
A Precise Characterization of Software

Component Interfaces

Basem Y. Alkazemi
Computer Science & Engineering

Umm Al-Qura University, Makkah, Saudi Arabia

Email: bykazemi@uqu.edu.sa

Abstract— Developing software systems according to the

Component-based Software Development (CBSD) model

has proven to be one of the prominent development

approaches nowadays. However, integrating components to

build a complete working system has always been

considered as an obstacle that requires substantial effort

and may considerably delay the development process. The

lack of effective characterization of component interfaces

that only focus on the functional characteristics and ignore

the architectural characteristics of software components is

the main cause of this difficulty. Therefore, this work

provides a detailed characterization of software component

interfaces in order to expose the implicit architectural

characteristics that impact component integration.

Index Terms—architecture, integration, source-code,

interface, open-source software, system model.

I. INTRODUCTION

Building software system following the Component-

based Software Development (CBSD) model become one

of the widespread approaches in the software engineering

field due to its significance to lower development cost

and increase productivity. One of the common activities

in CBSD approach is the integration of components to

compose new software system. This activity is solely

dependent on investigating component's interfaces to

identify their suitability for integration into a system.

Component's interface exposes the abstract specifications

of components and hide their implementation details. It is

the first thing that is examined by system developers or

tools in order to identify if the component matches the

requirements of the system to be built. Thus, component's

interfaces must be precisely defined in order to avoid

unforeseen problems that might be raised at integration

time of software components.

Several works have characterized component

interfaces in order to provide clear understanding of

components types. However, most of the characterization

are coarse-grained in the sense that characteristics cannot

be easily mapped to the real source code. Considering the

rapid movement of open source software and the urge to

utilize the available source code for re-use, addressing

component integration problems become an essence

[2,3]. The current support provided by the open-source

repository system is restricted to string matching that

result not only in listing a large number of irrelevant

components but also in providing components that cannot

fit into the system to be developed. Therefore, an

effective characterization of source-code components

interfaces is needed in order to refine re-user‟s search and

to generate a list of more focused results.

The scope of this work is built on Marry Shaw's

declaration of component characteristics where it was

coined that functionality alone is not enough to

successfully integrate and re-use component, architectural

characteristics must also be considered [10]. This

assertion was mainly targeting coarse-grained

components obtained at high-level stages of a software

development process (e.g. ADL[39]) . However, when it

comes to low-level components (i.e. source code)

everything is mixed up together in a sense that it may be

extremely hard to distinguish between the code

responsible for doing functionality and the other parts of

code responsible for non-functional businesses.

Therefore, the main objective of our work is to evaluate

that assertion on low-level software components in order

to examine its validity at that level. We proposed a

framework for characterizing component interfaces in

order to expose the hidden characteristics of source code

components that may negatively affect component

integration. The work presented here is derived by the

business case established in a preceding work that aims at

developing a repository system to support software re-use

[24]. The term component is used throughout the paper to

indicate source code fragment together with any

supporting textual files that can be obtained from open-

source software repository.

This paper is organized as follows. Section II presents

the background work conducted in this research that

studied the available interface categorization, software

architecture and ADLs, and CBSD field. Section III

presents our system model that we adopted to analyze the

various architectural characteristics of software

components. Section IV identifies the different types of

interfaces that software components may have. In Section

V, detailed discussion about the various characteristics

that our proposed interface might have is given. Section

VI describes the syntax of the specification language

prototype that we have developed to examine the features

of component interface. Section VII presents the

evaluation of our approach by experimenting with a

number of real software components obtained from

Sourceforge.net repository. Section VIII lists a number of

potential benefits that our approach can provide to the

software development process. Section IX draws the

conclusion and the planned future work for this research.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 349

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.349-365

II. BACKGROUND WORK

A. Interface Categorization

Design by contract (DbC) by Meyer [5] is mainly

concerned with defining the formal specifications of

component‟s interface in order ensure that the

collaboration between the components of a system is

correct. The notion of DbC guides the design of the

software system by specifying a set of pre-conditions and

post-conditions as part of the interface of a component.

Pre-conditions are the requirements that must be made

available to a component prior to be able to provide its

services (e.g. “You need a debit card to withdraw from a

cash machine”). Post-conditions define what a component

will provide once a condition is satisfied (e.g.

“withdrawing money”). Brown and Short [6] described

an interface as a way of summarizing the behaviour and

the responsibility of the component. They used an

interface to capture all the semantics related to the

collaboration between components. The set of operations

provided by a component is considered as part of the

exhibited interface that a client or a system can use to

obtain the required functionality of that component.

Sametinger [4] described a component‟s interface as a

way to determine how a component can be re-used and

composed with other components in a system. An

interface defines the set of operations that characterizes

the behavior of a component. Sametinger distinguished

between three types of interface namely, data interface,

user interface, and programming interface. Data interface

concerns the format and transformation of the data

between components. User interface captures the protocol

of interaction between a component and a user, for

example through a simple command line or a graphical

user interface. Programming interface captures the

possible interactions between components and how they

can be composed in a system. The work by Shaw and

Clements [38] identified the notion of components and

connectors to abstractly classify different architectural

styles at the high level design stage. They identified

components as the functional building block of a system,

while connectors as the mediators that facilitate data

conversion and transformation among the interacting

components. The work by Mehta et al. [11] identified a

fine-grained view of component interaction (i.e.

connectors) in an attempt to reflect the high-level

principle of connectors with a physical meaning that can

be observed during implementation. However, at the

source-code level, one may not be able to tell whether a

method in the source code is responsible for interaction

(i.e. for the connector) or whether it provides

functionality For example, if an interaction is defined

between two components as a “method invocation”, then

knowing this will not be of significance to a re-user who

wants a precise specification in terms of how the

interaction has been accomplished. Arbab et al. [7]

described the interface as a definition of the observable

behavior of components that contains five elements.

These are a name, a channel signature, a blocking

invariant, pre-condition, and post-condition. The name of

an interface is used to uniquely identify an interface from

other interfaces. The channel signature captures a set of

parameters representing the data input and output of a

component. The blocking invariant specifies special cases

when a component needs to allow exceptions or perform

a special action. The pre-condition refers to the required

set of inputs that must be supplied to the component in

order for it to operate. The post-condition refers to the set

of values that are supplied by the component. They

considered the component interface as a way to reason

about the correctness of composition of a system from its

components. Hondt et al. [8] described the notion of a

re-use contract that concerns capturing the requirements

of a component from other components in a system. They

considered the interface as a way that not only captures

the operations responsible for providing functionality, but

also document what a component requires in order to

work and what interaction structure is required in order to

obtain a correct collaboration between the components of

a system. An interface of a component captures the

signature of operations without considering any

semantics or type of information. The key contribution of

the notion of a re-use contract is to detect conflicts in

component interfaces, in that a conflict indicates that

components cannot work together in a system. The notion

of re-use contract is in line with the contribution of our

work, however, we established a more complete set of

architectural interfaces to facilitate components

integration and re-use that includes external and internal

view of component interfaces as described in Section 5.

DeLine [12] established a distinction between the

functional concern and the architectural concern of

software components. His approach focused more on

addressing the problems of interaction between the source

code responsible for providing functionality and that of

the architecture. Moreover, DeLine assumed that the

component should be made available to a repository as a

source code that purely defines functionality. The source

code responsible for capturing the architectural

characteristics are left unspecified until a re-user

describes the required architectural characteristics. Based

on the provided characteristics, the component is then

wrapped as necessary to match the characteristics of the

architectural style of the re-user. Once a suitable wrapper

has been generated, then both the functional and the

architectural source codes are combined to form a

complete component. Although the work of DeLine is

closely related to the work presented in this paper, it may

not be applicable in the case of open-source software

components where all the source codes that are relevant

to functionality and architecture are mixed together. A

provider might provide a component that is composed of

functional and architectural source code, hence violating

the assumption made by DeLine that a component should

only be provided as a “ware”. In addition, open-source

software components usually lack any form of

documentation that a packaging specialist might use to

identify the architectural source code from the functional

one. Even though the specialist was able to use their

expertise to identify the architectural characteristics and

350 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

split them from the functional characteristics, it would be

very difficult and time consuming.

