search Space can be formally defined as: 

      VSS(pd, gra, nl) 
where: 
      VSS(pd, gra, nl)  VSC_SET(pd), ⊆
      ∀ vsc∈VSS(pd, gra, nl) Gra(vsc) <= gra, →
      ∀ vsc∈VSS(pd, gra, nl) NL(vsc) <= nl, →
By the definition, VSC_SET(pd) is actually the largest 

VSS for the process definition pd. 
 
With the above definitions, we can now define the 

problem: 
Definition 8: QoS-based Multi-Granularity Service 

Selection Problem (QMGSSP) 
Given a process definition pd and the VSC Search 

Space (pd, gra, nl), QMGSSP aims to select WS for each 
VSC in the restructured process definition, which 
optimizes the user-defined objective and meets the end-
to-end QoS constraints at the same time. VSC in the 
restructured process definition should be the member of 
the given VSC Search Space.  

 
Conceptually, the solution can be divided into two sub-

processes: 
SP1: Process Definition Restructuring 
In this sub-process, some services classes will be 

merged as VSC in order to allow more large-grained WS 
to be available for selection. 

SP2: QoS-based Service Selection 
In this sub-process, WS is selected for each SC based 

on the objective and QoS constraints given the process 
definition. This is exactly the traditional service selection 
process. 

The two sub-processes could be executed interleavedly 
to achieve the optimum solution. 

 
Corollary 2 Traditional service selection problem is a 

special kind of QMGSSP with VSS(pd, 1, 0). 
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Definition 9: TVSC-capable QMGSSP 
A QMGSSP is TVSC-capable if the VSS is in the form 

of (pd, gra, 0). In other words, only TVSC is considered 
during SP1. 

 
Definition 10: NTVSC-capable QMGSSP 
A QMGSSP is NTVSC-capable if there is no 

constraint on the form of the VSS. Both TVSC and 
NTVSC are considered during SP1. 

 
In this paper, we present the solutions for TVSC-

capable QMGSSP in Section IV. 

IV.  TVSC-CAPABLE MULTI-GRANULARITY SERVICES 
SELECTION  

Linear Programming is an optimization method, which 
aims to maximize or minimize a linear objective function, 
subject to a series of linear constraints. The constraints 
can be equality or inequality, and variables should be 
continuous. Frequently, for many problems, some 
variables can take only integer values. These problems 
are called mixed integer linear programming (MILP) 
problem, which are NP-complete [14]. 

As far as we are concerned, Ref. [2, 4] firstly 
introduces the integer programming(IP) method to the 
problem of QoS-aware services composition. In his 
approach, the composite web service is modeled as the 
statecharts and splits into multiple execution paths. 
Execution path contains a set of tasks (or service classes) 
{sc1, sc2, …, scn} such that sc1 is the initial service class, 
scn is the final service class, and no service classes belong 
to alternative branches. Then, IP problem is formulated 
for each execution path, and these "partial" solutions will 
be merged to get an overall solutions for the web service 
composition. For service classes belong to more than one 
execution path, the selection result in the "hot path" will 
be adopted, where hot path could be defined as the most 
frequently executed execution path. 

Our MILP-based approach for TVSC-capable 
QMGSSP is developed based on Ref. [2, 4]'s approach, 
which consists of the following five steps: 
1. Reduce the VSC search space. 
2. Choose one execution path ep as the hot path. 
3. Formulate the MILP problem for TVSC-capable 

QMGSSP with regard to the hot path ep. 
4. Formulate the MILP problem for TVSC-capable 

QMGSSP with regard to other execution paths  
5. Merge the "partial" solution from (3) and (4) to get 

the overall solution. 
Step 1 aims to reduce the VSC search space in order to 

accelerate the services selection process, which is 
discussed in Section A. In Section B, we propose the 
MILP problem formulation for TVSC-capable QMGSSP 
with regard to the hot path ep (Step 3) and discuss related 
issues in detail. Similar MILP problem can be formulated 
for other execution paths (Step 4), and we mention the 
difference at the end of Section B. Other steps have been 
discussed in existing literatures [2, 4]. 

A.  VSC Search Space Reduction 
Definition 11: Sequence Segment 
Any SCR scr that meets the following conditions is 

called Sequence Segment of the process definition pd: 
    scr∈VSS(pd, g, 0),  
    ∀ scri∈VSS(pd, g, 0) →  scri scr, or scri and scr 

contain no common Service Class. 
p

Intuitively, Sequence Segment is a "longest" sub-
structure of the process definition that is aggregated only 
by sequence pattern. For example, ( , sc1, sc2), (> , sc3, 
sc4, sc5) and (sc6) are all identified as Sequence Segments.  

