
MFC: Mining Maximal Frequent Dense
Subgraphs without Candidate Maintenance in

Imbalanced PPI Networks

Miao Wang1, Xuequn Shang1, §, Zhanhuai Li1
1School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, China

§Corresponding author, E-mail addresses: shang@nwpu.edu.cn

Abstract—The prediction of protein function is one of the
most challenging problems in bioinformatics. Several
studies have shown that the prediction using PPI is
promising. However, the PPI data generated from high-
throughput experiments are very noisy, which renders great
challenges to the existing methods. In this paper, we propose
an algorithm, MFC, to efficiently mine maximal frequent
dense subgraphs without candidate maintenance in PPI
networks. Instead of using summary graph, MFC produces
frequent dense patterns by extending vertices. It adopts
several techniques to achieve efficient mining. Due to the
imbalance character of PPI network, we also propose to
generate frequent patterns using relative support. We
evaluate our approach on four PPI data sets. The
experimental results show that our approach has good
performance in terms of efficiency. With the help of relative
support, more frequent dense functional interaction
patterns in the PPI networks can be identified.

Index Terms—frequent dense subgraph, imbalance, relative
support, used edge, family subgraph

I. INTRODUCTION

Functional annotation of protein is one of the
fundamental problems in the post-genomic era. The
widely used methods are sequence alignment[1-3] and
pattern-discovery[4-6]. However, these methods have
their own inherent drawbacks[7]. The recent development
of high-throughout technology for protein-protein
interaction (PPI) measurements[8,9] have generated
large-scale data on protein interaction across human and
other organisms, which are expected to be fertile sources
of information for deriving protein functions.

Prediction of protein functions using PPI data has been
extensively studied. These methods include neighborhood
based[11], graph theoretic[12], probabilistic[13],
topology[14], expanding seed complex[15], integrating
multiple data sources[16], etc. One commonly used
analytical approach is to discover the clusters[17-20],
which is likely to share the same functions. It is observed
that 70-80% of proteins share at least one function with
its interacting partner[21]. However, due to the noisy
nature of high-throughput data, the above assumption is
not always true. One way to overcome it is to mine dense
frequent patterns in multiple biological networks
simultaneously. Recently, many algorithms have been

proposed. Hu et, and Yan et, [22,23] exploited summary
graph approach to mine frequent patterns. But it may
suffer from several problems. (1) The noise may
aggregate to affect the mining efficiency[23]. (2) The
edges in a summary graph may not be dense. Pruning the
non-dense edges is time-consuming. (3) Mining
imbalanced networks is not efficient since the summary
graph may be large when dealing with imbalanced
networks. When generating second-order graph, the
computing could be complex. (4) The edges in a dense
summary graph may never occur together in individual
original graphs[23], which can make summary graph
larger. Fig. 1(a) illustrates such an example with a
cartoon of four graphs. If we simply add these graphs
together to get a summary graph, we may find a dense
subgraph with vertices a, b, c and d. However, this
subgraph is not frequent in the original graphs. So these
algorithms use other techniques to overcome these
problems. Since summary graph should be produced first,
so if the summary graph is not effective, it must affect the
efficiency of later technique.

In this paper, we address the above issues and develop
an algorithm, called ‘MFC’, the abbreviation of mining
Maximal Frequent dense subgraphs without Candidate
maintenance in imbalanced PPI datasets. MFC adopts the
vertex-growth method, in which one iteration may
generate more frequent edges. In addition, it exploits
several pruning techniques to avoid storing the generated
maximal frequent dense subgraphs and prune unmaximal
subgraphs in time. In comparison with previous frequent
graph mining algorithms, our algorithm may show
significant advantage in memory and computing
efficiency.

The PPI datasets are commonly represented as
relational graph[10], where nodes representing unique
proteins and edges representing the unique relationship
between proteins. That means, relational graph has
distinct node labels, and we do not have the ‘subgraph
isomorphism problem’ which is NP-hard. Instead of
using summary graph and growing patterns by extending
the edges, we mine frequent patterns by extending the
vertices. Using traditional methods mine frequent dense
subgraph, it should produce frequent subgraph firstly,
then judging which is whether dense or not. If not, it may
use other technologies to separate the subgraph into
several dense subgraphs. So the efficiency is not very

498 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.498-507

well. Using MFC, the frequent dense subgraphs can be
generated at the same time. One chosen vertex must
satisfy the condition: the new produced patterns must be
frequent and dense. We propose a new dense definition:
similar density. Biologically speaking, if one protein is
more likely to be in the module, it must connect to more
proteins in this module. If the similar degree is lower, it
can not be joined in this module. At the same time, the
module must be found in most original graphs. Using our
method can avoid mining the false patterns. MFC can
also discover the overlapping graph clusters. As we
known, one protein may have different functions, so
identifying overlapping clusters is important in biological
applications. For example, in Fig. 1 (b), two cliques
{a,b,c,d,e,f} and {d,e,g,h} share two common vertices
{d,e}. MFC can identify these two clusters easily. The
detail can be found in the method part.

