
Scheduling Real-Time Embedded Systems
Based on TCPNIA

Nianhua Yang1, 2, Huiqun Yu1, Hua Sun1, Zhilin Qian1
1Department of Computer Science and Engineering
East China University of Science and Technology

Shanghai 200237, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing

Shanghai 201112, China
cnynh@163.com, yhq@ecust.edu.cn, xj_sh@163.com, ssssdc@163.com

Abstract—TCPNIA (Timed Colored Petri Nets with
Inhibitor Arcs, TCPNIA) is a model for specifying real-time
embedded systems. It integrates features of colored Petri
nets, timed Petri nets and inhibitor arcs. The methods for
modeling modules of systems using TCPNIA are proposed.
A depth-first scheduling algorithm for TCPNIA is
proposed. The system level resource’s influence to
schedulable path is considered. Different data in tokens will
change an execution path and call different data operational
functions. The influence from data operational functions is
considered in the scheduling algorithm. The time
requirement upper bound of a schedulable path can be
calculated in the algorithm. Tasks’ parallel executions have
been considered when the time upper bound of the path is
calculated. The soundness of the algorithm is proved. The
time and space complexities of the algorithm are also
analyzed. The compositional conditions and method for
composing schedulable path are given. A case study shows
the applicability and feasibility of the method.

Index Terms—embedded system; real-time property; Petri
net; modeling; scheduling

I. INTRODUCTION
Over the last years, embedded systems have received

considerable attention. These systems are usually mission
and safety-critical. The logical and functional results of
the computation must be correct. Moreover it should meet
certain time constraints. In hard real-time systems, the
violation whether to functions or to time constraints may
lead to catastrophic consequence, such as equipment
damage, environment pollution, or even loss of human
lives. Resource consumption has also to be considered,
due to the running costs of the system and environment
problems.

Designing systems with such characteristics is a
difficult task. Design method with well-defined formal
semantics is needed for specification and implementation
of the system. Petri nets [1] are formal models based on
strict mathematical theories. They are powerful models
and appropriate for modeling systems with parallelization,

The work was supported by the NSF of China under grants No.

60773094 and 60473055, Shanghai Shuguang Program under grant No.
07SG32.

Corresponding author: Huiqun Yu.

synchronization and confliction. Plenty of theoretical
results and practical tools have been developed around
Petri nets. Many real-time embedded systems modeling
techniques have been proposed [2-3]. They are extended
from Petri nets. But some of them are absence of the
ability to describe the tasks’ priorities, others can not use
the traditional Petri nets analysis methods.

Timed Petri nets [4] allow transitions to be executed
for a period, which can be used to express events’ time
consumption. Colored Petri nets [5] allow tokens to have
multiple data and have the ability to specify complicated
computing. Inhibitor arcs can be used for describing
events temporal order [1]. Timed colored Petri nets with
inhibitor arcs (TCPNIA) [6] integrates the above three
models to facilitate modeling and analyzing real-time
embedded systems. In addition, the existing Petri nets
techniques can be adopted to analyze properties of the
system.

Scheduling plays an important role in real-time
embedded systems. It can produce feasible paths
guaranteeing time and resource requirements. But
previous scheduling algorithms mainly concentrated on
time Petri nets. Scheduling on timed Petri nets is rarely
researched. Further more, previous scheduling algorithms
only considered the influences from the logic conditions
of the system, ignoring the influences from the data and
functional properties. Pre-runtime scheduling can reduce
time and resource consumption in run time.

This paper proposes a depth-first heuristic search pre-
runtime scheduling algorithm without generating the
whole state space. It provides a scheduling method for
timed Petri nets. To calculate time consumption, multi-
processors’ parallel executions are considered in the
algorithm. The influences to the scheduling result from
the input data and modules’ data operational functions are
included in the algorithm.

