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Abstract—The prediction of protein function is one of the 
most challenging problems in bioinformatics. Several 
studies have shown that the prediction using PPI is 
promising. However, the PPI data generated from high-
throughput experiments are very noisy, which renders great 
challenges to the existing methods. In this paper, we propose 
an algorithm, MFC, to efficiently mine maximal frequent 
dense subgraphs without candidate maintenance in PPI 
networks. Instead of using summary graph, MFC produces 
frequent dense patterns by extending vertices. It adopts 
several techniques to achieve efficient mining. Due to the 
imbalance character of PPI network, we also propose to 
generate frequent patterns using relative support. We 
evaluate our approach on four PPI data sets. The 
experimental results show that our approach has good 
performance in terms of efficiency. With the help of relative 
support, more frequent dense functional interaction 
patterns in the PPI networks can be identified. 
 
Index Terms—frequent dense subgraph, imbalance, relative 
support, used edge, family subgraph 
 

I.  INTRODUCTION 

Functional annotation of protein is one of the 
fundamental problems in the post-genomic era. The 
widely used methods are sequence alignment[1-3] and 
pattern-discovery[4-6]. However, these methods have 
their own inherent drawbacks[7]. The recent development 
of high-throughout technology for protein-protein 
interaction (PPI) measurements[8,9] have generated 
large-scale data on protein interaction across human and 
other organisms, which are expected to be fertile sources 
of information for deriving protein functions. 

Prediction of protein functions using PPI data has been 
extensively studied. These methods include neighborhood 
based[11], graph theoretic[12], probabilistic[13], 
topology[14], expanding seed complex[15], integrating 
multiple data sources[16], etc. One commonly used 
analytical approach is to discover the clusters[17-20], 
which is likely to share the same functions. It is observed 
that 70-80% of proteins share at least one function with 
its interacting partner[21]. However, due to the noisy 
nature of high-throughput data, the above assumption is 
not always true. One way to overcome it is to mine dense 
frequent patterns in multiple biological networks 
simultaneously. Recently, many algorithms have been 

proposed. Hu et, and Yan et, [22,23] exploited summary 
graph approach to mine frequent patterns. But it may 
suffer from several problems. (1) The noise may 
aggregate to affect the mining efficiency[23]. (2) The 
edges in a summary graph may not be dense. Pruning the 
non-dense edges is time-consuming. (3) Mining 
imbalanced networks is not efficient since the summary 
graph may be large when dealing with imbalanced 
networks. When generating second-order graph, the 
computing could be complex. (4) The edges in a dense 
summary graph may never occur together in individual 
original graphs[23], which can make summary graph 
larger. Fig. 1(a) illustrates such an example with a 
cartoon of four graphs. If we simply add these graphs 
together to get a summary graph, we may find a dense 
subgraph with vertices a, b, c and d. However, this 
subgraph is not frequent in the original graphs. So these 
algorithms use other techniques to overcome these 
problems. Since summary graph should be produced first, 
so if the summary graph is not effective, it must affect the 
efficiency of later technique. 

In this paper, we address the above issues and develop 
an algorithm, called ‘MFC’, the abbreviation of mining 
Maximal Frequent dense subgraphs without Candidate 
maintenance in imbalanced PPI datasets. MFC adopts the 
vertex-growth method, in which one iteration may 
generate more frequent edges. In addition, it exploits 
several pruning techniques to avoid storing the generated 
maximal frequent dense subgraphs and prune unmaximal 
subgraphs in time. In comparison with previous frequent 
graph mining algorithms, our algorithm may show 
significant advantage in memory and computing 
efficiency.  