As we known, different PPI dataset is got from
different experiment, due to the influence of environment,
time or other factors, one protein is discovered in one
experiment may not be found in another experiment.

Therefore, using traditional support to discover functional
module may ignore some important modules. In a word,
imbalance and perturbation are two important characters
of PPI network. So we propose another definition:
relative support, which aims at finding more patterns in
imbalanced networks. Using relative support can discover
more frequent subgraphs than absolute support. We
applied our algorithm to 4 human PPI datasets to identify
a large number of potential function modules. Assessed
by Gene Ontology, the results show MFC is efficient to
discover annotated modules. The experimental results
also show using relative support can discover more
frequent subgraphs than traditional absolute support.

The rest of the paper is organized as follows: In
Section 2, we present the problem definition of mining
maximal frequent dense subgraphs. Section 3 is focus on
the MFC algorithm, mainly including how MFC gets
maximal frequent dense subgraphs without candidate
maintenance. In Section 4, we present an extensive
experimental study. Our study is concluded in Section 5.

Figure 1(a) The summary graph of four graphs. (b) The overlapping dense subgraphs.

II. PROBLEM FORMULATION

A relational graph set consists of undirected simple
graphs, { (,)}i iD G V E= = , , ,i 1 n= , iE ⊆ V × V,
while a common vertex V is shared by the graphs in the
set. We denote the vertex set of a graph G by V(G) and
the edge set by E(G). In relational graphs, there is neither
loop nor multiple edges. All the graph patterns discussed
in this paper are undirected connected relational graphs.

Definition 1 (Absolute Support). Given a relation graph
dataset, 1 2{ , , , }nD G G G= , while (,)i iG V E= . The
number of graphs in D where g is a subgraph is r, the
absolute support of a graph g is r/n, written ASup(g). A
subgraph is frequent if its support is greater than a
minimum support threshold.

Definition 2 (Vertex Support). Given a relational graph
dataset, 1 2{ , , , }nD G G G= , while (,)i iG V E= . The
number of graphs in D which contain v is r, the vertex
support of a vertex v is r/n, written VSup(v).

Definition 3 (Relative Support). Given a relational
graph dataset, 1 2{ , , , }nD G G G= , while (,)i iG V E= , r
is the number of graphs in D which contain a subgraph g,

1 2() { , , }iV g v v v= ，the relative support of g is r/T,
where 1 2{ (), (), ()}= ×iT min VSup v VSup v VSup v n ,
written RSup(g). g is frequent if its relative support is
greater than a minimum support threshold.

E.g. Given a subgraph g:{ae,ce,ab}, in Fig. 2, the
support threshold is 0.6. ASup(g)=2/4=0.5<0.6, so it is
not frequent. However, using relative support to mine,
since the vertex e can not be found only in G3,
RSup(g)=2/3=0.67>0.6, it is frequent. So using relative
support we can discover more frequent patterns.

However, only using relative support can mine some
noise patterns. As shown in Fig. 2, the edge af only can
be found in G3, if using relative support, RSup(af)=1, but
it may be a noise edge. Therefore, before using relative
support, absolute support must be used to reduce the
noise vertices and edges. Certainly, the absolute support
should be smaller than relative support. In above
example, if we set the absolute support is 0.5, the noise
edge af would be cut firstly.

Definition 4 (Similar Density). Given a frequent dense
subgraph g, iV is the vertex in g. M is another vertex
and iM V⊄ . The similar density between M and g is m/n
where n is the number of vertices in g and m is the
number of real exist edges between iV and M, denoted as
dense(M, iV).

The problem of mining frequent dense subgraphs is
formulated as follows: given a relation graph dataset,

1 2{ , , , }nD G G G= , discovery subgraphs g that satisfy
the following two criteria simultaneously: (1) support(g)
is higher than a frequent threshold; and (2) extending a
vertex M into an existed frequent dense subgraph must be
satisfy the similar density threshold. Based on biological

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 499

© 2011 ACADEMY PUBLISHER

consideration, given a graph dataset, it could not be very
useful to produce all of the frequent dense subgraphs. So

we find the maximal frequent dense subgraphs.

Figure 2. Shown are an example imbalanced networks

Figure 3(a) Subgraph is obtained by edge-growth and vertex-growth respectively. (b) An example of Lemma 1.
(c) Shown example of Lemma3.