The main contributions of this paper include:
• TCPNIA is used to represent real-time embedded

systems. Modular modeling methods for
complicated systems using TCPNIA are proposed.
They can reduce the complexity of modeling and
enhance the reusability of modules.

340 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.340-348

• A novel scheduling algorithm for TCPNIA is
proposed. The algorithm considers influences
from data and their operational functions. The
influence from system level abstract resource’s
constraints to scheduling result is also considered.
The influences from data operational functions
and system level abstract resource are rarely
considered in present literatures. The scheduling
algorithm is also applied to traditional timed Petri
nets.

• The time requirement bounds of a schedulable
path in a TCPNIA model can be got directly from
the end state in the scheduling algorithm. The
transitions’ parallel executions are considered
during calculating the time bounds in a
schedulable path.

The rest of this paper is organized as follows: Section II
describes related work about modeling and scheduling
real-time embedded systems and indicates the differences
between previous works and our method; Section III
describes syntax and semantics of TCPNIA; The
modeling methods of a real-time embedded system using
TCPNIA are described in Section IV; Section V proposes
a scheduling algorithm and analyses the algorithm’s
soundness and compositional properties; Section VI
presents a realistic case to illustrate the feasibility of our
method; And Section VII concludes this paper.

II. RELATED WORK
Many models have been proposed to represent

embedded systems. Particularly, Petri nets have been
extended to model such systems. Peng et al. [7] introduce
two separate graphs to describe data operation and control
process respectively. But it can not reflect the
interrelations of data and control information explicitly.
PRES/PRES+ (Petri net based Representation for
Embedded Systems, PRES) [2, 8] can represent data
operation and control process in a single figure. They
include data information in a token and describe time
information explicitly. But they can not describe events'
temporal orders. It can’t express complicated data and
control flows perfectly. DFN (Dual Flow Net, DFN) [3]
introduces data transitions and control transitions
separately to process data and control information
respectively in the same net. But it's semantics is different
obviously from traditional Petri nets. The analysis
techniques of traditional Petri nets can't be utilized in such
a model. EPRES (Extended PRES, EPRES) [9],
developed from PRES+, also can not utilize the analysis
techniques of traditional Petri nets. TCPNIA integrates the
ability of timed, colored Petri nets and inhibitor arcs to
facilitate modeling and analyzing real-time embedded
systems. Data, control information and their temporal
relations can be represented explicitly in a single figure. In
addition, the existing Petri nets techniques can be adopted
to analyze properties of the system represented with
TCPNIA.

A lot of scheduling algorithms [10-14] have been
developed for real-time systems in the previous decades.
They do not consider the influence of system’s data

operational functions. Some of them [12-14] even do not
consider the resource constraints. Xu et al. [14] propose a
compositional approach to the schedulability analysis of
real-time systems modeled in time Petri nets. The absolute
time constraints are checked to determine the
schedulability of a path. An absolute time consuming
calculating method is provided. Jejurikar et al. [11]
propose an energy-aware task scheduling method for
embedded real-time systems. Like many of other energy-
aware scheduling methods, that paper only focused on
DVS (Dynamic Voltage Scaling, DVS) of a processor,
and did not consider the other resources in system level.
Further more, previous researches of scheduling methods
mostly focus on time Petri nets. The scheduling method
based on timed Petri nets is rarely considered.

In this paper, we propose a novel pre-runtime
scheduling algorithm for TCPNIA, which is extended
from timed Petri nets. It has considered resource
constraints and data operational functions’ influences. The
method focuses on abstract resources, which can be fuel,
power et al. It can also be extended to process multi types
of resources. Different data values in tokens can change
the execution path. And the system will call different data
operational functions based on different input data. Thus,
the schedulability of a TCPNIA model will be influenced
by the data operational functions.