The PPI datasets are commonly represented as 
relational graph[10], where nodes representing unique 
proteins and edges representing the unique relationship 
between proteins. That means, relational graph has 
distinct node labels, and we do not have the ‘subgraph 
isomorphism problem’ which is NP-hard. Instead of 
using summary graph and growing patterns by extending 
the edges, we mine frequent patterns by extending the 
vertices. Using traditional methods mine frequent dense 
subgraph, it should produce frequent subgraph firstly, 
then judging which is whether dense or not. If not, it may 
use other technologies to separate the subgraph into 
several dense subgraphs. So the efficiency is not very 
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well. Using MFC, the frequent dense subgraphs can be 
generated at the same time. One chosen vertex must 
satisfy the condition: the new produced patterns must be 
frequent and dense. We propose a new dense definition: 
similar density. Biologically speaking, if one protein is 
more likely to be in the module, it must connect to more 
proteins in this module. If the similar degree is lower, it 
can not be joined in this module. At the same time, the 
module must be found in most original graphs. Using our 
method can avoid mining the false patterns. MFC can 
also discover the overlapping graph clusters. As we 
known, one protein may have different functions, so 
identifying overlapping clusters is important in biological 
applications. For example, in Fig. 1 (b), two cliques 
{a,b,c,d,e,f} and {d,e,g,h} share two common vertices 
{d,e}. MFC can identify these two clusters easily. The 
detail can be found in the method part. 

As we known, different PPI dataset is got from 
different experiment, due to the influence of environment, 
time or other factors, one protein is discovered in one 
experiment may not be found in another experiment. 

Therefore, using traditional support to discover functional 
module may ignore some important modules. In a word, 
imbalance and perturbation are two important characters 
of PPI network. So we propose another definition: 
relative support, which aims at finding more patterns in 
imbalanced networks. Using relative support can discover 
more frequent subgraphs than absolute support. We 
applied our algorithm to 4 human PPI datasets to identify 
a large number of potential function modules. Assessed 
by Gene Ontology, the results show MFC is efficient to 
discover annotated modules. The experimental results 
also show using relative support can discover more 
frequent subgraphs than traditional absolute support. 

The rest of the paper is organized as follows: In 
Section 2, we present the problem definition of mining 
maximal frequent dense subgraphs. Section 3 is focus on 
the MFC algorithm, mainly including how MFC gets 
maximal frequent dense subgraphs without candidate 
maintenance. In Section 4, we present an extensive 
experimental study. Our study is concluded in Section 5. 

                       

Figure 1(a) The summary graph of four graphs. (b) The overlapping dense subgraphs. 

II.  PROBLEM FORMULATION 

A relational graph set consists of undirected simple 
graphs, { ( , )}i iD G V E= = , , ,i 1 n= , iE ⊆ V × V, 
while a common vertex V is shared by the graphs in the 
set. We denote the vertex set of a graph G by V(G) and 
the edge set by E(G). In relational graphs, there is neither 
loop nor multiple edges. All the graph patterns discussed 
in this paper are undirected connected relational graphs. 

Definition 1 (Absolute Support). Given a relation graph 
dataset, 1 2{ , , , }nD G G G= , while ( , )i iG V E= . The 
number of graphs in D where g is a subgraph is r, the 
absolute support of a graph g is r/n, written ASup(g). A 
subgraph is frequent if its support is greater than a 
minimum support threshold. 

Definition 2 (Vertex Support). Given a relational graph 
dataset, 1 2{ , , , }nD G G G= , while ( , )i iG V E= . The 
number of graphs in D which contain v is r, the vertex 
support of a vertex v is r/n, written VSup(v). 

Definition 3 (Relative Support). Given a relational 
graph dataset, 1 2{ , , , }nD G G G= , while ( , )i iG V E= , r 
is the number of graphs in D which contain a subgraph g, 

1 2( ) { , , }iV g v v v= ，the relative support of g is  r/T, 
where 1 2{ ( ), ( ), ( )}= ×iT min VSup v VSup v VSup v n , 
written RSup(g). g is frequent if its relative support is 
greater than a minimum support threshold. 

E.g. Given a subgraph g:{ae,ce,ab}, in Fig. 2, the 
support threshold is 0.6. ASup(g)=2/4=0.5<0.6, so it is 
not frequent. However, using relative support to mine, 
since the vertex e can not be found only in G3, 
RSup(g)=2/3=0.67>0.6, it is frequent. So using relative 
support we can discover more frequent patterns. 