B. Software Architecture

People usually refer to the term „architecture‟ to

indicate the physical construction of a building in terms

of external shape, and also how rooms are structured

within that building. In software, the word „architecture‟

is a term that is in general use, with a number of different

interpretations. However, as an analogy to its meaning in

civil engineering, it inspires the meaning of creating a

product (software system in this case) from a number of

selected components rather than building a single

monolithic one. So, the way components must be

incorporated, the order in which they must be placed, and

the mechanism of interaction between them, are parts of

what system architecture describes.

Bas et al. [13] defined software architecture as the

structure of a system that comprises software elements,

their external visible characteristics, and the relationship

between them. IEEE 1471 [14] defines software

architecture as “the fundamental organization of a

system embodied in its components, their relationship to

each others and the environment, and the principles

guiding its design and evolution”. Jones [15] defined

architecture as the structure that is composed of

components and rules that establish the basis for the

interaction between them. All the definitions have agreed

upon the fact that architecture is concerned with the

constituting parts of a system and the relationship

between them.

In the literature, many of the available works have

explained the significance of considering architecture in

software development (especially in the CBSD

paradigm). One reason for considering software

architecture is to help our understanding of complex

software systems. Shaw and Garlan [16] suggested that

architecture can be used to define the overall design of a

system. Garlan and Perry [17] identified the benefits of

considering software architecture in software

development as providing support for re-using, evolving,

analyzing, and managing software. Budged [18]

considered software architecture to be a way of

describing the constructional aspects of a software system

at a high-level of abstraction (e.g. design stage). Allen

[20] identified architecture as being the vehicle to

communicate between the requirement and the

implementation stages. Szyperski et al.[19] suggested that

architecture is important for establishing a context for

software systems representing standards and platform

requirements.

Garlan et al. [21] identified a number of architectural

characteristics that might cause a mismatch to occur in

terms of component interaction within a system. These

characteristics are:

 The infrastructure that a component is primarily built

on.

 Control issues of whether a component can generate a

control signal or not.

 The data type manipulated by a system and the way it

is transferred between components.

 The pattern of interaction between components.

 The sequence that components must be instantiated

and invoked with.

From the re-users point of view, these characteristics

are significant in order to identify whether or not a

component can be integrated into their system and to

build an understanding of the different characteristics of

the architecture at hand. Consequently, a component that

supports a single thread of control will not be suitable for

integration in a system that assumes its components must

be thread-safe. Also, a component that communicates

through RPC will not be integrated in a system that uses

message passing to transfer data, hence a mismatch might

occur. Yakimovitch et al. [22] refined the work of Garlan

and identified five variables that describe assumptions

about components‟ interactions, namely packaging,

control, information flow, synchronization, and binding.

Their main motivation was to establish a mapping

between architectural assumptions and a number of

problem domains that conform to some standard

architectural types. They demonstrated that the defined

variables can be used to abstractly classify different

software architectures.

Based on analyzing the current works in the field,

software architecture seems to consider another view of a

system that is not tightly relevant to functionality. This

view examines the structure of a system and tries to

identify components and define the possible interaction

that a component can have in order to avoid the

occurrence of fault due to a potential mismatch between

components in a system. The development of the AESOP

system [23] from large-scale components demonstrated

the difficulty of incorporating components, and

emphasized that the main reason for the observed

difficulty is due to architectural mismatch between the

various components. Even though the various

components of the AESOP system were providing the

required functionality as the developers needed, the

integration of the various components to form a complete

system was impossible without major modifications. The

problems encountered by the AESOP developers were in

favor of the assertion by Shaw [10] that stated

considering functionality alone is not enough to

successfully re-use components. As a result, exposing the

architectural characteristics is necessary in order to

integrate components correctly, and this is the main focus

of the paper.

C. Architecture Description Languages (ADLs)

ADLs are specification languages for defining the

structure of software systems at a high level of

abstraction by identifying elements and the relationship

between them [39, 40]. ADLs provide a description of the

conceptual architecture of a system [47]. A general

characterization of ADLs‟ capability was given in [44].

ADLs aim to support architecture-based software

development by establishing notations that are

appropriate for defining system architecture and its

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 351

© 2011 ACADEMY PUBLISHER

constituting elements. They formalize the definition of a

system at the architectural level in a graphical way that

can be communicated to humans. Moreover, instead of

drawing boxes and lines that may not involve rules that

govern connections between them (i.e. boxes and lines),

ADLs provide a semantic check of whether two elements

can be linked together and what the requirements are that

need to be satisfied in order to successfully create the

links between these elements.

ADLs are built on the notion of components,

connectors and constraints that have been described in the

software architecture field. They provide a basis for

analyzing and verifying the design of a software system.

There are many ADLs available nowadays such as

ACME [43], that can be used to represent the architecture

of the system to be built (Darwin [42], Rapide [46] and

many others). ADLs possess several characteristics that

are relevant to the CBSD field as many of them facilitate

the automatic generation of glue codes to form a system

[45]. Despite the variety of ADLs, they are not widely

adopted by the software industry, because they are not

general enough as they only support specific architectural

styles [41].

D. Component-Based Software Development (CBSD)

The notion of CBSD is not new. It was firstly coined

by McIlory [25] who established the need to

componentize software (i.e. building software from

components) as a way of resolving some issues identified

by the software crisis that concerns the case of building

large and reliable software in a controlled way. CBSD is

concerned with the assembly of software systems from

pre-existing software components. One of the main

objectives of the CBSD approach is to promote the re-use

of previously developed components to allow the

building of a new system. The notion of building a

system from components can reduce development costs

and increase the quality of the final system.

Building a software system from re-usable components

requires a clear understanding of the aspects related to the

characteristics of the overall system, the characteristics of

software components, and aspects related to obtaining

and integrating components [26].

A common model for CBSD is that a re-user who

wants to add functionality to their system might find a

repository to search for re-usable components. The re-

user then gathers their ideas about the characteristics of

the component they are looking for. After that, the re-user

types a searching query that formulates their thoughts

about the characteristics of the required component,

either as free-text or in the form of a specification model.

Alternatively, the re-user could browse the available

categories in case they are not fully aware of the

representation method used by the repository to organize

the component. In this way, browsing can build up their

knowledge [27]. In response, the repository may list a

number of results that are relevant to what the re-user

needs. Consequently, the re-user can examine the

characteristics of every component on the list until they

find a best match in terms of the required characteristics.

Sometimes, the re-user might need to modify the

component they have found in order to exactly match the

requirements of the system to be built, so they might

apply some adaptation techniques to accomplish the

modification. Once the component matches the required

characteristics, it can be integrated safely into the system.

The above model identifies a number of key activities

with respect to development according to the CBSD

approach, including:

 Identification: Identifying components involves

recognizing the potential of re-usable ones, based on

their exhibited characteristics from a list of

components. This activity involves searching and

browsing software components. The selection of the

appropriate component from a list of components is

done by matching the characteristics of the component

to the specifications of the system to be built. This

requires a precise definition of the components‟

characteristics in order to facilitate an understanding of

them by their users and also to classify them for re-use

. The success and soundness of the identification of the

component is a major factor for the success of the

CBSD approach as components cannot be re-used

unless they are found. The key element for the success

of the identification activity is the availability of an

effective organizing scheme with regard to the

software component. Software components can be

identified in various ways. Some of the common ways

of identifying components are based on matching their

behavior [28], their signature [29] and their

specifications [30]. Behavioral matching identifies

components based on a set of predicates (i.e. pre- post-

) that are used to execute components. The resulting

values of the execution are then used as representative

“terms” to identify the corresponding components.

Signature matching identifies components based on the

signature of the functions within a component and the

type of parameters. For example, in ML a function

“hd” can be identified by the type of its input and

output parameters “a list a”. A whole component

that is composed of several functions can be identified

by the signature of the functions within the

component. Specification matching is derived from

the behavioral matching approach. However, it relies

on predicates of the entire component‟s operation. The

set of predicates are written using formal specification

languages such as Z language [31] or OCL [32].

 Validation: Validation is a way of checking the

characteristics of the component against a pre-defined

specification. Two kinds of validation are relevant to

the CBSD paradigm - unit test and integration test. The

unit test is done by a component developer to ensure

that the provided behavior of the component is correct.