>

Assume there are k Sequence Segments in the process 
definition pd, and mi is the number of SC contained by 
the i-th Sequence Segment, then the size of VSC search 
space for TVSC-capable QMGSSP can be calculated as: 

 #(VSS(pd, g, 0)) = Sk   (2) ∑
=

k

i 1

 Si =  (mi
2 + mi) / 2    (3) 

where #(x) is used to denote the number of elements in 
the set x, and Sk is the number of VSC contained by the k-
th Sequence Segment. For example, six VSC can be 
identified for the Sequence Segment (> , sc3, sc4, sc5), 
namely sc3, sc4, sc5, ( , sc3, sc4), (> , sc4, sc5), (> , sc3, 
sc4, sc5). 

>

Our approach for reducing VSC search space is based 
on the local QoS constraints and scoring for each VSC. 
The top k VSC will be chosen for the next step. 

The scoring function for the VSC is designed as 
follows: 

score(vsc) =
)(

)(*)(
scrh

vschvscGra
Q

Q *
)(max
)(max

scrU
vscU  * p (4) 

where: 
    hQ(vsc) is the number of candidate WS for vsc that 

meets local QoS constraints; 
    hQ(scr) = ∑

∈scrsc

hQ(sc), where hQ(sc) is the number 

of candidate WS for service class sc that meets local QoS 
constraints and scr = SCR(vsc); 

max U(vsc)/U(scr) is the highest utility score that can 
be achieved for vsc/scr respectively. The way to calculate 
utility score will be introduced in the following section. 

p is the execution probability of the path where vsc 
locates. If vsc does not belong to a conditional branch, 
then p = 1. 

Here the local QoS constraints are used to filter out 
low-quality WS during the scoring process. They can be 
specified by the domain expert or estimated from history 
records. We use VSSR(pd, g, nl) to represent the reduced 
VSC Search Space. 

B.  MILP Problem Formulation for QMGSSP 
In this section, we present MILP problem formulation 

for QMGSSP. To differentiate from traditional approach, 
the proposed one is referred as "MGC-aware approach". 

Variables 
The decision variables are defined as: 

yij = , ∀ i∈A 
⎩
⎨
⎧

otherwise,0
wswithboundedissc,1 iji
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where A = { i | sci∈ep} ∀
Assume n is the number of service classes and m is the 

number of candidate WS for the service class. 
Objective 

            max wi * Norm(Qi)    (5) ∑
=

4

1i

For i = 1, 2 (decreasing dimensions, i.e. response time, 
price) 

        Norm(Qi) =
⎪⎩

⎪
⎨
⎧ ≠

−
−

otherwise

QQif
QQ
epQQ

ii
ii

ii

1

minmax
minmax

)(max    (6) 

For i = 3, 4 (increasing dimensions, i.e. reputation, 
reliability) 

      Norm(Qi) = 
⎪⎩

⎪
⎨
⎧ ≠

−
−

otherwise

QQif
QQ
QepQ

i
ii

ii

1

minmax
minmax
min)(    (7)  

wi is weight facotr for i-th QoS, and ∑ =1. 
=

4

1i
iw

Assignment Constraint 

                   ∑ yij = 1  i ∈A  (8) 
=

m

j 1

∀

QoS Constraint 
(1) Delay Constraint (D) 

 Q1(ep) = yij * RT(wsij) * zi  <=D  (9) ∑∑
= =

n

i

m

j1 1

where:    zi :=  
⎩
⎨
⎧

otherwise0,
path criticaltheon is sc 1, i

 di = ∑ RT(wsij) * yij   (10) 
=

m

j 1

 tk >= di + ti, sci sck   (11) ∀ →
 Q1(ep) >= ti + di, sci∈(ep)  (12) ∀
where:     Critical Path is a path from the initial WS to 

the final WS that has the longest total sum of response 
time [2, 4]. 

sci→ sck means sci is executed before sck, 
ti, tk is the starting time to execute sci and sck, which 

are continuous variables.  
(2) Budget Constraint (B) 

 Q2(ep) = yij * Cost(wsij) <= B (13) ∑∑
= =

n

i

m

j1 1

(3) Reputation Constraint (R) 

 Q3(ep) =
n
1

* yij * Rep(wsij) >= R (14) ∑∑
= =

n

i

m

j1 1

(4) Reliability Constraint (S) 
The aggregated reliability should be firstly linearized: 
ln(∏∏ Rel(wsij)Zij ) =  ∑  