However, only using relative support can mine some 
noise patterns. As shown in Fig. 2, the edge af only can 
be found in G3, if using relative support, RSup(af)=1, but 
it may be a noise edge. Therefore, before using relative 
support, absolute support must be used to reduce the 
noise vertices and edges. Certainly, the absolute support 
should be smaller than relative support. In above 
example, if we set the absolute support is 0.5, the noise 
edge af would be cut firstly. 

Definition 4 (Similar Density). Given a frequent dense 
subgraph g, iV  is the vertex in g. M is another vertex 
and iM V⊄ . The similar density between M and g is m/n 
where n is the number of vertices in g and m is the 
number of real exist edges between iV and M, denoted as 
dense(M, iV ). 

The problem of mining frequent dense subgraphs is 
formulated as follows: given a relation graph dataset, 

1 2{ , , , }nD G G G= , discovery subgraphs g that satisfy 
the following two criteria simultaneously: (1) support(g) 
is higher than a frequent threshold; and (2) extending a 
vertex M into an existed frequent dense subgraph must be 
satisfy the similar density threshold. Based on biological 
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consideration, given a graph dataset, it could not be very 
useful to produce all of the frequent dense subgraphs. So 

we find the maximal frequent dense subgraphs.

 
Figure 2. Shown are an example imbalanced networks 

 

Figure 3(a) Subgraph is obtained by edge-growth and vertex-growth respectively. (b) An example of Lemma 1. 
(c) Shown example of Lemma3. 

III.  MINING MAXIMAL FREQUENT DENSE 
SUBGRAPHS 

A.  Generating Dense Subgraph 
In our approach, the dense subgraph can be obtained by 
extending a vertex into the existed subgraphs. Comparing 
to edge-growth method, vertex-growth approach can 
grow several edges at the same time, as shown in Fig. 3a. 
Based on the definition of similar density, we make the 
following definition and lemma on the completeness of 
generating the dense subgraphs. 

Lemma 1. If a vertex a can be extended to the existed 
subgraph G, a and each vertex in G should also satisfy 
the similar density in the new generated subgraph. 

Proof. Based on the definition of similar density, the 
extended vertex a must satisfy the dense threshold. After 
a is extended, G must be changed and become larger. 
Therefore, the original vertex of G may not satisfy the 
dense threshold. So these vertices must be checked 
whether satisfy or not. If not, a can not be extended to G. 

Lemma 1 guarantees the integrality of generating dense 
subgraph. For example, in Fig. 3b, based on the dense 
threshold 0.6, e can be extended to subgraph {a,b,c,d}. 
However, if extending e, dense(a, {b,c,d,e}) is 0.5, which 
can not satisfy the threshold, so e should not be extended. 

Lemma 2. If a vertex a can not be extended to the existed 
subgraphs G, it may be extended to another vertex Q, 
which is the superset of G. 

Proof. Supposed dense(a, G) is m/n which is less than the 
threshold. If G can extend other vertices and generate the 
new larger subgraph Q, if a is adjacent to the vertex, 

dense(a ,Q) would be (m+1)/(n+1), greater than m/n. So 
there may exist a dense subgraph which can extend a 
successfully. 

For example, shown in Fig. 3c, the similar density is 
0.5, the current dense subgraph is {a,b,c,d}, denoted as G. 
The vertex e can not be extended to G, while f can be 
extended to G, and generate a larger subgraph {a,b,c,d,f}, 
named as Q. Now, the vertex e can be extended to Q and 
get the largest subgraph {a,b,c,d,e,f}. 

Traditional cluster algorithms to generate clusters 
based on the seed vertex, which can be obtained by the 
vertices distribution. It may be done in one graph. 
However, generating clusters in multiply graphs, it may 
not be done easily. Since the distribution of vertices may 
not be same in each graph. Our MFC can extend any 
vertex to generate dense subgraphs without using the 
seed. 