Testing a component‟s behavior could either be done

as black-box testing by providing a set of inputs and

examining the resulting output, or white-box testing by

inspecting the source code. The integration test is

undertaken by a component re-user to determine

whether or not the component can interact with the

other components in the system and is not going to

raise any structural problems. In addition, integration

352 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

tests can be done in some cases to measure the quality

of a component in order to decide whether or not the

component can be trusted for re-use [5].

 Integration: The activity of integrating a component

can be seen as a mechanical action involving

connecting components by means of matching their

syntax and semantics to form a system [33]. Part of the

integration activity is related to checking the

compatibility of the components to match the

characteristics of a system. The main issue to address

in this activity is related to solving potential

mismatches between components. One reason behind

the occurrence of a mismatch in a component‟s

characteristics is due to the fact that the component‟s

producers may be unaware of the potential usages (i.e.

context) that their component might be re-used in,

hence their assumptions are different from the

assumptions considered by the components initial

users. Thus, it is extremely important that the software

components are produced with a well-defined interface

in order to understand the assumptions that

components can match, and also can be connected

with at runtime. In a system that is built locally,

integrating heterogeneous component can be achieved

using a wrapper or glue code to bridge the differences

between the components‟ interfaces. So, if a

component that takes two parameters as an input is

composed with a component that provides three values

as an output, then a glue code can be used to map the

input and the output of the components. In building a

distributed system, the interaction between the

components can be addressed using the notion of

middleware (e.g. CORBA) that unifies the

components‟ interfaces to enable their interaction

across a network.

 Evolution: This activity is concerned with replacing

components from a system with other components that

conform to the same interface, so that we can

substitute the replaced component without affecting

the other components of the system [34]. The reasons

for replacing the components could be to fix bugs in

the system or to extend the functionality of the system

by incorporating new components that provide the

desired behaviour into it. Consequently, this activity is

important in the notion of CBSD.

With regard to the above activities, integrating

components is a significant issue that needs to be

investigated in depth. Addressing component integration

is especially important when dealing with heterogeneous

components, as they might cause lots of interoperability

problems when developers need to integrate components

into their systems. Components can either be integrated

statically or dynamically [35]. Statically integrated

components are those that are bound by programming

mechanisms (e.g. method invocation) at compile time and

usually conform to an architectural style. The

dynamically integrated components are those that are

bound at run-time and they are identified by the services

(i.e. behavior) they can provide.

Integrating components involves adapting components

to resolve potential mismatches in the characteristics of a

component and the characteristics of the system to be

built. Adaptation refers to modifying the interface of the

software components by means of using a wrapper, glue

code, or a translator to eliminate the unnecessary

characteristics of a software component and also to add

additional characteristics to its current interface in order

to meet the requirements of a developer. Specifically, the

adaptation of the component is mainly concerned with

solving potential interaction problems that are caused due

to potential architectural mismatches between

components interfaces.

Several attempts have been made to try to tackle the

problem of integrating components in a system. Eclipse

[36] has established a framework by means of plug-ins

that encapsulate components in order to unify their

interfaces. So, different components that conform to

different assumptions can be incorporated into an Eclipse

if they are wrapped with the necessary plug-ins‟

architectural characteristics. The Vienna Component

Framework (VCF) [37] has established a framework

similar to that of Eclipse, but its authors claim that it is

has an advantage over Eclipse in the sense that it provides

uniform access through different component models.

VCF has defined general characteristics for software

components that are common among different types of

components. These characteristics are:

 Life-cycle: every component must implement a set of

methods that allows a system to control it when it must

be initialized and destroyed.

 Persistence: this allows a component to be stored and

retrieved from storage.

 Method: this characteristic gives a handle to the real

methods provided by a component that are responsible

for functionality aspects.

 Property: this characteristic allows for the

manipulation of the component‟s state.

 Event: this characteristic allows components to be

registered as listeners to be notified about events.

Integration problems are experienced in various

situations where the CBSD approach is used to build a

system. One of the prominent examples that demonstrates

this problem is the integration of Commercial Off the

Shelf products (COTS). The problems encountered at

integration time are primarily caused due to potential

mismatches in the architectural assumptions between the

components that are planned to be re-used and for the

system to be built. One may find, somehow, a component

that seems to satisfy their functionality. However, that

component does not fit into the system under

development due to incompatibility in the programming

language, operating system, or the database schemes used

to write the component and that of the system. These

mismatches are additional difficulties that a system

builder might need to take into consideration when

considering CBSD model. As a result, a new approach is

needed to identify the implicit architectural

characteristics of software components to avoid potential

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 353

© 2011 ACADEMY PUBLISHER

mismatches, and this is one of the key contribution of

this paper.

III. SYSTEM MODEL

A common model of a system structure is to consider a

system as being composed from a set of components. A

component might be complex in a scene that it can be

composed of sub-components, and sub-components

might also be composed of sub-sub-components, and so

on until a point is reached where a component cannot be

decomposed any further, hence can be called a simple

component. Each component itself can be considered as a

system, with the above description being applied

recursively. A system might be a stand-alone application

that can be installed and run on an environment or a part

of a larger system that can be incorporated to a

predefined system framework, but the model permits the

general term of system to be used to cover such

eventualities. Since the developer is building a system,

components are what they may try to examine and

integrate, and are the dependencies that the system

utilizes for providing the necessary functionality. Every

system has some characteristics that must be matched by

software components. If the characteristics required by

the system are matched by the characteristics exhibited

by the component, that component will be a fit candidate

in the system.

Following from the system model, the notions of

system and component are interchangeable in the sense

that a system can be considered as a component if a

developer decided to integrate it in another system, while

a component can be considered as a system in its own

right, for example, if the developer is interested in

examining its composing sub-components. So, all the

characteristics (to be defined) that are relevant to a

system are applicable to a component and vice-versa.

Components provide functional characteristics that a

system requires through standard interfaces to the system.

In turn, a system provides architectural characteristics

that components require to work in the system through

standard interfaces defined by the system.

Figure 1 below illustrates the ontology of the described

system model. While this is a simple system model, and

clearly does not capture all the complexity of a software

system‟s structure, it is sufficient to use as the model for

identifying the important characteristics necessary for

component integration.

System

Component

Functional Interface Architectural Interface

Provided Required

Required Provided

Composed

of

Figure 1. Ontology of System Model

IV. TYPES OF INTERFACES

We describe component interface abstractly as a

contract of fit. An interface is, in fact, a kind of contract

of communication between a component and a system.

Both a component and a system must agree upon a

defined contract in order to allow for a component to be

integrated into a system. The characteristics defined by an

interface capture the functional and non-functional

aspects of software components. Based on the exhibited

characteristics of a component‟s interface, a component

can be identified and integrated. Component‟s interface

can be represented directly in the code of the component

(e.g. Java Interfaces) or by using additional files (e.g. a

textual file) that describes the external attributes and

methods of the component.

Two types of interfaces are distinguished that we

adopted the terminologies functional interface,

architectural interface. The functional interface exposes

the set of services that a component can provide.

Obviously, this interface is the key to identify if a

component is of any interest to a developer as it is the

first thing that developers examine. However, it is the

least concern with respect to the CBSD as components

will not be of any use if they cannot be integrated into a

system. Therefore, functional interface is not discussed in

this paper due to its irrelevance to component integration.

On the other hand, the architectural interface exposes the

characteristics that components must match in order to

compile, link, and work successfully in a system

regardless of the semantics of the components. In fact,

this interface is significant to examine aspects about

components integration, as it is responsible for

identifying whether components can physically fit into a

system or not. For example, an Oracle 6i form will not fit

directly into Microsoft SharePoint system due the lack of

web-based support indicating a mismatch occurrence in

the architectural characteristics. Thus, the notion of

architectural interface is the main focus of this paper and

is described in detail in the next section. Overlooking

functional interface in this research does not meant that it

is not of any importance, but our aim is to support

software re-users to refine their functional based

354 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

searching criteria with additional characteristics that are

defined by architectural interface. The aim of

architectural interface is to ensure that software

components that are obtained from external vendor (e.g.

open source repository) can compile, link, and run into a

system without trouble.