III. MINING MAXIMAL FREQUENT DENSE
SUBGRAPHS

A. Generating Dense Subgraph
In our approach, the dense subgraph can be obtained by
extending a vertex into the existed subgraphs. Comparing
to edge-growth method, vertex-growth approach can
grow several edges at the same time, as shown in Fig. 3a.
Based on the definition of similar density, we make the
following definition and lemma on the completeness of
generating the dense subgraphs.

Lemma 1. If a vertex a can be extended to the existed
subgraph G, a and each vertex in G should also satisfy
the similar density in the new generated subgraph.

Proof. Based on the definition of similar density, the
extended vertex a must satisfy the dense threshold. After
a is extended, G must be changed and become larger.
Therefore, the original vertex of G may not satisfy the
dense threshold. So these vertices must be checked
whether satisfy or not. If not, a can not be extended to G.

Lemma 1 guarantees the integrality of generating dense
subgraph. For example, in Fig. 3b, based on the dense
threshold 0.6, e can be extended to subgraph {a,b,c,d}.
However, if extending e, dense(a, {b,c,d,e}) is 0.5, which
can not satisfy the threshold, so e should not be extended.

Lemma 2. If a vertex a can not be extended to the existed
subgraphs G, it may be extended to another vertex Q,
which is the superset of G.

Proof. Supposed dense(a, G) is m/n which is less than the
threshold. If G can extend other vertices and generate the
new larger subgraph Q, if a is adjacent to the vertex,

dense(a ,Q) would be (m+1)/(n+1), greater than m/n. So
there may exist a dense subgraph which can extend a
successfully.

For example, shown in Fig. 3c, the similar density is
0.5, the current dense subgraph is {a,b,c,d}, denoted as G.
The vertex e can not be extended to G, while f can be
extended to G, and generate a larger subgraph {a,b,c,d,f},
named as Q. Now, the vertex e can be extended to Q and
get the largest subgraph {a,b,c,d,e,f}.

Traditional cluster algorithms to generate clusters
based on the seed vertex, which can be obtained by the
vertices distribution. It may be done in one graph.
However, generating clusters in multiply graphs, it may
not be done easily. Since the distribution of vertices may
not be same in each graph. Our MFC can extend any
vertex to generate dense subgraphs without using the
seed.

Lemma 3. The dense graph can be obtained by extending
any vertex of it.

Proof. According to the lemma 2, in the dense graph, a
vertex can not be extended by current dense subgraph, it
may be extended by another dense vertex. In another
word, the vertex is independent from the subgraph. So no
matter any subgraph, it can find a subgraph to extend this
vertex. Therefore, the first extending vertex can be
anyone of graph.

The lemma 3 guarantees the seed vertex is free to be
chose. It can increase the efficiency of MFC.

B. Maximal Frequent Dense Subgraph Generation
In this section, we introduce our extending vertex

approach to mining maximal frequent dense subgraphs.

500 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

There are two approaches for mining maximal frequent
subgraphs or patterns: (1) find all the frequent subgraphs,
and only output the maximal ones; (2) find a maximal
subgraph candidate set and prune the subgraphs that are
not maximal. When a new frequent subgraph is
discovered, it would check the previous subgraphs to see
whether the new one is maximal or not. Therefore, the
computing is very time consuming. In our method, MFC
exploits the second approach. In order to improve the
efficiency, we use several techniques to achieve efficient
mining without storing the generated subgraphs.

Definition 5 (Degree). Given a graph G, a is a vertex in
G. The degree of a is the number of edges which connect
a.

Definition 6 (Unused and used edge). Given a graph G,
a and b are adjacent vertices in G. If the edge {a-b} is
included in a maximal subgraph, this edge is said to be
used edge. Or else, it is unused edge.

Lemma 5. If the current subgraph has only one vertex
which does not have unused edges, it is unnecessary to
extend other vertices to this one.

Proof. The used edge means it is included in a maximal
subgraph, if the edges of a vertex are all used, it can not
find another maximal subgraph including the existed
maximal one.

Lemma 5 can reduce the maximal subgraph check
computing. As shown in Fig. 1c, if the subgraph
{a,b,c,d,e,f} denoted as G, is generated. All the edges of
vertex b are included in G, so it is impossible to obtain
another subgraph that includes G. Therefore, it is
unnecessary to extend b. So does the vertex c, etc.

Lemma 6. If the current extending subgraph has the
unused edge, any vertex can be extended to the subgraph,
no matter it has unused edges or not.

Proof. Unused edge denotes it is not included in any
existed subgraphs, so generating subgraph extended from
current subgraph is also not included in any existed ones.