Lemma 3. The dense graph can be obtained by extending 
any vertex of it. 

Proof. According to the lemma 2, in the dense graph, a 
vertex can not be extended by current dense subgraph, it 
may be extended by another dense vertex. In another 
word, the vertex is independent from the subgraph. So no 
matter any subgraph, it can find a subgraph to extend this 
vertex. Therefore, the first extending vertex can be 
anyone of graph. 

The lemma 3 guarantees the seed vertex is free to be 
chose. It can increase the efficiency of MFC. 

B.  Maximal Frequent Dense Subgraph Generation 
In this section, we introduce our extending vertex 

approach to mining maximal frequent dense subgraphs. 
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There are two approaches for mining maximal frequent 
subgraphs or patterns: (1) find all the frequent subgraphs, 
and only output the maximal ones; (2) find a maximal 
subgraph candidate set and prune the subgraphs that are 
not maximal. When a new frequent subgraph is 
discovered, it would check the previous subgraphs to see 
whether the new one is maximal or not. Therefore, the 
computing is very time consuming. In our method, MFC 
exploits the second approach. In order to improve the 
efficiency, we use several techniques to achieve efficient 
mining without storing the generated subgraphs. 

Definition 5 (Degree). Given a graph G, a is a vertex in 
G. The degree of a is the number of edges which connect 
a. 

Definition 6 (Unused and used edge). Given a graph G, 
a and b are adjacent vertices in G. If the edge {a-b} is 
included in a maximal subgraph, this edge is said to be 
used edge. Or else, it is unused edge. 

Lemma 5. If the current subgraph has only one vertex 
which does not have unused edges, it is unnecessary to 
extend other vertices to this one. 

Proof. The used edge means it is included in a maximal 
subgraph, if the edges of a vertex are all used, it can not 
find another maximal subgraph including the existed 
maximal one. 

Lemma 5 can reduce the maximal subgraph check 
computing. As shown in Fig. 1c, if the subgraph 
{a,b,c,d,e,f} denoted as G, is generated. All the edges of 
vertex b are included in G, so it is impossible to obtain 
another subgraph that includes G. Therefore, it is 
unnecessary to extend b. So does the vertex c, etc. 

Lemma 6. If the current extending subgraph has the 
unused edge, any vertex can be extended to the subgraph, 
no matter it has unused edges or not. 

Proof. Unused edge denotes it is not included in any 
existed subgraphs, so generating subgraph extended from 
current subgraph is also not included in any existed ones. 

Lemma 6 not only guarantees MFC can generate all the 
maximal dense subgraphs, but also insures the generated 
maximal dense subgraphs are same from extending any 
vertex firstly. We take Fig. 4a for example. Supposed the 
dense threshold is 0.6, and the dense subgraph {b,c,d,e,f} 
is generated by extending the vertex d, shown in Fig. 4b. 
a is the current extending vertex and both edges of it are 
unused edges. So {a,b,f} can be generated. Though c, d 
and e don’t have the unused edges, yet {a,b,f} is a new 
subgraph, so c, d and e can be extended to {a,b,f}. As 
shown in Fig. 4c, the three new maximal dense subgraphs 
are obtained, which is {a,b,f,c}, {a,b,f,d} and {a,b,f,e}, 
respectively. If extending from a firstly, the same four 
maximal dense subgraphs can be obtained. The order of 
generating subgraphs is opposite to extending d in first. 

    

Figure. 4(a) An example dense graph. (b) The process of generating subgraph by extending vertex d. 
(c) Three dense subgraphs are obtained by extending vertex a. 