V. THE CHARACTERISTICS DEFINED BY THE

ARCHITECTURAL INTERFACES

We identified two types of architectural interfaces

namely external and internal. The external interface of a

component captures the characteristics that must be

exposed to satisfy the requirements of a system. It can

also be used to identify whether the system can be

integrated as a component into another system. The

internal interface of a system is significant in identifying

the characteristics of the composing components, that are

the dependencies of the system, and also the

characteristics defining how components can interact

with each other. For example, if a system requires its

components to provide a method called public void

start() to control when the component starts running,

this requirement forms part of that system‟s internal

interface, and the method must be part of the external

interface of any potentially re-usable component.

Similarly, if a system uses some special libraries to

implement its functionality, the characteristics of the

library must be part of the internal interface that the

system must provide to its components. An analogy with

jigsaw pieces is useful to express the idea of the two

interfaces. The things needed are the “hole” in a jigsaw

piece, and things provided are the “protruding bobble”.

So, an external interface of a piece of a jigsaw has holes

that it needs, and bobbles that represent what it provides;

similarly for the internal interface. Both interfaces

identify characteristics that dictate whether a component

can be successfully integrated in a system.

Consider the Eclipse as an example of a system that a

developer wants to add some functionality to by

incorporating new “plug-ins”. The Eclipse system

provides an extensible environment that precisely defines

how new plug-ins can be added to the system, and also

establishes the basis for defining the relationships

between plug-ins. Mapping the Eclipse system to the

system model introduced in this section, the internal

interface of the Eclipse system requires the following

methods as part of the characteristics that the external

interface of a component (i.e. a plug-in) must match in

order to fit in the system:

 public void start(BundleContext)

 public void stop(BundleContext)
A plug-in might have interaction with other plug-ins in

the Eclipse system or it may need sub-components to

accomplish its desired functionality. For example, a file-

transfer protocol (FTP) plug-in needs to interact with the

“org.eclipse.osgi” plug-in, which is part of the Eclipse

system, to facilitate launching the FTP plug-in in the

system. So, the “org.eclipse.osgi” plug-in must be defined

as a part of the characteristics that the external interface

of the FTP plug-in must capture, as it is one of the

external dependencies of the FTP plug-in that is required

by the Eclipse system. The FTP plug-in uses a Java class

called “newSocket” that is not part of what the Eclipse

system requires, hence the “newSocket” Java class must

be captured by the internal interface of the FTP plug-in as

one of its internal dependencies.

Based on examining various components types, a

number of key architectural characteristics are identified

to characterize the external interface of software

components, they are:

 Format: this characteristic specifies the underlying

syntax used to write a component. For example, at the

source-code level, a programming language will

represent the format of a component. So if a system

requires a component written in Java then a component

written in FORTRAN will not be directly suitable for

integration.

 Entry point: the entry point is the first block of code

that should be invoked to initialize a component. Some

components may provide special methods that must be

executed to provide initialization, while others may

require the presence of special tools or files for their

initialization. For example, a standalone Java

application must have a method called public static

void main() to be initialized, while an Eclipse plug-in

can be initialized by reading a file called “plugin.xml”

and the presence of a method called public void

start(BundleContext). So, a component must match the

initialization mechanism that a system requires in

order to fit successfully in the system.

 Handling failures: if a fault occurred in a component at

any stage during its execution then the failure handling

mechanism implemented by the component must

conform to the one expected by the system. For

example, if a system assumes that its composing

components must provide a specific recovery action in

case of failure, then components must implement the

necessary action to fit.

 Using external dependencies: a software system may

require its composing components to use dependencies

that it provides for them to fit in the system. For

instance, a Java system requires its composing

components (i.e. Java classes) to use a library called

“java.io” to achieve the basic input and output

functionality. Also, an Eclipse system requires its

components (i.e. plug-ins) to use a plug-in called

“org.eclipse.osgi” to allow the system to control their

execution. So, components must use the external

dependencies that are provided by a system in order to

be integrated successfully in the system.

 Data I/O: after a component is initialized it will be

ready to receive data for processing and sending out.

The mechanism of handling data must be defined

according to the requirement of the system under

development in order to avoid potential mismatches.

For example, a component that receives data via

parameters may not fit into a system that requires their

components to read data input from a file. Both system

and components must agree upon a data exchanging

model. So, a component employs the push-model will

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 355

© 2011 ACADEMY PUBLISHER

not fit into a system assuming their components to

exchange data according to the pull-model [9].

 Control flow: the way control is exchanged can be

different from one component to another. One

component may synchronize its execution with a

system, so the component can return control to the

system upon the completion of its execution. Another

component might execute asynchronously with the

system. Thus, identifying the different mechanisms of

control flow is necessary for integrating components

successfully into a system.

The internal interface of software components

represents the set of composing sub-components that the

component depends on in order to provide its

functionality in addition to the protocol of interaction

between sub-components. The set of characteristics

identified by the internal interface are:

 Sequence of execution: a software system must invoke

components in the correct sequence otherwise some of

the composing components of the system may not

execute correctly. For example, consider a simple

parser system composed from a reader component that

reads from a file and stores data in a temporary buffer

for processing, and an analyzer component that

analyzes the data and identifies their semantics. The

parser system must invoke the reader component first

and then invoke the analyzer component. If the

analyzer component is invoked prior to invoking the

reader component then this might cause the analyzer

component to raise an error, and hence cause the

system‟s execution to fail.

 Internal dependencies: components in a system may

depend on sub-components in order to provide its

intended functionality. Considering the internal

dependencies is significant in the case of extracting a

component from a system prior to integrating it into

another system as all sub-components must be

extracted together with the component in order to work

successfully in the new system.

Figure 2 summarizes the different types of

architectural interface with their corresponding

characteristics classified based on these two types.

Figure 2.Classification of Component Characteristics

Identifying the possible values of the characteristics

identified in the external architectural interface is

necessary to determine whether a component can fit

architecturally into a system or not. The values of the

identified characteristics are defined by what we adopted

the term architectural type. Hence, there is a need to

specify these characteristics and their corresponding

values in a precise manner that could be identified in the

source code of a given component. Figure 3 depicts a

fine-grained ontology of the system model describing the

relationship between the notion of architectural interface

and architectural type.

System/

Component

Require
/Exhibit

Architectural

Type

D
ef

in
e

Characteristics
Architectural

Interface

External

Interface

Has

C
om

po
se

d

of

Identify

Is
an in

sta
nce

 o
f

Figure 3. Fine-grained Ontology of System Model

A prototype of a specification language namely

ArchInt is developed to formalize some of the

characteristics identified by the architectural interface.

We started our experimentation with a prototype that

examines only the characteristics identified by the

external architectural interface. The internal interface is

left for future experimentation after evaluating the

soundness of the external architectural interface. The

specification language describes things with respect to

syntactic constructions that can be identified in the

component regardless of semantics concerning what the

construct means. For example, the syntactic aspects of

identifying what a method is (e.g. a Java Method), must

be separated from the semantics that express what that

method can do (e.g. it corresponds to handling a failure).

The main consideration of our developed language is to

return a “Yes/No” answer with respect to matching a

components against the characteristics defined by an

architectural type. This consideration has the advantage

of facilitating a tool to check automatically the

availability of the characteristics in the architectural

interface of software components without human

intervention. For instance, if an architectural type that is

required by a system defines one of its characteristics as

requiring a UNIX process with standard inputs and

outputs then the architectural type of a component must

define this requirement in order to match the architectural

type required by the system. The semantics of the UNIX

process is not important to fit into the system as that can

be considered as part of the functional interface that we

have excluded in this work.

VI. ARCHINT SPECIFICATION

ArchInt is developed as a prototype of the required

specification language to evaluate some aspects of

architectural interface. ArchInt represents a document

that contains the set of values that comprise a particular

356 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

architectural type; it is used to match characteristics

represented in software component against the

architectural type. An ArchInt document has a specific

structure that needs to be processed by a tool. Hence,

XML seemed a sensible choice for representing the

information to help in detecting errors in the document

itself.