Similar to Xu’s method [14], absolute time conception
is used to calculate the actual time consumption of a
schedulable path. The absolute time requirement from the
initial state is calculated when deciding the schedulability
of a transition. The method to calculate the absolute time
used by Xu can not be used for TCPNIA for the semantics
differences between timed Petri nets and time Petri nets.
We use tokens’ updated time and transitions’ time
consumption domain bounds to calculate time
requirement bounds of a schedulable path in a TCPNIA
model. The parallel executions have been considered in
the calculating method. The time consumption bounds of
the schedulable path are equal to the timestamp’s bounds
of the final state’s marking. It can be got directly from the
last state in the scheduling algorithm.

III. COMPUTATIONAL MODEL
Colored Petri nets, timed Petri nets and inhibitor arcs

are integrated into TCPNIA [6]. The syntax and semantics
of TCPNIA are given in this section.

A. TCPNIA
A timed colored Petri net with inhibitor arcs is a tuple

0, , , , , , , , , ,TCPNIA P T A B I W G F R D M=< > , where P
is a finite set of places; T is a finite set of transitions;

()A T P⊆ × is a set of output arcs; ()B P T⊆ × is a set of
input arcs; I P T⊂ × is the set of inhibitor arcs, which
satisfies ()I A B = ∅∩ ∪ ; : () 1W A B →∪ is the weight
of arcs; : 2 { , }ZG true false→ is a set of guard functions
defined on transitions, or ig true= if the transition it has
not been given a guard function explicitly; F is the set of
transitions’ data operational functions; *:R T → \ is a set
of non-negative real numbers, which represent the

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 341

© 2011 ACADEMY PUBLISHER

resource consumptions of the transitions; [(), ()]D t tα β=
is the set of transitions’ execution time domains, which
implies that if a transition t begins to execute, it should
last for the time of ()d t , where () () ()t d t tα β≤ ≤ ; 0M
is the initial marking. The capacity of each place is
restricted to one.

The content of a token can be a real number or a
Boolean value. The real number in a token is used as the
input of guard functions or data operational functions. The
Boolean value is only used for the purpose of model’s
logic control. { | (,) }t p P p t B= ∈ ∈D is used to denote the
common pre-set of t . { | (,) }t p P t p A= ∈ ∈D is used to
denote the common post-set of t . * { | (,) }t p p t I= ∈ is
used to denote the inhibitory pre-set of t . ()pτ is used to
represent the content’s type of the place p . Once the type
of a special place is given, it will not be changed. We give
a rule that each place in the post-set of a special transition
has the same data type, expressed by ()tτ D . The token
number of the place p in the marking M is denoted as

(,)token M p . The value of (,)token M p is 1 or 0.
(,)M pν is used to represent the content value of place p

in the marking M .
The guard function tg G∈ is defined on the transition

t . It maps all the input values to a Boolean value, i.e.
1 2: () () () { , }t ag p p p true falseτ τ τ× × × →" , where { |p

1 2} { , , }ap t p p p∈ =D " . After firing the transition t , the
value in each post-set place of t is decided by

1 2: () () () ()t af p p p tτ τ τ τ× × × → D" , where tf F∈ ,

1 2{ , , }at p p p=D " . If tf is not defined, the value can be
any element in ()pτ , where p t∈ D .

B. Enabled Conditions and Firing Rules
Let us assume the current marking is M . Some

transitions may be enabled in the marking M . And some
of them may fire concurrently.

A transition t is said to be enabled if and only if each
place ip in the common pre-set of t has a token, each
place jp in the inhibitory pre-set of t is empty, each of
its out places different from the places in the common pre-
set is empty, and the values in common pre-set of t
satisfy tg true= .