    

However, Lemma 6 can not prevent to produce 
redundant subgraphs. For example, as shown in Fig. 1c, 
the current extending subgraph is {a,b,c,d}, which can 
extend vertices e and f. Using depth-first method, 
{a,b,c,d,e} and {a,b,c,d,e,f} can be generated. Based on 
Lemma 6, the subgraph {a,b,c,d,f} may be obtained also. 
Since the vertex f would consider {a,b,c,d} be a new 
subgraph. In the same way, {a,b,c,d,e,f} can be obtained 
again. Therefore, Lemma 6 can not avoid above situation. 

Definition 7 (one family subgraph). Given a graph G, a 
is the first extending vertex. It is said all the dense 
subgraphs direct or indirect extended from the first vertex 
a are in one family subgraph. 

Definition 8 (family flag). Each edge of family 
subgraphs would be set a family flag, which is used to 
differ whether it is used by this family. 

Definition 9 (used family edge and unused family 
edge). In one family subgraph, if an edge is extended by 
any subgraph in the family, it is denoted as the used 
family edge, otherwise, as the unused family edge. 

For example, a is the first extending vertex, the 
subgraphs {a,b,c}, {a,b,c,d} and {a,c,d} are in one family 
subgraph. The family flag of them is ‘a’, all the edges are 
labeled as used family edges. 
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Lemma 7. Producing dense subgraph in one family, if a 
vertex does not have unused family edge, it should not be 
extended by other subgraphs in the family subgraph. 

Proof. A vertex not having the unused family edges 
means it is extended by other dense subgraphs in its 
family. Since the process of MFC is depth-first, so if 
extending this vertex again, it can not be obtain a new 
larger subgraph.  

    LEMMA 7 CAN ESCAPE OF PRODUCING THE REDUNDANT 
SUBGRAPHS, WHICH IS SHOWN IN ABOVE EXAMPLE. WHEN 
{A,B,C,D,E,F} IS GENERATED, F DOES NOT HAVE THE 
UNUSED EDGES IN THE FAMILY. AND {A,B,C,D,E,F} IS IN 
THE SAME FAMILY SUBGRAPH AS {A,B,C,D,E,F}. 
THEREFORE, IT IS UNNECESSARY TO EXTEND F TO 
{A,B,C,D}. 

C.  Pruning Techniques 
Based on the above lemmas, the MFC exploits several 

pruning techniques to achieve efficient mining. 

Pruning 1. Given the similar density is a, the minimum 
vertex number of dense subgraph is m. The vertex whose 
degree is not larger than (m/a-1), should be cut from 
original graphs. 

This pruning is based on an observation of the structure 
of dense graph. Given a vertex v, the degree of v is d. 
From the last section, if a vertex can be extended, the 
similar density between this vertex and the current 
extending subgraph must satisfy the threshold a. And the 
number of subgraph must larger than m. It can be shown 
as follow: 

(d+1)*a>=m, d=m/a-1. 

Using this pruning can reduce the size of original graph 
and increase the efficiency, which is shown in the next 
section. 

Pruning 2. If the current subgraph has only one vertex, 
which does not have unused edges, it need not generate 
the larger dense subgraph from this vertex. 

Pruning 3. If a vertex does not have unused family edge 
in one family, it should not be extended by other 
subgraphs in the family subgraph. 

D.  Implementation and Example 
Using the support and similar density can ensure the 

produced subgraphs frequent and dense. The algorithm of 
the MFC is outlined in Algorithm 1 and illustrated as 
follow: 

Algorithm 1: MFC. 
Input: A graph dataset: G, the minimum support 
threshold: min_sup, and the minimum similar density 
threshold: min_dense, the minimum number of subgraph: 
min_num, the current dense subgraph: subgraph, all the 
maximal dense subgraphs: Vertexsets.  
Output: The complete set of maximal frequent 
dense subgraphs Vertexsets.  
Initialization: 
Vertexsets=∅ , vertexset=∅ , flag=true;  

Method: Call MFC(G, min_support, min_density, 
vertexset, vertexset, Vertexsets).  
(1) if Vertexsets= ∅  then scan the graph dataset G, 

delete the non-frequent edges and vertices, and 
Pruning 1; 