Every document must start with a pair of opening and

closing tags called <ArchInt> to identify the

boundaries of a document written in ArchInt and also to

indicate that the defined XML document is an ArchInt

document. The opening and closing tags must be the first

and last tags in any ArchInt document. In a repository

system, every architectural type must have a name to

distinguish it from other architectural types in the

repository, this is captured by ArchInt using a pair of tags

called <name>. Every ArchInt document must contain

only one name and the tag corresponding to the name

must be the first tag that appears after the <ArchInt>

tag. One key characteristic that is identified by

architectural interface was the “Format”; this

characteristic specifies the programming language that is

used to write a component. ArchInt captures the “Format”

characteristic using a pair of tags called

<programming_language>. This tag is necessary to

identify how software components can be processed. The

<programming_language> tag identifies the

appropriate tool to be used in order to check the

conformance of software components to an architectural

type. As will be seen later in this paper, the compiler

associated with a programming language is used as a tool

to examine the characteristics of software components.

The three tags described earlier represent the basic

features of the ArchInt language and must be present in

every ArchInt document to identify the type of the

document (i.e. conforming to ArchInt specification), to

identify the name of an architectural type, and to identify

the tool that can process a component.

The characteristics that need to be matched in the

software components against an architectural type

description are captured by ArchInt using the pair of tags

called <must_have>. This pair of tags indicates that

the content between them is related to the requirement of

architectural fit. So, if an architectural type that is

required by a system defines a method called “public

static void main(String arg)”, then this

method should be described between the <must_have>

tags pair.

ArchInt captures part of the requirements of

architectural fit by the pair of complex tags (i.e.

composed of sub-tags) called <Block>. The

fundamental idea that is captured by the pair of

<Block> tags is related to identifying the address within

a component where data is exchanged, and also the type

and sequence of data input and output of the component

in that address. For example, in Java the <Block> tag

corresponds to the methods defined in a Java class, while

in Eiffel the tag corresponds to the features defined by an

Eiffel class, and in FORTRAN the tag corresponds to

sub-routines. Within the body of the tag <Block> the

name of the block is captured using the pair of tags

<name>. The data exchanged by a block is represented

in ArchInt by the pair of tags <Data_Input> and

<Data_Output>. The type of the input and output data

exchanged by a block is captured by ArchInt using the

pair of tags <type>. A block may have more than one

type of data that need to be processed in a defined

sequence, this is represented by ArchInt using the pair of

tags called <sequence>. A failure that might be raised

by a block is represented in ArchInt using the tag

<Failure>. Software components might include some

descriptive files that might satisfy special requirements of

a system in addition to the source code of the component.

As a result, ArchInt identifies a pair of complex tags

called <File> to capture the additional files that might

be defined by an architectural type. This tag will be part

of the characteristics that should be defined between the

<must_have> pair of tags in an ArchInt document.

Within the body of the <File> tag the name of a file is

captured using the pair of tags <name> to identify a file

from any other files that might also be defined by an

architectural type. Every file must have a type that

represents its format (e.g. XML, Doc, TXT). The type of

a file defined by an architectural type is captured by

ArchInt using a pair of tags called <type>. This tag

identifies what tool can be used to check whether a file is

well-formed or not. In some cases, a file might need to

have a specialized format that is inherited from a generic

structure type. For example, the file plugin.xml conforms

to the XML document structure type and also conform to

a specific Exlipse formatting structure, hence a pair of

tags called <sub-type> is used to capture such

specialization. A system might require its composing

components to hold temporary data during their lifetime

in the system or to define values for some specific

attributes of components required by the system. ArchInt

captures this requirement of a system using a pair of

complex tags called <Storage>. In the source code of

components, fields and member variables are the concern

of this tag. Every storage must have a name that

distinguishes it from other one in a component, hence a

pair of sub-tags called <name>. The data held by a

storage must be of a certain type, hence a pair of sub-tags

called <type> is defined by ArchInt. ArchInt can reduce

the effort of writing new ArchInt document of an

architectural type that, part of its defined characteristics,

is captured by another ArchInt document. So, old ArchInt

documents can be extended instead of replicating the

same characteristics in a new ArchInt document. ArchInt

captures the feature of extending old ArchInt documents

through a pair of tags called <uses_ArchInt>. This

tag refers to the ArchInt documents that are going to be

extended by their names, hence a pair of tags called

<name> is introduced. The dependencies that a system

must provides to components is captured by ArchInt

using the pair of tags <External_Dependencies>.

Table 1 summarizes the syntax of the ArchInt

specification language.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 357

© 2011 ACADEMY PUBLISHER

Table 1. ArchInt Specification

The defined tags in this section are the ones that the

current prototype of the ArchInt specification language

has defined at the moment for evaluating the external

architectural interface. Although these tags can be seen as

a small set of tags, in fact they capture some of the

essential and key features of architectural interface.

Therefore, this set of tags formed the basis for a set of

experiments designed to evaluate the feasibility of

architectural interface to define component interfaces.

The experiments have been confined to Java examples

since this was sufficient to demonstrate the soundness of

the basic idea to start with rather that attempting to

generate completely a general solution at this stage of the

development of the language.

VII. EVALUATION

We have developed a tool called ArchIntParser purely

in Java using a common Java editor that check

components against an ArchInt description. The approach

followed by the ArchIntParse tool for matching an

architectural type document to a provided component is

based on utilizing the tool associated with the

programming language identified by the

<programming_language> tag to check the syntax

of a file or a component. So, if the component was source

code then the corresponding compiler can be used to

check for matching types and also identify whether a

component is missing any of its required sub-components

(i.e. internal dependencies). In the case of textual files,

then the corresponding tools can be used to check

conformance to the syntax and styling required by the

language (e.g. well-formed xml document). Our

experiments assumes that components use Java

architectural type hence the programming language is

java as illustrated in figure 4.

Figure 4. Java Architectural Type

In the case of source code check, the tool works by

automatically generating a “TestSuite” Java class from an

architectural type document. The TestSuite class contains

code to exercise all of the features specified in the

architectural type document. The tool then compiles and

links the generated Java class with the source code of the

provided component. If no compile-time or link-time

errors are raised, this indicates that the provided source

code matches the architectural type that was used to

generate the TestSuite Java class, and the tool returns a

positive result. If compile or link errors are raised, this

reflects a mismatch and the tool returns a false match

result. Figure 5 illustrates the operations performed by

ArchIntParser tool to examine different components

obtained from Sourceforge.net.

Figure 5. ArchIntParser Operations

The generated TestSuite class contains method calls

representing invocations of all of the methods identified

in the <must_have> tag. Figure 6 illustrates an

example of the automatically generated TestSuite java

class to match the source code of an Eclipse plug-in to the

Eclipse plug-in architectural type.

 Sourceforge.net is selected as a component supplier

for conducting our experimental work since it is among

the prominent open-source repository systems nowadays.

Sourceforge.net supports searching queries written

between quotations and also queries without quotations.

A query that is written between quotations seems to

return more focused results (i.e. exact match) than the one

written without quotations. This study considered

searching for software components using queries

surrounded by quotations. The selection of components

was done randomly using the formula “1 + (int)(N

* Math.random())” . Results that are listed in

Sourceforge.net without their corresponding source code

were discarded. Moreover, components returned by

Sourceforge.net that are written in different programming

languages than Java were not considered at this stage.

358 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Figure Error! No text of specified style in document.. Sample of
TestSuite Class

The terms used to search for software components are

those that were observed common among various

repository systems or those that precisely state the name

of an architectural type. However, there might be other

expressions of use that were beyond our knowledge;

hence the selected terms were not claimed to be

exhaustive. The tool then compiles and links the

generated Java class with the source code of the provided

component. Figure 7 illustrates an extract of the output

generated from executing the ArchIntParse tool on a

number of Eclipse plug-ins.

Figure 7. ArchIntParse Tool Output

If no compile-time or link-time errors are raised, this

indicates that the provided source code matches the

architectural type that was used to generate the TestSuite

Java class, and the tool returns a positive result. If

compile or link errors are raised, this reflects a mismatch

and the tool returns a false match result.

A. Experiment 1: Eclipse plug-in architectural type

Our selected test-bed sample was Eclipse plug-in

architectural type. We have generated an ArchInt

description that ArchIntParser tool can utilize to check if

software components match this architectural type. An

extract of the Eclipse ArchInt is given below in Figure 8.