= =

n

i

m

j1 1
∏

= =

n

i

m

j

ij
ij

z
wsl

1 1

))(Reln(

= ∑∑  zij * ln(Rel(wsij)) 
= =

n

i

m

j1 1

let Rel'(wsij) = ln(Rel(wsij)),  then 

 Q4(ep) = zij * Rel'(wsij) > = S (15) ∑∑
= =

n

i

m

j1 1

Above is MILP problem formulation for traditional 
QoS aware service composition, which has been 
mentioned in Ref. [2-5]. To enable QoS-based selection 
from multi-granularity candidate WS for the composition, 
we propose a novel mechanism that maps VSC candidate 
WS to SC candidate WS and introduce additional linear 
constraints to form MILP problem for TVSC-capable 
QMGSSP. We use a simple example to illustrate our idea: 

      pd: (> , sc1, sc2, sc3) 
      VSSR(pd, 2, 0) = {sc1, sc2, sc3, vsc1, vsc2} 
      vsc1 = (> , sc1, sc2),  
      vsc1 = (> , sc2, sc3) 
We use CDT(x) to represent the set of candidate WS 

for SC/VSC, assume: 
      CDT(sc1) = {ws11},  
      CDT(sc2) = {ws21, ws22} 
      CDT(sc3) = {ws31}, 
      CDT(vsc1) = {ws011},  
      CDT(vsc2) = {ws021} 
The 4-tuple (i, j, s, t) is used to indicate the mapping 

relationship, which means t-th candidate WS of vscs is 
mapped to j-th candidate WS of sci. Then four mapping 
relations exist in this example: 

      (1, 12, 1, 011),  
      (2, 23, 1, 011),  
      (2, 24, 2, 021),  
      (3, 32, 2, 021) 
For example, for (1, 12, 1, 011), a "virtual" WS ws12 

will be added as candidate WS for sc1, which is mapped 
from ws011. We use ECDT(sci) to represent the set of 
candidate WS with the "virtual" WS added. For example 

      ECDT(sc1) = {ws11,ws12}, 
      ECDT(sc2) = {ws21, ws22, ws23, ws24} 
Note a candidate WS of VSC can be mapped to 

multiple "virtual" WS, which are correlated. For example, 
ws011 is mapped to ws12 and ws23. During the selection, 
when ws12 is selected, ws23 should also be selected, and 
vice versa. To ensure the requirement, we introduce the 
Multi-Granularity Constraints (MGC). Two MGC are 
needed for the above example,  

y12 = y23, y24 = y32 
where y12, y23, y24 and y32 are decision variables for 

ws12, ws23, ws24 and ws32 respectively. 
Based on the idea, we propose the MILP-based 

solution for TVSC-capable QMGSSP as follows: 
Step 1. Map VSC candidate WS to SC candidate WS 

and store the mapping relations for later use. Also, 
MGC will be generated in the process. (Algo. 1) 

Step 2. Add MGC  to the MILP formulation 
Step 3. Solve the MILP problem using any MILP solver 

such as lp_solve [15].  
Step 4. Interpret the MILP solution. Since the selected 

WS may be "virtual" (mapped from VSC candidate 
WS), they have to be restored to the actual WS. 
(Algo. 2) 
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Algo 1 Multi-Granularity Web Service Pre-
processing 

Input:  
VSSR(ep, g, nl), where ep is an execution path and 

VSSR(ep, g, nl) is the subset of VSSR(pd, g, nl) contains 
VSC that belongs to ep. 

CDT(vsc/sc): set of candidate WS for each VSC/SC. 
Output:  
mgcs: set of linear equations that represents MGC. 
ws_map: set of (i, j, s, t), which means j-th candidate 

WS of sci is mapped to t-th candidate WS of vscs. 
01  for each vscs∈VSSR(ep, g, nl) 
02      if (Gra(vscs) > 1)  
03          set mi = min {i | sci∈SCR(vscs)} 
04          for each wst∈CDT(vscs) 
05                for each sci∈SCR(vscs) 
06                  set j = #ECDT(sci) + 1 
07                  add the 4-tuple (i, j, s, t) to ws_map 
08                  if (i == mi) 
09                      QoS(wsij) = QoS(wsst) 
10                  else 
11                      QoS(wsij) = [0, 0, Rep(wsst), 1],  
12                  end if 
14              end for 
15          end for 
16          for each wst∈CDT(vscs) 
17              for all scp, scq∈SCR(vscs) and p ≠ q 
18                  add the equation "ypa = yqb" to mgcs, 
19                  where (p, a, s, t), (q, b, s, t)∈ws_map 
20              end for 
21          end for 
22      end if 
23  end for 
The main steps of the algorithm are as follows: 

• Line 3: Get the minimum index of SC contained by 
the vsc. 