(2) Finding frequent and dense vertexset iv  in G; 
(3) if iv =∅ and the number of vertexset is larger than 

min_num then output(vertexset); 
for each vertex v in iv , do 

(4)     if v satisfies Pruning 2 or Pruning 3 then v=v-
>next; 

else vertexset=vertexset+v; flag=false; 
(5)     change the information of vertices and edges in 

each original graph; 
(6)   Call MFC(G, min_sup, min_dense, min_num, 

vertexset, Vertexsets); 
        vertexset=vertexset-v;  

(7)  if flag=true and the number of vertexset is larger than 
min_num then output(vertexset); 

Algorithm 1 illustrates the framework of our frequent 
dense subgraph mining approach. Pruning 1 can reduce 
the size of original graphs, which inceases the efficiency 
of time and space (step 1). In stead of extending edges to 
grow pattern, we adopts the vertex-based growth method. 
The value is, when producing a new pattern, we can 
judge whether it is dense or not (step 2). If not, drop it 
and produce patterns using another path. In each iteration, 
MFC extends a newly discovered frequent dense graph as 
much as possible until it finds the largest supergraph(step 
3), or it can not generate larger subgraph (step 7). 

Using vertex-growth method may get an interesting 
question, which is the same vertexsets may contain 
different graphs (step 2). E.g. all the graphs in Fig. 1(a) 
has the same vertexsets, however, they are not same. In 
our algorithm, considering one vertexset may contain 
more different graphs, each of them is independent. If 
they satisfy the thresholds, we will output all them. While 
using this method may pose another problem which may 
generate many similar subgraphs that differ in only a few 
vertices. Biologically speaking, one protein may have 
many function, different protein-sets may have different 
function. One protein may take part in one module to 
finish a process or function, it may also be joined another 
module in another time. So we consider mining these 
similar modules is interesting. The other reason may be 
the incomplete and inaccurate character of PPI, edges and 
vertices in original graph may not be all existed in real. A 
little differ in similar subgraphs may induce to different 
function in huge. Of course, if two graphs had the same 
vertexset, they could be considered the same one. Using 
this method can mine the approximate patterns, which is 
our recent work. 

MFC generates maximal frequent dense subgraphs 
using depth-first principle (step 6). Pruning 2 and 
Pruning 3 can reduce the times of iteration (step 4), only 
the maximal subgraphs can be output. If a vertex can be 
extended to the current subgraph, related information 
should be changed in original graphs (step 5), such as 
used edge, used family edge, etc.  
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Figure 5. MFC: discovery frequent dense subgraphs across multiple graphs. 

 

Then, we will illustrate the algorithm using the 
following example which can be found in Fig. 5. We only 
use absolute support to show how MFC works, using 
relative support is the similar way. For the graph database 
G in Fig. 5 with min_sup=0.5, min_dense=0.6 and 
min_num=3. 

1. Delete the edges and vertices in each original graph 
which are not frequent and not satisfy the Pruning 1. 
After this step, it can reduce the size of original 
graphs. 

2. Find length-1 subgraph. Scan G once to find all the 
frequent vertices. Each of these frequent vertices is a 
length-1 subgraph. They are <e>:1.0, <g>:0.67, 
<h>:0.83, <i>:0.67, <c>:0.5 and <f>:0.67, where 
the notation “<vertex>:decimal” represents the 
vertex and its absolute support. The list order does 
not influence the result. 

3. Divide search space. The complete subgraphs can be 
partitioned into the following six family subgraphs: 
1) the subgraphs with ancestral <e>, 2) the ones with 
ancestral <g>,…, and 6) the ones with ancestral <f>. 