Sourceforge.net was searched for Eclipse plug-in

components, using the normal text matching search, for

the phrase “Eclipse plugin” provided by the

Sourceforge.net repository. The searching phrase returned

512 components as at 12/2009 that only contain the

phrase “Eclipse plugin”.

We applied our ArchIntParser tool on the returned

components by Sourceforge.net. The tool identified 493

components out of the 512 as conforming to the Eclipse

plug-in architectural type, while 19 components were not

identified as conforming ones. To check the validity of

the generated results, all 493 Eclipse components were

tried as plug-ins in an Eclipse system. The 493

components that were identified by the ArchIntParse tool

as conforming to the Eclipse plug-in architectural type

were all recognized and run successfully in the Eclipse

system. The remaining 19 components exhibited

variations. A number of 14 components out of the 19 did

not fit in the Eclipse system. While the remaining five

components were recognized by the Eclipse system,

however they never provide any functionality.

Visual inspection of the component confirmed that all

the 19 non-conforming components did not implement

the methods defined by the Eclipse plug-in architectural

type to control their life-cycle. In addition, 14

components of them were also missing the plugin.xml file

so the Eclipse system was not able to recognize and

initialize them. This explains why the resulted behaviour

of the 19 components was not presented as expected.

Figure 8. Partial Listing of Eclipse Plug-in Architectural type

B. Experiment 2: Applet Architectural Type

This experiment involved the Applet architectural type.

Text matching in SourceForge.net was used again, but

this time with the string “Java Applet”. A list of 235

results that contained the phrase “Java Applet” was

returned by Sourceforge.net as in 6/2010. We applied the

ArchIntParse tool against all the 235 components

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 359

© 2011 ACADEMY PUBLISHER

returned by Sourceforge.net in order to identify if they

match our ArchInt description of the Applet architectural

type. ArchInt description for the Applet architectural

type is given partially in Figure 9.

Figure 9. Partial Listing of Applet Architectural type

The ArchIntParse tool identified that 218 of the 235

components matched the Applet architectural type

document. The remaining 17 components were flagged as

not matching. To check the validity of the generated

results, all the 235 components that Sourceforge.net

identified as Applets were examined on an Applet system

using a normal appletviewer utility. It was found that 229

components out of the 235 components ran successfully,

including those components that the ArchIntParse tool

identified as being instances of the Applet architectural

type. The remaining components did not run

successfully, all of which were correctly identified by the

tool as not being instances of that architecture type. The

11 components that apparently were successfully

executed as Applets and were not correctly identified as

matching by the tool are discussed further below.

Inspecting by hand the source code of the 11

components that returned negative result by the

ArchIntParse tool showed that all the components

matched the characteristics defined by the Applet

architectural type. After examining the possible reasons

for the conflict in results obtained by the ArchIntParse

tool and by trying the components on the Applet system,

the reason for the conflict was identified. The 11

components for which negative results were returned by

the ArchIntParse tool were delivered by the

Sourceforge.net repository missing some of their internal

dependencies. As a result, the compile-and-link process

in the ArchIntParse tool failed. This was the real reason

that caused the ArchIntParse to return negative results

and not because these components were not conforming

to the Applet architectural type. So, this result is

considered a false negative result as the failure in the

compilation was not caused due to missing any of the

characteristics of the Applet architectural type but it was

related to missing internal dependencies that allow the

components to work in an Applet system. Despite these

false negative results, the results obtained in this

experiment are promising.

Overall, this experiment demonstrated that the Applet

architectural type represented by ArchInt has worked

successfully to check and identify automatically the

conformance of software components to the Applet

architectural type.

C. Experiment 3: Model-view-controller (MVC)

Architectural Type

Figure 10 illustrates the architecture of one

implementation of an MVC-based system. This

experiment involved replacing a component that matched

the observed characteristics of the Model architectural

type as identified in this system (i.e. “ContactModel”)

with another Model component obtained from a OSS

repository system.

Figure 10. Contact MVC System

The Java source code of “ContactModel” is inspected by

hand in order to identify the architectural characteristics

that would constitute a description for the Model

architectural type according to the implementation of the

“ContactModel” in this system. The observed

characteristics of the Model architectural type of this

system are illustrated in Figure 11. The ArchIntParse tool

was used to check the generated ArchInt document for

the Model architectural type against all the Java classes in

this system and the “ContactModel” Java class was

verified as the only one that matched the generated

ArchInt document.

360 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Figure 11. Model ArchInt

An attempt was made to try to find a component from

open-source repository to fit into this system. Although,

finding component was not intended to be part of the

evaluation in this experiment, it was done to examine

whether the identified characteristics of the Model

architectural type in this example are common to all

Model architectural types. It was not possible to search

open-source repository systems using the characteristics

of the Model architectural type identified above as open-

source repository systems do not currently support

searching for components based on the characteristics

defined by an ArchInt document. The only possible way

to search was by searching the open-source repositories

using the text-matching approach of instances of the

Model architectural type available in the repository (“e.g.

“servlet”, “JavaBeans”). However, the searches retrieved

results that were not conforming to the architectural type

of the above MVC system in this case.

 We tried to examine the impact of ArchInt to facilitate

understanding the structure of software systems and allow

for modifying their components. So, the defined

architectural characteristics in Figure 11 was generated to

define the boundaries of the Model component in the

selected system so it can be replaced safely. Based on the

generated ArchInt description we managed to replace the

Model component successfully from the system with

another Java class that was generated manually and

implemented conforming to the Model architectural type

of this system. The new added component fit in the

system and ran as expected.

D. Discussion

The results obtained demonstrated that the notion of

architectural interface is significant and must be

considered carefully when dealing with software

components for integration. These results are, in fact,

emphasising the assertion made by Mary Shaw who

firstly coined the essence of investigating architectural

characteristics in order to ensure that components can fit

into a system. So, addressing the architectural

characteristics are important even when dealing with low-

level software components, and these two experiments

revealed that explicitly. The experiments also

demonstrated that ArchInt successfully identified the

salient characteristics of architectural fit into an Eclipse

and Applet based systems, and captured that in an

architectural type description using the ArchInt prototype

language. In addition, the experiments showed that the

defined characteristics of the Eclipse plug-in and Applet

architectural types represented by ArchInt have been

successfully matched automatically by the tool without

the need for any human intervention. These experiments

also revealed a weakness in Sourceforge.net as it listed

components that do not match the characteristics of the

Eclipse architectural type, but the repository has

considered them mistakenly as matching ones. A possible

justification of listing these erroneous results by

Sourceforge.net is that the provider of these components

seemed to assume that re-users of the components should

be responsible for implementing the required

architectural characteristics. The providers only focus on

producing components that provide certain behaviour

without completely concerning about their architectural

aspects. As a result, the providers of these components

considered them as Eclipse plug-ins, even though they do

not practically match the full characteristics of the

Eclipse architectural type. This problem could have been

avoided if Sourceforge.net used checking mechanism to

validate components‟ characteristics against the claimed

architectural type of components by their providers.

With respect to experiment 3, a problem encountered

when generating the ArchInt document for the Model

architectural type of the MVC system was that the

identified architectural characteristics are not fixed for

every Model architectural type as it is observed that

different characteristics for the Model architectural type

were available. For example, one implementation of the

Model architectural type might consider implementing

data exchange between the instance (i.e. component that

conforms to an architectural type) of the Model and the

instances of the other architectural types (e.g. Controller

and View) using a push-model. The push-model concerns

transferring data out of an instance of the Model to other

components whenever changes in the state of the instance

of the Model occurs, hence requiring the View

component to register with the Model component.

According to this implementation, a Model component

must have a method called “public void

addContactView(ContactView)” as defined in

the Model architectural type in this study. Another

implementation of the Model architectural type, however,

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 361

© 2011 ACADEMY PUBLISHER

might be to exchange data by applying a pull-model. An

instance of the Controller component would then need to

keep checking changes in the state of the Model

component and pull data from the Model component as

appropriate, thus requiring the View component to

register with the Controller. According to this

implementation, the component that conforms to the

Controller architectural type is the one that must have a

method “public void addContactView

(ContactView)” and not the Model as described

earlier. This variation in the implementation of the

various components of the MVC system indicates the

lack of a precise definition of what the characteristics of

the Model, View, and Controller architectural types are.