Lemma 6 not only guarantees MFC can generate all the
maximal dense subgraphs, but also insures the generated
maximal dense subgraphs are same from extending any
vertex firstly. We take Fig. 4a for example. Supposed the
dense threshold is 0.6, and the dense subgraph {b,c,d,e,f}
is generated by extending the vertex d, shown in Fig. 4b.
a is the current extending vertex and both edges of it are
unused edges. So {a,b,f} can be generated. Though c, d
and e don’t have the unused edges, yet {a,b,f} is a new
subgraph, so c, d and e can be extended to {a,b,f}. As
shown in Fig. 4c, the three new maximal dense subgraphs
are obtained, which is {a,b,f,c}, {a,b,f,d} and {a,b,f,e},
respectively. If extending from a firstly, the same four
maximal dense subgraphs can be obtained. The order of
generating subgraphs is opposite to extending d in first.

Figure. 4(a) An example dense graph. (b) The process of generating subgraph by extending vertex d.
(c) Three dense subgraphs are obtained by extending vertex a.

However, Lemma 6 can not prevent to produce
redundant subgraphs. For example, as shown in Fig. 1c,
the current extending subgraph is {a,b,c,d}, which can
extend vertices e and f. Using depth-first method,
{a,b,c,d,e} and {a,b,c,d,e,f} can be generated. Based on
Lemma 6, the subgraph {a,b,c,d,f} may be obtained also.
Since the vertex f would consider {a,b,c,d} be a new
subgraph. In the same way, {a,b,c,d,e,f} can be obtained
again. Therefore, Lemma 6 can not avoid above situation.

Definition 7 (one family subgraph). Given a graph G, a
is the first extending vertex. It is said all the dense
subgraphs direct or indirect extended from the first vertex
a are in one family subgraph.

Definition 8 (family flag). Each edge of family
subgraphs would be set a family flag, which is used to
differ whether it is used by this family.

Definition 9 (used family edge and unused family
edge). In one family subgraph, if an edge is extended by
any subgraph in the family, it is denoted as the used
family edge, otherwise, as the unused family edge.

For example, a is the first extending vertex, the
subgraphs {a,b,c}, {a,b,c,d} and {a,c,d} are in one family
subgraph. The family flag of them is ‘a’, all the edges are
labeled as used family edges.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 501

© 2011 ACADEMY PUBLISHER

Lemma 7. Producing dense subgraph in one family, if a
vertex does not have unused family edge, it should not be
extended by other subgraphs in the family subgraph.

Proof. A vertex not having the unused family edges
means it is extended by other dense subgraphs in its
family. Since the process of MFC is depth-first, so if
extending this vertex again, it can not be obtain a new
larger subgraph.

 LEMMA 7 CAN ESCAPE OF PRODUCING THE REDUNDANT
SUBGRAPHS, WHICH IS SHOWN IN ABOVE EXAMPLE. WHEN
{A,B,C,D,E,F} IS GENERATED, F DOES NOT HAVE THE
UNUSED EDGES IN THE FAMILY. AND {A,B,C,D,E,F} IS IN
THE SAME FAMILY SUBGRAPH AS {A,B,C,D,E,F}.
THEREFORE, IT IS UNNECESSARY TO EXTEND F TO
{A,B,C,D}.

C. Pruning Techniques
Based on the above lemmas, the MFC exploits several

pruning techniques to achieve efficient mining.

Pruning 1. Given the similar density is a, the minimum
vertex number of dense subgraph is m. The vertex whose
degree is not larger than (m/a-1), should be cut from
original graphs.

This pruning is based on an observation of the structure
of dense graph. Given a vertex v, the degree of v is d.
From the last section, if a vertex can be extended, the
similar density between this vertex and the current
extending subgraph must satisfy the threshold a. And the
number of subgraph must larger than m. It can be shown
as follow:

(d+1)*a>=m, d=m/a-1.

Using this pruning can reduce the size of original graph
and increase the efficiency, which is shown in the next
section.

Pruning 2. If the current subgraph has only one vertex,
which does not have unused edges, it need not generate
the larger dense subgraph from this vertex.

Pruning 3. If a vertex does not have unused family edge
in one family, it should not be extended by other
subgraphs in the family subgraph.