4. Find maximal frequent dense subgraphs. The 
subgraphs can be mined in each family subgraph 
recursively. 

a. Find subgraphs with ancestral <e>. The vertex 
<e> is extended firstly. The candidate vertex is 

<g>, <i>, <h>, <c> and <f>, respectively. 1) 
Then <eg> would be extended. And the edge 
<e-g> is labeled as used in G and denoted as ‘e’ 
for family flag, which means it is used in this 
family subgraph. There is only one candidate 
vertex <i> of <eg> and generates subgraph 
<egi>. The related edges are labeled. In the 
same way, <egih> can be generated. No 
candidate is found. Output the subgraph <egih> 
and its edges. 2) <ei> would not be generated. 
Since edge <e-i> is labeled as used family edge, 
based on Pruning 3, it should be cut. 3) <c> and 
<f> can be extended to <eh>. The label of 
related edges would be changed. <ehc> can be 
obtained by extending <eh>. Then we get 
<ehcf> which is the maximal subgraph and be 
output. Based on Pruning 3, <f> should not be 
extended to <eh>. 4) According to Pruning 3, 
<c> and <f> are pruned from <e>.  

b. Find subgraphs with ancestral <g>, <h>, <i>, 
<c> and <f>. According to Pruning 2, all the 
vertices should not extending other vertices, 
since it can’t find larger subgraph than existing 
ones. 
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E.  Analysis 
MFC adopts the vertex-growth method, in which one 

iteration may generate more frequent edges. In addition, 
it exploits several pruning techniques to avoid storing the 
generated maximal frequent dense subgraphs and prune 
unmaximal subgraphs in time. In comparison with 
previous frequent graph mining algorithms, our algorithm 
may show significant advantage in memory and 
computing efficiency. 

Mining overlapping dense subgraphs is one of the 
problems in graph mining. Using MFC, we can solve it 
easily. For example, when dealing with the graph in Fig. 
1b, we can get two subgraphs {a,b,c,d,e,f} and {e,d,g,h} 
by extending vertex a and e respectively. The process is 
shown in Fig. 6. And for the graph shown in Fig. 7, 
which can be found in [23], the two dense subgraphs g1 
and g2 might not be separated accurately by traditional 
clustering algorithm. However, it can be done easily by 
our algorithm. 
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Figure 6. MFC can identify the overlapping subgraphs. 

 
Figure 7. It is observed that two subgraphs g1 and g2 might not be separated easily. 

IV.  MINING MAXIMAL FREQUENT DENSE 
SUBGRAPHS 

A.  Data Source and Analysis 
In this study, the human PPI networks are used as a 
testing system for MFC. We integrate four human PPI 
datasets, which is DIP [24], REACTOME [25], 
HOMOMINT [26] and OPHID [27], respectively. Each 
PPI dataset is modeled as a relational graph where each 
node is a unique protein and if an edge exists between 
two proteins, it is only one. DIP and REACTOME are 
literature-based interaction maps. HOMOMINT and 
OPHID are orthology-based interaction maps. As shown 
in Fig. 8, the difference between each dataset is huge. 

We apply MFC to discovery frequent dense patterns 
across the above two class networks respectively: 
Literature and Orthology, each of them has two PPI 
networks. The support is 0.75, the minimal number of 
module is four and the similar density is 0.85. To 
quantify the comparison, we assess the pattern quality by 
determining the percentage of functionally homogeneous 
patterns among all identified patterns. We use the Gene 
Ontology (GO) annotation to assess our results. If the 
ratio of cluster members having the same known 
annotations which belong to a specific GO functional 
category is greater than the threshold, the subgraph is 
claimed as homogeneous one. As shown in Fig. 9, due to 
the imbalanced datasets quantity, Orthology-based PPI 
can be discovered more annotated modules. From the 

above figures, we can see different kind PPI network 
contains different information. So the imbalance 
character is more important in the analysis of PPI. 

 

Figure 8.Number of vertices and edges of each dataset. 

 

Figure 9. Number of proteins in homogeneous modules assessed by GO. 
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B.  Functional Module Discovery by Relative Support VS 
Absolute Support 

We apply MFC to discover frequent dense subgraphs 
in the four PPI networks. The similar density is set to be 
0.85. In this part, we only focus on the frequent dense 
subgraphs with at least four vertices. The support is 0.75. 
From Fig. 10, it can be seen using relative support can 
discover more dense modules in different support ratio 
threshold, which is assessed by GO. Relative support-
based method is effective to find more annotated 
modules. Of course, before using relative support to 
mine, we use the absolute support which is 0.5 to reduce 
the noise vertices and edges. 