Supposing a transition t has a common pre-set

1{ ,t p=D 2 , , }ap p" , an inhibitory pre-set

1 2{ , , }bt p p p∗ = " , and a common post-set

1 2{ , , , }ct p p p=D " . If it is enabled, it can be fired
immediately and lasted for ()d t time units, where

() () ()t d t tα β≤ ≤ .
The firing of an enabled transition t changes the

marking M into a new marking 'M , lasting for ()d t
time units and consuming ()r t resource units, which is

denoted as , (), () 't d t r tM M⎯⎯⎯⎯→ . As a result of firing the
transition t , next three events occur in turn:

a) ' () 0i ip t M p∀ ∈ ⇒ =D ;
b) ' () 1j jp t M p∀ ∈ ⇒ =D ;

c) jp t∀ ∈ D , if the data operational function tf is

defined, then '
1 2(,) (, , ,)j t aM p f p p pν = " , otherwise

'(,) 1jM pν = .

C. States in a TCPNIA
The timestamp of the initial marking 0M is supposed

to be zero.
A state S of a TCPNIA can be defined as a pair
(,)S M TS= , where:

a) M is a marking of a TCPNIA, and
b) *:TS M → \ represents the timestamp of the

marking M , where M is reached from the initial
marking 0M , TS is the abstract time relative to the initial
state, L TS U≤ ≤ and ,L U ∗∈\ .

The timestamp domain of the marking M are denoted
as [(), ()]L M U M .

IV. MODELING REAL-TIME EMBEDDED SYSTEMS
This section describes modular modeling methods for

complicated systems using TCPNIA. They can reduce the
complexity of modeling and enhance the reusability of
modules. They also provide foundation for hierarchical
modeling and reusability of analysis results.

A. Graphical Notations
TCPNIA is denoted by weighted directed graph. Place

is expressed with a circle. Transition is expressed with a
rectangle. An inhibitor arc connects a place to a transition
and is represented by a dashed line terminating with a
small circle instead of an arrowhead at the transition. The
expression on the arc represents the variable of the value
in the related place. The predicate formula in the left (or
top) of the rectangle denotes the guard function of the
related transition. The function formula in the right (or
bottom) of the rectangle denotes the data operational
function of the related transition. The symbol [(), ()]t tα β ,
at the side of the rectangle, denotes the domain of the
related transition's firing duration time, where ()tα and

()tβ are two non-negative real numbers and satisfy the
following constraints * *() () () ()t t t tα β α β∈ ∧ ∈ ∧ ≤\ \ .
The symbol ()R t< > represents the resource requirement
to finish the firing of the transition, where *()R t ∈\ is a
non-negative real number. It is marked at the side of the
rectangle.

B. Data and Control Modeling
Embedded systems specification usually consists of

control functions and data operational functions. TCPNIA
can specify data operational functions and control
functions simultaneously in the same figure. A place’s
marking represents the logic value, i.e. the empty of the

342 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

mark represents false, otherwise it represents true. The
token’s value represents data information used by
operational function. The transition with data operational
function represents data operation, otherwise it represents
control function. Guard function reflects the influence
from data information to control logic. Fig. 1(a) shows an
example of data operation with guard function modeled
with TCPNIA. Fig. 1(b) shows an example of control
function modeled with TCPNIA.

x y

[1,2]<1>

1p
2p

1t

3p

(,)g x y (,)f x y

(a) data operation

1p

1t

2p

3p

(b) control function

Figure 1. Example of data and control modeling

C. Modules Modeling
A real-time embedded system is composed by several

different types of components, which are called modules
[15]. Conflict, parallel and sequence modules’ modeling
methods are similar to the traditional Petri nets [1]. We
propose here the following modules: branch,
synchronization, inhibitor, loop, mutual exclusion and
communication modules. They are depicted in Fig. 2 and
simply described as follows.

1) Branch Module
Supposing that the system has n tasks after the task 1t ,

such as shown in Fig. 2(a). These tasks enabled at the
same time after the firing of task 1t . Also, they need the
out of 1t as their input data or guard conditions. As a
result, the n tasks get the same enabled time. Branch
module can represent this situation.

2) Synchronization Module
Usually parallel tasks need to be synchronized with

each other at some point. The synchronization module,
shown in Fig. 2(b), states that all the previous tasks have
finished, and they need to be synchronized for assembly.