• Line 4–15: Each candidate WS of vsc is mapped to a 
"virtual" WS of every SC that belongs to SCR(vsc) 
and the mapping is stored in ws_map (Line 5-7). The 
QoS of vsc candidate WS is inherited by the 
candidate WS of SC which has the minimum index 
(Line 8–12). 

• Line 16–21: Generate the MGC. 
 
At this point, MGC output by Algo. 1 can be added to 

formulate MILP problem for TVSC-capable QMGSSP: 
Multi-Granularity Constraint 
   yij = ypq,   (16) 
where:  
 i ≠ p;  
 (i, j, s, t), (p, q, s, t) ws_map, 
vscs VSSR(ep, gra, 0), ∀ wsst vscs, 

∀ ∈
∀ ∈ ∈ ∀ sci, 
scp∈SCR(vscs). 

 
Algo 2 Multi-Granularity Web Service Post-

processing 
Input:  
ws_map: output of Algo 1. 
ws_selected: set of (i, j), which represents i-th SC is 

bounded with j-th candidate WS. This is output of Step 3. 

Output:  
ws_set: set of (sc, j) or (vsc, j), where sc/vsc is SC/VSC 

in the restructured process definition and its j-th 
candidate WS is selected. 

01    set n as the number of SC in ep 
02    for i = 1 to n 
03        if (sci is not instantiated) 
04            get (i, j) from ws_selected 
05            if (∃ (a, b, c, d)∈ws_map,  
   where a == i and b == j) 
06                set s = c, t = d 
07                add (vscs, t) to ws_set 
08                for each (a, b, c, d)∈ws_map, 
   where c == s and d == t 
09                    mark sca as instantiated 
10                end for 
11            else 
12                add (sci, j) to ws_set 
13                mark sci as instantiated 
14            end if 
15        end if 
16    end for 
The main steps of the algorithm are as follows: 

• Line 5-10: If a new VSC vsc replaces existing SC in 
the original process definition, add the entry (vsc, 
index of selected WS) to ws_set (Line 7) and any 
sc∈SCR(vsc) will be marked as instantiated (Line 9). 

• Line 11-14: If original SC is still in the restructured 
process definition, simply add (sc, index of selected 
WS) to ws_set (Line 12) and marked sc as 
instantiated. 

We have discussed MILP-based solution for TVSC-
capable QMGSSP with regard to the hot path. For other 
execution paths, they can be divided into two parts: 
• common path: SC on the common path also belong 

to hot path 
• unique path: SC on the unique path does not belong 

to hot path. 
For common path, its structure will adopt the one in 

the hot path, i.e. only WS needs to be selected for the 
specified structure. However, for the unique path, 
respective MILP problem can be formulated to choose 
WS of various granularities to optimize the objective. 

V. EXPERIMENTATION 

The purpose of our experiments is to evaluate the 
performance cost and effectiveness of MGC-aware 
approach compared to the traditional MILP-based QoS-
aware services composition method. All experiments 
were conducted under Windows XP SP3, running on a 
LENOVO machine with 2 Intel Duo 2.33GHz processors 
and 2 GB RAM. We developed a program to simulate the 
services selection process, which is able to: (1) generate 
the process definition and its VSC; (2) generate the 
candidate WS with reasonable QoS values for SC/VSC; 
(3) output the MILP problem definition file for QMGSSP, 
which can be solved using the open source integer linear 
programming system lpsolve 5.5 [15]; (4) analyze the 
result file from lpsolve. The program is developed using 
Java 2 Standard Edition v1.6.0. 
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QoS values of WS is simulated based on the current 
use in the literature [5, 16], where response time and 
price are randomly generated from the normal 
distributions ( μ =100, σ=40), ( μ =100, σ=30) 
respectively, while reputation and reliability obey the 
uniform distributions [7, 10], [0.98, 0.99999] respectively. 
By default, the number of Sequence Segments in a 
process definition is set to 15 and length of each 
Sequence Segment is randomly generated from the 
uniform distribution [2, 15]. We also set QoS weights to 
[0.3, 0.3, 0.2, 0.2]. Other parameters are described in 
individual experiment. 