It seems that the variety in describing the

characteristics of the Model, and also View and

Controller, of an MVC system is caused as the three

architectural types are in fact metaphors normally used at

the design stage to identify the high-level architecture of

a system. The component that is responsible for storing

and manipulating data in a system can be considered

abstractly as an instance of a Model. The architectural

types of an MVC system are defined abstractly but their

definitive characteristics are left for programmers to

determine at implementation time, and hence variety in

the characteristics of the Model, View, and Controller

architectural types resulted.

An advantage of ArchInt is observed in this

experiment indicating that the identified characteristics of

the Model architectural type depicted in Figure 11 can be

used to understand what is required to modify a

component to match the Model architectural type in that

MVC system. If ArchInt was not provided, then a

developer would need to identify the interfaces of the

components of the system at hand manually, which can

be difficult and time consuming.

VIII. ASPECTS OF ARCHITECTURAL INTERFACES

Experimenting with architectural interfaces has

uncovered some interesting aspects on the overall

approach of this approach:

 Cohesive software development environment: consider

an IDE with the notion of architectural interface

integrated into it. A developer can be given help by

automatically generating the source-code that

represents the architectural framework for the system

based on the design at hand. This will help developers

to focus only on writing the source code that will

provide the functionality for the components of the

system to be developed. Moreover, the IDE can advise

the developer about the potential components that

match the architectural interfaces of their system, so

the developer can re-use components without worrying

about any architectural mismatches as that could be

dealt with automatically by the IDE. Equally, if a

software developer needs to apply some modifications

to the architecture of the system, then the IDE can

reflect the changes on the high-level artifacts (e.g.

design, requirement) of the system and presents them

to the developer. This kind of support that is provided

by the IDE would not have been possible without the

support provided by the notion of architectural

interface. The usefulness of architectural interface is to

maintain the links between the high-level artifacts and

the low level implementation.

 Identity for components: a developer might indicate “I

want an Applet component that counts the number of

visitors to a webpage”; that would be a more accurate

description of the search requirement than “I want a

component that counts the number of visitors to a

webpage”. Instead of describing only behavior to

search for components it would be useful to know

what components are in the first place. The

architectural characteristics defined by architectural

types can represent identity for components as the

characteristics can be used to discriminate one

architectural type from another. In the above example,

the identity of the component that the developer was

looking for was Applet.

 Source-code documentation: most of the source code

available in open-source repository lacks

documentation that explains the meaning of the written

source code and also how to use it. The lack of

documentation is an obstacle that could hinder re-

using source code. Architectural interfaces represented

in ArchInt provide a means of documenting source-

code components. A fully implemented ArchInt

specification language will generate all the necessary

information that developer need to know in order to re-

use components (e.g. how a component can to be

registered with a system). However, the current

version still provides useful information to describe

the architectural characteristics of components that

developers can utilize to build their decision about re-

using the component. So, developers can identify if the

component at hand can fit into their system.

 Formalizing high-level artifacts: the design of a

software system is usually an abstract specification of

the components of a system and their interaction.

System developers are required to map these

abstractions into a concrete implementation, and the

flexibility they have for doing this is precisely the

reason for the difficulty of finding matching re-usable

components. Architectural interfaces have been shown

to address this issue. If the designer of a software

system has provided the description of the

architectural types of the system to be built, this will

reduce the effort on the implementation stage as

developers can use the generated architectural type

description to find re-usable components or build their

own that conform to the provided architectural type

description.

 Enhanced support of component re-use: the external

interface of software components can be used by a

repository system to automatically classify and

organize those components, while a set of

characteristics that a re-user requires can be specified

and used by the repository to identify candidate

components. Moreover, the internal interface is useful

to help the repository system retrieve a re-usable

362 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

component together with all of its required

dependencies (i.e. sub-components). Thus, the

repository can provide a complete component to a re-

user, without requiring the re-user undertake this

action manually.

 Establish classification scheme for software

components: the external and internal interfaces can be

used to build an organisational hierarchy; Figure 12

illustrates an example. Assume that T is a component

that defines the characteristic Y in its internal

interface. Sub-components T1 and T2 are both

identified as providing the characteristic Y in their

external interface. However, sub-component T1

defines the characteristic A in its internal interface

while sub-component T2 defines B as a characteristic

in its internal interface. As a result of the difference in

the characteristics defined by T1‟s and T2‟s internal

interfaces, the two sub-components can be

discriminated from each other. The example indicates

that the external interface of a sub-component

identifies the potential parent in a hierarchy and the

internal interface discriminates a component (or sub-

components) from other components.

T

External

X

Internal

Y

Internal

B

Internal

A

Internal

Q

Internal

K

Internal

H

Internal

M

T2

External

Y

T1

External

Y

T22

External

B

T21

External

B

T12

External

A

T11

External

A

Figure 12.Using External/Internal Interfaces to

Organize Components

 Facilitate component modifications: understanding the

external interface of a component and internal

interface of the system under development might

influence the modifications that the re-user might wish

to make. A re-user could modify the internal interface

of the system under development to match the external

interface of a potentially re-usable component, or the

re-user could modify the external interface of a

component to match the internal interface of the

system.

IX. CONCLUSION AND FUTURE WORK

This paper has presented a new approach for defining

component interfaces in order to address some of the

difficulties encountered in components integration. New

interface called architectural interface was identified to

address integration problem. The approach was

formalized by a specification language called ArchInt that

was used to validate the notion of architectural interface.

Our experimental work revealed that the proposed

approach is efficient to identify the architectural

characteristics of software components. This work

uncovers a significant research direction that need to be

considered in depth for successful component integration.

The paper proves that considering functionality alone is

not enough even at the source code level, and this is in

fact in favor of Shaw's assertion.

The current approach is limited to small to medium

sized software components written in Java. As a result,

our planned future work is to evaluate the notion of

architectural interface on a wider range of architectural

types including components written in different

programming languages. Also, we are going to evaluate

the applicability of our approach to supplement the

searching criteria of the current open-source search

engines in order to facilitate retrieving components that

not only provide the required functionality but also fit

architecturally into a system. Moreover, we are going to

investigate the potential of re-using component that are

partially matching the characteristics defined by

architectural interface as the current approach is limited

only to exact match. So further modifications to software

components can be estimated and planned more carefully.

REFERENCES

[1] Oberleitner, J., Gschwind, T. and Jazayeri, M.,The Vienna

Component Framework enabling composition across

component models. In Proceedings of the 25th

International Conference on Software Engineering.2003.

doi:10.1109/ICSE.2003.1201185.

[2] Brown, A., Booch, G., Reusing Open-Source Software and

Practices: The Impact of Open-Source on Commercial

Vendors. In Proceedings of the 7th International

Conference on Software Reuse: Methods, Techniques,

and Tools.2002 Springer-Verlag. doi:10.1007/3-540-

46020-9.

[3] Spivey, J., The Z Notation: A Reference Manual, Prentice

Hall, 1991.

[4] Sametinger, J., Software Engineering with Reusable

Components, Springer-Verlag,1997.

[5] Meyer, B., The Grand Challenge of Trusted Components,

in 25th International Conference on Software Engineering

(ICSE'03). 2003, IEEE Computer Society.

doi:10.1109/ICSE.2003.1201252

[6] Brown, A., Short, K.,On Components and Objects: The

Foundations of Component-Based Development. In

Proceedings of the 5th International Symposium on

Assessment of Software Tools (SAST '97).1997.IEEE

Computer Society. doi:10.1109/AST.1997.599921

[7] Arbab, F., Boer, F. and Bonsangue, M.,A Logical Interface

Description Language for Components. In Proceedings

of the 4th International Conference on Coordination

Languages and Models.2000.Springer-Verlag.

doi:10.1007/3-540-45263-X

[8] Hondt, K., Lucas, C. and Steyaert, P., Reuse Contracts as

Component Interface Descriptions. In Proceedings of the

Workshops on Object-Oriented Technology.1997.Springer-

Verlag.doi:10.1007/3-540-69687-3.