D. Implementation and Example
Using the support and similar density can ensure the

produced subgraphs frequent and dense. The algorithm of
the MFC is outlined in Algorithm 1 and illustrated as
follow:

Algorithm 1: MFC.
Input: A graph dataset: G, the minimum support
threshold: min_sup, and the minimum similar density
threshold: min_dense, the minimum number of subgraph:
min_num, the current dense subgraph: subgraph, all the
maximal dense subgraphs: Vertexsets.
Output: The complete set of maximal frequent
dense subgraphs Vertexsets.
Initialization:
Vertexsets=∅ , vertexset=∅ , flag=true;

Method: Call MFC(G, min_support, min_density,
vertexset, vertexset, Vertexsets).
(1) if Vertexsets= ∅ then scan the graph dataset G,

delete the non-frequent edges and vertices, and
Pruning 1;

(2) Finding frequent and dense vertexset iv in G;
(3) if iv =∅ and the number of vertexset is larger than

min_num then output(vertexset);
for each vertex v in iv , do

(4) if v satisfies Pruning 2 or Pruning 3 then v=v-
>next;

else vertexset=vertexset+v; flag=false;
(5) change the information of vertices and edges in

each original graph;
(6) Call MFC(G, min_sup, min_dense, min_num,

vertexset, Vertexsets);
 vertexset=vertexset-v;

(7) if flag=true and the number of vertexset is larger than
min_num then output(vertexset);

Algorithm 1 illustrates the framework of our frequent
dense subgraph mining approach. Pruning 1 can reduce
the size of original graphs, which inceases the efficiency
of time and space (step 1). In stead of extending edges to
grow pattern, we adopts the vertex-based growth method.
The value is, when producing a new pattern, we can
judge whether it is dense or not (step 2). If not, drop it
and produce patterns using another path. In each iteration,
MFC extends a newly discovered frequent dense graph as
much as possible until it finds the largest supergraph(step
3), or it can not generate larger subgraph (step 7).

Using vertex-growth method may get an interesting
question, which is the same vertexsets may contain
different graphs (step 2). E.g. all the graphs in Fig. 1(a)
has the same vertexsets, however, they are not same. In
our algorithm, considering one vertexset may contain
more different graphs, each of them is independent. If
they satisfy the thresholds, we will output all them. While
using this method may pose another problem which may
generate many similar subgraphs that differ in only a few
vertices. Biologically speaking, one protein may have
many function, different protein-sets may have different
function. One protein may take part in one module to
finish a process or function, it may also be joined another
module in another time. So we consider mining these
similar modules is interesting. The other reason may be
the incomplete and inaccurate character of PPI, edges and
vertices in original graph may not be all existed in real. A
little differ in similar subgraphs may induce to different
function in huge. Of course, if two graphs had the same
vertexset, they could be considered the same one. Using
this method can mine the approximate patterns, which is
our recent work.

MFC generates maximal frequent dense subgraphs
using depth-first principle (step 6). Pruning 2 and
Pruning 3 can reduce the times of iteration (step 4), only
the maximal subgraphs can be output. If a vertex can be
extended to the current subgraph, related information
should be changed in original graphs (step 5), such as
used edge, used family edge, etc.

502 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Figure 5. MFC: discovery frequent dense subgraphs across multiple graphs.

Then, we will illustrate the algorithm using the
following example which can be found in Fig. 5. We only
use absolute support to show how MFC works, using
relative support is the similar way. For the graph database
G in Fig. 5 with min_sup=0.5, min_dense=0.6 and
min_num=3.

1. Delete the edges and vertices in each original graph
which are not frequent and not satisfy the Pruning 1.
After this step, it can reduce the size of original
graphs.

2. Find length-1 subgraph. Scan G once to find all the
frequent vertices. Each of these frequent vertices is a
length-1 subgraph. They are <e>:1.0, <g>:0.67,
<h>:0.83, <i>:0.67, <c>:0.5 and <f>:0.67, where
the notation “<vertex>:decimal” represents the
vertex and its absolute support. The list order does
not influence the result.

3. Divide search space. The complete subgraphs can be
partitioned into the following six family subgraphs:
1) the subgraphs with ancestral <e>, 2) the ones with
ancestral <g>,…, and 6) the ones with ancestral <f>.

4. Find maximal frequent dense subgraphs. The
subgraphs can be mined in each family subgraph
recursively.

a. Find subgraphs with ancestral <e>. The vertex
<e> is extended firstly. The candidate vertex is

<g>, <i>, <h>, <c> and <f>, respectively. 1)
Then <eg> would be extended. And the edge
<e-g> is labeled as used in G and denoted as ‘e’
for family flag, which means it is used in this
family subgraph. There is only one candidate
vertex <i> of <eg> and generates subgraph
<egi>. The related edges are labeled. In the
same way, <egih> can be generated. No
candidate is found. Output the subgraph <egih>
and its edges. 2) <ei> would not be generated.
Since edge <e-i> is labeled as used family edge,
based on Pruning 3, it should be cut. 3) <c> and
<f> can be extended to <eh>. The label of
related edges would be changed. <ehc> can be
obtained by extending <eh>. Then we get
<ehcf> which is the maximal subgraph and be
output. Based on Pruning 3, <f> should not be
extended to <eh>. 4) According to Pruning 3,
<c> and <f> are pruned from <e>.