A.  Computation Cost Evaluation 
In this series of experiments, the impact on the 

performance of services selection process is evaluated 
when multi-granularity WS are considered. We executed 
extensive test cases of different scales, where both the 
number of service classes in the process definition and 
candidate WS for each SC are varied from 10 to 100 with 
a step of 10. We give a description for a typical case that 
SC number and candidate WS number are both set to 50. 
Similar results can be obtained for other test cases. 

For this test case, traditional MILP-based method cost 
0.231 second in average to achieve the optimum solution. 
In contrast, the computation time needed for MGC-aware 
approach is illustrated using contour in Fig. 3. The x-axis 
represents the product of VSC number and candidate WS 
number of the VSC, e.g. 600 can correspond to 20 VSC 
and 30 candidate WS for each VSC, or 30 VSC and 20 
candidate WS for each VSC (the experiment result 
reveals the computation cost is almost the same as long as 
their product is the same); the y-axis is the granularity of 
VSC search space. For each pair, MGC-aware method 
was run 10 times to get the average computation cost.  

 
Figure 3.  Computation Cost Evaluation 

Fig. 3 shows that the computation cost increases with 
both the product and granularity. More specifically, the 
increase is slow when the value of product and 
granularity is small and becomes faster as the value of 
these two dimensions get larger. It is reasonable to expect 
that most VSC will have a small granularity (<=5) since 

the functionality of VSC will become more specialized as 
the granularity get larger and less providers would 
provide such services. For pairs (600, 5), (1000, 5), the 
computation cost is 1.059 second and 1.836 second 
respectively, which should be acceptable. 

B.  Effectiveness Evaluation 
The second series of experiments aims at evaluating 

the effectiveness of our approach compared with 
traditional method, which is measured quantitatively 
using the improved percentage of the score for the 
optimum solution. 

Fig. 4 demonstrates the result where service class 
number was set to 30 and QoS constraints are set to [2700, 
2700, 9, 0.9]. Candidate WS number is varied from 10 to 
50 with a step of 5. The score of solution for each case 
obtained using traditional method is presented in the 
datatable under x-axis. There are 5 lines in the figure and 
each line uniquely corresponds with specific values for 
VSC-related parameters. For example, [5*20, 3] 
represents the setting that the number of VSC is 5, the 
number of candidate WS for VSC is 20 and the 
granularity of VSC search space is 3. For each setting, the 
selection process is repeated 10 times to get the average 
score. 

 
Figure 4.  Effectiveness Evaluation 

Fig. 4 indicates general advantages of our approach. 
To be more specifically, our approach is more effective 
when:  

1) candidate WS number of SC is relatively small;  
2) VSC number and its candidate WS number is 

larger;  
3) the granularity of VSC search space is larger. 
We also investigate the influence of QoS constraints 

on the effectiveness of our approach. Table II presents the 
results. Again, each score is the average value from 
results of 10 executions. 

The result shows that as QoS constraints get stricter, 
our approach become more effective in that it can sustain 
high success rate and achieve better solutions.   
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TABLE II.  INFLUENCE OF QOS CONSTRAINTS ON THE SOLUTION 

QoS Constraint Trad Approach MGC Approach 

RT Price Rep Rel Success 
Rate Score Success 

Rate Score 

Improved 
Percentage

4000 4000 8.0 0.70 100% 0.802 100% 0.832 3.81% 
3500 3500 8.5 0.80 100% 0.800 100% 0.839 4.86% 
3000 3000 9.5 0.95 55.55% 0.717 100% 0.782 9.07% 
2800 2800 9.5 0.95 38.46% 0.737 100% 0.797 8.14% 
2700 2700 9.5 0.95 11.70% 0.758 100% 0.802 5.82% 

 

V. CONCLUSION & FUTURE WORK 

In this paper, we introduce the concept of "granularity" 
to WS and propose the QoS-based Multi-Granularity 
Service Selection Problem (QMGSSP). QMGSSP is a 
generalization of traditional QoS-aware services 
composition problem, in that the latter is a special kind of 
QMGSSP. By allowing WS of various granularities to be 
considered as the candidate for selection, we can obtain a 
better solution. Furthermore, we formulate MILP 
problem for QMGSSP by introducing Multi-Granularity 
Constraints (MGC). Experiments show the effectiveness 
of our approach and the performance cost is acceptable. 

Future work will consider the more general form of 
QMGSSP, which is NTVSC-capable. In addition, we will 
research on applying data mining techniques to identify 
correlations in service classes so that VSC can be 
discovered more accurately. 
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