[9] Duller, M., Tamosevicius, R., Alonso, G. and Kossmann,

D., XTream: Personal Data Streams. In Proceedings of

the ACM International Conference on Management of

Data (SIGMOD).2007.ACM,1088 – 1090.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 363

© 2011 ACADEMY PUBLISHER

[10] Shaw, M., Architectural issues in software reuse: it's not

just the functionality, it's the packaging. In Proceedings

of the 1995 Symposium on Software

reusability.1995.ACM. doi:10.1145/211782.211783.

[11] Mehta, N., Medvidovic, N. and Phadke, S., Towards a

taxonomy of software connectors. In Proceedings of the

22nd international conference on Software

engineering.2000.ACM. doi:10.1145/337180.337201.

[12] DeLine, R., Avoiding packaging mismatch with flexible

packaging. IEEE Transactions on Software Engineering,

2001. 27(2): p. 124-143. doi:10.1109/32.908958.

[13] Bass, L., Clements, P. and Kazman, R., Software

Architecture in Practice, Addison-Wesley, 2003.

[14] ISO/IEC. IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems. IEEE Std

1471. 2000, Accessed 11 - 2008, Available from:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=0087

5998.

[15] Jones, A., The Maturing of Software Architecture. In

Software Engineering Symposium.1993. Software

Engineering Institute.

[16] Shaw, M., Garlan, D., Software Architecture: Perspectives

on an Emerging Discipline, Prentice Hall, 1996.

[17] Garlan, D., Perry, D., Introduction to the Special Issue on

Software Architecture. IEEE Transactions on Software

Engineering, 1995. 21(4): p. 269-274.

[18] Budgen, D., Software Design, second edition, Pearson

Addison-Wesley, 2003.

[19] Szyperski, C., Gruntz, D. and Murer, M., Component

Software - Beyond Object-Oriented Programming. 2nd

edition, Addison-Wesley(ACM Press), 2002.

[20] Allen, R.,A Formal Approach to Software Architecture,

PhD Dissertation, Carnegie Mellon University, 1997.

[21] Garlan, D., Allen, A. and Ockerbloom, J., Architectural

Mismatch: Why Reuse Is So Hard. IEEE Software, 1995.

12(6): p. 17-26. doi:10.1109/52.469757.

[22] Yakimovitch, D., Bieman, J. and Basili, V., Software

architecture classification for estimating the cost of COTS

integration. In Proceedings of the 21st international

conference on Software engineering. 1999. IEEE

Computer Society Press. doi:10.1145/302405.302643.

[23] Garlan, D., Allen, A. and Ockerbloom, J., Architectural

Mismatch: Why Reuse Is So Hard. IEEE Software, 1995.

12(6): p. 17-26. doi:10.1109/52.469757.

[24] Alkazemi, B., Prototype of Repository System to Support

Software Component Re-Use. In the Proceedings of the

Sixth IASTED International Conference on Advances in

Computer Science and Engineering.2010.

doi:10.2316/P.2010.689-003.

[25] McIlroy, M., Mass Produced Software Components. In

Software Engineering: Report on a Conference by the

NATO Science Committee.1968.NATO Science Affairs

Division,138-150.

[26] Mahmood, S., Lai, R. and Kim, Y, Survey of component-

based software development. IET Software, 2007. 1(2): p.

57-66. doi:10.1049/iet-sen:20060045.

[27] Li, G., Zhang, L., Li, Y., Xie, B. and Shao, W., Shortening

retrieval sequences in browsing-based component retrieval

using information entropy. Journal of Systems and

Software, 2006. 79(2): p. 216 – 230.

doi:10.1016/j.jss.2005.04.035.

[28] Ostertag, E., Hendler,J., Prieto Díaz,R. and Braun, C.,

Computing Similarity in a Reuse Library System: An AI-

Based Approach. ACM Transactions on Software

Engineering and Methodology, 1992. 1(3): p. 205- 228.

doi:10.1145/131736.131739.

[29] Zaremski, A.M., Wing, J.M., Signature Matching: A Tool

for Using Software Libraries. ACM Transactions on

Software Engineering and Methodology, 1995. 4(2): p.

146–170. doi:10.1145/210134.210179.

[30] Hemer, D., Lindsay, P., Specification-based retrieval

strategies for module reuse. In Proceedings 2001

Australian Software Engineering Conference.2001.IEEE

Computer Society. doi:10.1109/ASWEC.2001.948517.

[31] Spivey, J., The Z Notation: A Reference Manual, Prentice

Hall, 1991.

[32] Fischer, B., Specification-based browsing of software

component libraries. Automated Software Engineering,

2000. 7(2): p. 179 – 200. doi:10.1109/ASE.1998.732577.

[33] Cechich, A., Piattini, M., Quantifying COTS component

functional adaptation. In 8th International Conference on

Software Reuse: Methods,Techniques and Tools (ICSR

2004).2004.LNCS(3107).

[34] Assman, U., Invasive Software Composition, Springer

Verlag, 2003.

[35] Budgen, D., Brereton, P. and Turner, M. Codifying a

Service Architectural Style. In Proceedings of the 28th

Annual International Computer Software and Applications

Conference (COMPSAC'04) - Volume 01 2004.IEEE

Computer Society. doi:10.1109/CMPSAC.2004.1342800.

[36] ClayBerg, E., Rubel, D., Eclipse: Building Commercial-

Quality Plug-ins. 3rd edition, Addison-Wesley, 2004.

[37] Oberleitner, J., Gschwind, T. and Jazayeri, M., The Vienna

Component Framework enabling composition across

component models. In Proceedings of the 25th

International Conference on Software

Engineering.2003.IEEE Computer Society.

doi:10.1109/ICSE.2003.1201185.

[38] Shaw, M., Clements, P., A Field Guide to Boxology:

Preliminary Classification of Architectural Styles for

Software Systems. In Proceedings of the 21st International

Computer Software and Applications

Conference.1997.IEEE Computer Society.

doi:10.1109/CMPSAC.1997.624691.

[39] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,

Little, R., Nord, R. and Stafford, J., Documenting Software

Architectures: Views and Beyond, Addison-Wesley

Professional, 2003.

[40] Gacek, C., Detecting Architectural Mismatches During

Systems Composition, PhD thesis, University of Southern

California, 1998.

[41] Besnard, D., Gacek, C. and Jones, C., Structure for

Dependability: Computer-Based Systems from an

Interdisciplinary Perspective, Springer, 2005.

[42] Crane, S. Darwin: an Architectural Description Language.

1997, Accessed 11 - 2008, Available from:

http://www.doc.ic.ac.uk/~jsc/research/darwin.html.

[43] Garlan, D., Monroe, R.T. and Wile, T., ACME: An

Architecture Description Interchange Language. In

Proceedings of the 1997 conference of the Centre for

Advanced Studies on Collaborative research.1997.IBM

Press,169-183.

[44] Garlan, D., Shaw, M., An Introduction to Software

Architecture,1994, Technical Report:CS-94-166,Carnegie

Mellon University.

[45] Jefferson, N., Dependable Compositions: A Formal

Approach, PhD Thesis, Newcastle University, 2006.

[46] Luckham, D., Rapide: A Language and Toolset for

Simulation of Distributed Systems by Partial Ordering of

Events,1996, Technical Report:CSL-TR-96-705,Stanford

University.

[47] Medvidovic, N., Taylor, R., A Classification and

Comparison Framework for Software Architecture

364 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00875998
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00875998
http://www.doc.ic.ac.uk/~jsc/research/darwin.html

Description Languages. IEEE Transactions on Software

Engineering, 2000. 26(1): p. 70-93.

doi:10.1109/32.825767.

Basem Y. Alkazemi, is an assistant

professor at Umm Al-Qura University

(UQU) in Saudi Arabia under the school

of computer science & Engineering. He

obtained his PhD in 2009 from

Newcastle University in U.K. His PhD

topic was concerned with addressing the

complexity of re-using open-source

software components. Basem is currently

holding the position of managing director of the e-government

project at UQU that leads to the integration of all the university

software systems in a unified model. He is a member in the

IEEE, SIGSOFT-ACM, and SEI societies. His main research

interests include software architectural patterns, software

product lines, Aspect-oriented SE, and CBSE.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 365

© 2011 ACADEMY PUBLISHER