b. Find subgraphs with ancestral <g>, <h>, <i>,
<c> and <f>. According to Pruning 2, all the
vertices should not extending other vertices,
since it can’t find larger subgraph than existing
ones.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 503

© 2011 ACADEMY PUBLISHER

E. Analysis
MFC adopts the vertex-growth method, in which one

iteration may generate more frequent edges. In addition,
it exploits several pruning techniques to avoid storing the
generated maximal frequent dense subgraphs and prune
unmaximal subgraphs in time. In comparison with
previous frequent graph mining algorithms, our algorithm
may show significant advantage in memory and
computing efficiency.

Mining overlapping dense subgraphs is one of the
problems in graph mining. Using MFC, we can solve it
easily. For example, when dealing with the graph in Fig.
1b, we can get two subgraphs {a,b,c,d,e,f} and {e,d,g,h}
by extending vertex a and e respectively. The process is
shown in Fig. 6. And for the graph shown in Fig. 7,
which can be found in [23], the two dense subgraphs g1
and g2 might not be separated accurately by traditional
clustering algorithm. However, it can be done easily by
our algorithm.

a

e

a

b

a

b

c

a

b c

d
a

b

c

d

e

f

e

f

e

f

g

e

f

g

h

a

b

e

c

d

Figure 6. MFC can identify the overlapping subgraphs.

Figure 7. It is observed that two subgraphs g1 and g2 might not be separated easily.

IV. MINING MAXIMAL FREQUENT DENSE
SUBGRAPHS

A. Data Source and Analysis
In this study, the human PPI networks are used as a
testing system for MFC. We integrate four human PPI
datasets, which is DIP [24], REACTOME [25],
HOMOMINT [26] and OPHID [27], respectively. Each
PPI dataset is modeled as a relational graph where each
node is a unique protein and if an edge exists between
two proteins, it is only one. DIP and REACTOME are
literature-based interaction maps. HOMOMINT and
OPHID are orthology-based interaction maps. As shown
in Fig. 8, the difference between each dataset is huge.

We apply MFC to discovery frequent dense patterns
across the above two class networks respectively:
Literature and Orthology, each of them has two PPI
networks. The support is 0.75, the minimal number of
module is four and the similar density is 0.85. To
quantify the comparison, we assess the pattern quality by
determining the percentage of functionally homogeneous
patterns among all identified patterns. We use the Gene
Ontology (GO) annotation to assess our results. If the
ratio of cluster members having the same known
annotations which belong to a specific GO functional
category is greater than the threshold, the subgraph is
claimed as homogeneous one. As shown in Fig. 9, due to
the imbalanced datasets quantity, Orthology-based PPI
can be discovered more annotated modules. From the

above figures, we can see different kind PPI network
contains different information. So the imbalance
character is more important in the analysis of PPI.

Figure 8.Number of vertices and edges of each dataset.

Figure 9. Number of proteins in homogeneous modules assessed by GO.

504 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

B. Functional Module Discovery by Relative Support VS
Absolute Support

We apply MFC to discover frequent dense subgraphs
in the four PPI networks. The similar density is set to be
0.85. In this part, we only focus on the frequent dense
subgraphs with at least four vertices. The support is 0.75.
From Fig. 10, it can be seen using relative support can
discover more dense modules in different support ratio
threshold, which is assessed by GO. Relative support-
based method is effective to find more annotated
modules. Of course, before using relative support to
mine, we use the absolute support which is 0.5 to reduce
the noise vertices and edges.

To assess the prediction accuracy of our algorithm, we
also employe the ‘leave-one-out’ approach by masking a
known protein to be unknown and assign its function
based on the remaining known protein in the pattern. We
only assess the GO annotated modules. If the function of
pattern is the same as the real function of the mask
protein, it is considered a prediction to be correct. As
shown in Fig. 11, the support is 0.75, more accurate
function of proteins can be predicted using relative
support.

By applying this approach to the previous version of
GO, we make a functional prediction for some proteins.
The prediction can be confirmed by the recent version.
By applying our method to previous GO database(2005-
4-18), the protein O15111 can be predicted to be involved
in GO:0005634, because all of the remaining four
proteins in the same subgraph participate in that cellular
component, which is shown in Fig. 12.

C. Comparison with Existed Approach
In this section, we are going to compare a summary

graph-based approach-CODENSE and a dense subgraph
mining algorithm-MODES to demonstrate the
effectiveness of our method. CODENSE is a novel
algorithm which can efficiently mine frequent coherent
dense subgraphs across large number of massive graphs.
It uses MODES to cluster the summary graph. The detail
can be found in [22].