To assess the prediction accuracy of our algorithm, we 
also employe the ‘leave-one-out’ approach by masking a 
known protein to be unknown and assign its function 
based on the remaining known protein in the pattern. We 
only assess the GO annotated modules. If the function of 
pattern is the same as the real function of the mask 
protein, it is considered a prediction to be correct. As 
shown in Fig. 11, the support is 0.75, more accurate 
function of proteins can be predicted using relative 
support. 

By applying this approach to the previous version of 
GO, we make a functional prediction for some proteins. 
The prediction can be confirmed by the recent version. 
By applying our method to previous GO database(2005-
4-18), the protein O15111 can be predicted to be involved 
in GO:0005634, because all of the remaining four 
proteins in the same subgraph participate in that cellular 
component, which is shown in Fig. 12. 

C.  Comparison with Existed Approach 
In this section, we are going to compare a summary 

graph-based approach-CODENSE and a dense subgraph 
mining algorithm-MODES to demonstrate the 
effectiveness of our method. CODENSE is a novel 
algorithm which can efficiently mine frequent coherent 
dense subgraphs across large number of massive graphs. 
It uses MODES to cluster the summary graph. The detail 
can be found in [22]. 

Firstly, MFC and CODENSE will be compared. The 
support is 0.75 (MFC uses the absolute support), the 
density of subgraph is 0.85, the number of subgraph is at 
least 3. We also use GO and ‘leave-one-out’ methods to 
assess the results. As shown in Fig. 13, MFC can find 
more annotated modules, which is more efficiently than 
CODENSE. From the Fig. 14, assessed by ‘leave-one-
out’, more accurate function of proteins can be predicated 
by using our algorithm. Then we test the performance of 
finding dense subgraphs between MFC and MODES in 
single dataset. The parameters are the same as above. As 
shown in Fig. 15, MFC is more efficiently than MODES 
in running time in all datasets but REACTOME, since 
REACTOME has more dense subgraphs than other 
datasets. Due to the stronger power of finding dense 
subgraphs, MFC may have less efficiency than MODES 
in this dataset. Fig. 16 shows our algorithm can find more 
modules than MODES. 

D.  Scalability Study 
We also evaluate MFC scalability using the enlarged 
dataset which is replicated by 5, 10, 15 and 20 times. 
Shown in Fig. 17, it is evident that MFC shows the linear 
scalability in runtime against the number of replicated 
datasets. 

 

Figure 10. Number of proteins in homogeneous modules assessed by 
GO, support is 0.75. 

 

Figure 11. The number of protein function assessed by ‘leave-one-out’. 

 

Figure 12.  All four proteins except O15111 are known to be involved in 
cellular component. 

 

Figure 13.  Number of proteins in homogeneous modules assessed by 
GO. 
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Figure 14. The number of protein function assessed by ‘leave-one-out’ 

 

Figure 15. The running time in each dataset. 

 

Figure 16. Number of dense modules. 

 

Figure 17. Scalability in each replicated dataset. 

V.  CONCLUSIONS 
We propose an algorithm, MFC, to efficiently mine 

frequent dense subgraphs across massive imbalanced 
protein-protein interaction networks. Instead of using 
summary graph, MFC mines frequent patterns by 
extending vertices, which can reduce the generation of 
false patterns as well as can mine overlapping graph 
clusters. We introduce relative support to mine frequent 
patterns in consideration of imbalance of PPI datasets. An 
extensive performance study using real datasets 

illustrated that the algorithm MFC is efficient and 
effective. As future work, we will plan to mine frequent 
dense subgraphs by integrating the PPI datasets and gene 
expression datasets. 
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