Firstly, MFC and CODENSE will be compared. The
support is 0.75 (MFC uses the absolute support), the
density of subgraph is 0.85, the number of subgraph is at
least 3. We also use GO and ‘leave-one-out’ methods to
assess the results. As shown in Fig. 13, MFC can find
more annotated modules, which is more efficiently than
CODENSE. From the Fig. 14, assessed by ‘leave-one-
out’, more accurate function of proteins can be predicated
by using our algorithm. Then we test the performance of
finding dense subgraphs between MFC and MODES in
single dataset. The parameters are the same as above. As
shown in Fig. 15, MFC is more efficiently than MODES
in running time in all datasets but REACTOME, since
REACTOME has more dense subgraphs than other
datasets. Due to the stronger power of finding dense
subgraphs, MFC may have less efficiency than MODES
in this dataset. Fig. 16 shows our algorithm can find more
modules than MODES.

D. Scalability Study
We also evaluate MFC scalability using the enlarged
dataset which is replicated by 5, 10, 15 and 20 times.
Shown in Fig. 17, it is evident that MFC shows the linear
scalability in runtime against the number of replicated
datasets.

Figure 10. Number of proteins in homogeneous modules assessed by
GO, support is 0.75.

Figure 11. The number of protein function assessed by ‘leave-one-out’.

Figure 12. All four proteins except O15111 are known to be involved in
cellular component.

Figure 13. Number of proteins in homogeneous modules assessed by
GO.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 505

© 2011 ACADEMY PUBLISHER

Figure 14. The number of protein function assessed by ‘leave-one-out’

Figure 15. The running time in each dataset.

Figure 16. Number of dense modules.

Figure 17. Scalability in each replicated dataset.

V. CONCLUSIONS
We propose an algorithm, MFC, to efficiently mine

frequent dense subgraphs across massive imbalanced
protein-protein interaction networks. Instead of using
summary graph, MFC mines frequent patterns by
extending vertices, which can reduce the generation of
false patterns as well as can mine overlapping graph
clusters. We introduce relative support to mine frequent
patterns in consideration of imbalance of PPI datasets. An
extensive performance study using real datasets

illustrated that the algorithm MFC is efficient and
effective. As future work, we will plan to mine frequent
dense subgraphs by integrating the PPI datasets and gene
expression datasets.

ACKNOWLEDGMENT

The work is supported by the National Natural Science
Foundation of China under Grant No.60703105. It is also
partly supported by the Natural Science Foundation of
Shaanxi Province under Grant No.2007F27. Preliminary
works reported in this paper was presented at the Second
International Workshop on Intelligent System and
Applications (ISA 2010)[28] and the Third International
Conference on Bioinformatics and Biomedical
Engineering (iCBBE 2009)[29].

REFERENCES
[1] Waterman, M.S., Galas,D.J. and Arratia,R: Pattern

recognition in several sequences: consensus and alignment.
Bull. Math. Biol., 46, 515-527, 1984.

[2] Wu,T.D. and Brutlag,D.L: Identification of protein motifs
using conserved amino acid properties and partitioning
techniques. In Proceedings of the 3rd International
Conference on Intelligent Systems for Molecular Biology.
AAAI Press, Menlo Park, CA, pp. 402-410, 1995.

[3] Neville-Manning,C.G., Sethi,K.S., Wu,D. and Brutlag,D.L:
Enumerating and ranking discrete motifs. In Proceedings
of Intelligent Systems for Molecular Biology. AAAI Press,
Menlo Park, CA, pp. 202-209, 1997.

[4] Smith,T.F. and Waterman,M.S: Identification of common
molecular subsequences. J. Mol. Biol., 147, 195-197, 1981.

[5] Smith,H.O., Annau,T.M. and Chandrasegaran,S: Finding
sequence motifs in groups of functionally related proteins.
Proc. Natl Acad. Sci. USA, 87, pp. 826-830, 1990.

[6] Suyama,M., Nishioka,T. and Jun’ichi,O: Searching for
common sequence patterns among distantly related
proteins. Protein Eng., 8, 1075-1080, 1995.

[7] Wang K, Hu Y, Hu Yu J. Scalable Sequential Pattern
Mining for Biological Sequences. Proceedings of the 13th
ACM conference on Information and knowledge
management, USA. 2004; p. 178–87.

[8] Aebersold R, Mann M: Mass spectrometry-based
proteomics. Nature 2003,422: 198–207.

[9] Fields S: High-throughput two-hybrid analysis. The
promise and the peril. FEBS J 2005,272: 5391–5399.

[10] Yan,X., Zhou,X. and Han,J: Mining closed relational
graphs with connectivity Constraints. Proceedings of the
International onference on Data Engineering, Boston, MA,
March 30–April , 2005. IEEE Computer Society.

[11] Chua HN, Sung WK,Wong L : Exploiting indirect
neighbours and topological weight to predict protein
function from protein–protein interactions.
Bioinformatics2006, 22: 1623–1630.

[12] Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M :
Whole proteome prediction of protein function via graph-
theoretic analysis of interaction maps. Bioinformatics 21 ,
2005, (Suppl 1): i302–i310.

[13] Deng M, Zhang K, Mehta S, Chen T, Sun F: Prediction of
protein function using protein–protein interaction data. J
Comput Biol , 2003 10:947–960.

[14] Sharan R, Ideker T, Kelley B, Shamir R, Karp RM:
Identification of protein complexes by comparative
analysis of yeast and bacterial protein interaction data. J
Comput Biol 2005,12: 835–846.

506 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

[15] Wu DD, Hu X: An efficient approach to detect a protein
community from a seed. 2005 IEEE Symposium on
Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB 2005). La Jolla, CA,
USA: IEEE pp. 135–141.

[16] Tsuda K, Shin H, Scholkopf B: Fast protein classification
with multiple networks. Bioinformatics 21,2005 (Suppl 2):
ii59–ii65.

[17] Spirin V, Mirny LA : Protein complexes and functional
modules in molecular networks. Proc Natl Acad Sci USA
2003, 100: 12123–12128.

[18] Przulj N, Wigle DA, Jurisica I: Functional topology in a
network of protein interactions. Bioinformatics 2004, 20:
340–348.

[19] King AD, Przulj N, Jurisica I: Protein complex prediction
via cost-based clustering. Bioinformatics 2004, 20: 3013–
3020.

[20] Krogan NJ, Cagney G, Yu H, Zhong G, Guo X,
Ignatchenko A: Global landscape of protein complexes in
the yeast Saccharomyces cerevisiae. Nature 2006, 440:
637–643.

[21] Titz B., Schlesner M. and Uetz P: What do we learn from
high-throughput protein interaction data? Expert
Rev.Proteomics, 1(1), 111–121.

[22] Hu,H. et al: Mining coherent dense subgraphs across
massive biological networks for functional discovery.
Bioinformatics, 21 (Suppl. 1),2005, i213–i221.

[23] Yan et al: A graph-based approach to systematically
reconstruct human transcriptional regulatory modules.
Bioinformatics, 23, 2007, i577–i586.

[24] Xenarios I, Salwinski L, Duan XJ, Higney P, Kim S,
Eisenberg D (2002) DIP: The Database of Interacting
Proteins. A research tool for studying cellular networks of
protein interactions. NAR 30:303-5.

[25] Joshi-Tope, G.M. Gillespie I. Vastrik P. D'Eustachio E.
Schmidt B. de Bono, et al., Reactome: a knowledgebase of
biological pathways. Nucleic Acids Res, 2005.
33(Database issue): p. D428-32.

[26] Persico,M., Ceol,A., Gavrila,C., Hoffmann,R., Florio,A.
and Cesareni,G. (2005) HomoMINT: an inferred human
network based on orthology mapping of protein
interactions discovered in model organisms. BMC
Bioinformatics, 6, S21.

[27] Brown KR, Jurisica I: Online Predicted Human Interaction
Database. Bioinformatics 2005, 21:2076-2082.

[28] M.Wang, X.Q.Shang, et al. Mining maximal frequent
dense subgraphs without candidate maintenance in PPI
networks. The proceedings of ISA 2010, Volume 1,
pp:158-161, 2010.

[29] M.Wang, X.Q.Shang, D.Xie, et al. Mining frequent dense
subgraphs based on extending vertices from unbalanced
PPI networks. The proceedings of iCBBE 2009, 978-1-
4244-2902-8, June 11, 2009, Beijing, China.

 Miao Wang is a doctoral student at The
School of Computer Science and
Engineering at the Northwestern
Polytechnical University, Xi’an, China.
He completed his Master Degree from
University of Northwestern
Polytechnique in 2008. Since 2006 he has
been researching in data mining and
bioinformatics.

Xuequn Shang is a association professor at The School of
Computer Science and Engineering at the Northwestern
Polytechnical University, Xi’an, China. She completed her PhD
degree from University of Magdeburg, Magdeburg, Germany.
Since 2001 she has been researching in data mining, database
technology and bioinformatics.

Zhanhuai Li is a professor at The School of Computer Science
and Engineering at the Northwestern Polytechnical University,
Xi’an, China. His research interest is database technology,
software engineering and data mining.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 507

© 2011 ACADEMY PUBLISHER