3) Inhibitor Module
The net shown in Fig. 2(c) represents a system with

priority. The transition 1t has priority over the transition

2t . The transition 1t can fire as long as place 1p has a
token and 3p is empty. But if 2t want to fire, not only 2p
should have a token and 4p should be empty, but also 1p
should be empty. It has been shown that such a system
can only be molded with inhibitor arcs[16], like the arc
from 1p to 2t in Fig. 2(c).

4) Loop Module
Fig. 2(d) shows that the transition 1t may be called

several times continuously when the guard condition is
satisfied. The transition 1t may represent a module.
During that time, other transitions, whose input places
include 1p , can not be executed, because their guard
conditions can not be satisfied, for 1 2g g= ¬ in Fig. 2(d).

5) Mutual Exclusion Module
It is common in embedded systems that some modules

should execute mutually exclusively. Fig. 2(e) shows that
1Module and 2Module can not execute at the same time.

One of them can begin the execution only after the other
has finished the execution or the other is idle. The place

0p is the control place of the mutually exclusive modules.
6) Communication Module

In the TCPNIA model, the communication of data or
control information between modules is realized by
sharing the common places. The shared common places
are out places of one module and the input places of the
other module. To communicate between 1Module and

2Module in Fig. 2(f), the following two conditions should
be fulfilled: (a) m n= ; (b) 1 2() ()i ip pτ τ= , where

1,2, ,i m= " .

D. Time and Resource Modeling
Any task needs a time duration to finish a special

function. The time a transition t needs to finish the firing
is expressed by ()d t , where () () ()t d t tα β≤ ≤ . The real
number domain [(), ()]t tα β is labeled at the side of the
transition t , such as the mark [1, 2] in Fig. 2(b).

Resource requirement is also labeled at the transition
in the model. It represents the resource consumption in the
firing of the corresponding transition, like the mark 1< >
in Fig. 2(b).

[1,2]<1>

...

1p

2p
1np +

1t

2t 3t
(a) branch module

x y

[1,2]<1>

...
1p np

1np +

3t
(,)g x y (,)f x y

1t 2t

(b) synchronization module

1p
2p

3p 4p

1t 2t

(c) inhibitor module

1g

2g

1p
1t

2t
2p

(d) loop module

11p

21p

0p

11t 12t

21t 22t

1Module

2Module

(e) mutual exclusion module

11t

21t

11p 1p m

21p 2p n

1Module

2Module

(f) communication module

Figure 2. Proposed modeling modules

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 343

© 2011 ACADEMY PUBLISHER

V. SCHEDULING ANALYSIS
We can get the TCPNIA model of a real-time

embedded system through composing the modules build
through the methods in Section IV. The model is not only
used for representing the given specification, but also for
analyzing and verifying the system properties. This
section will give a scheduling method of a TCPNIA
model. Verification methods will not be discussed in this
paper for the space limitation.

To conveniently describe the scheduling algorithm, we
give the definition of equivalence between two markings
in a TCPNIA model.

Definition 1 Two markings, 1M and 2M , of a
TCPNIA model are said to be equal if and only if

a) p P∀ ∈ , 1 2(,) (,)token M p token M p= ; and
b) p P∀ ∈ , 1 2(,) (,)M p M pν ν= .

A. Scheduling Algorithm
Scheduling is to find a feasible path from 0M to

endM in a TCPINA model, satisfying time and resource
constraints. A depth-first search algorithm for scheduling
a TCPINA model is proposed in Fig. 3. The path can be
got from part of the reachable states using this algorithm.

boolean scheduling(TCPNIA, M , endM , R, Ti) {

if(endM M==) return true;
enSet = en(M); //en(M) represents all enabled transitions in marking

M
while (not empty(enSet)){
 t=get(enSet); //get an enabled transition arbitrarily

enSet = enSet - t;
if(((() ()) 0fTi U t tβ− + ≥) and (() 0R r t− ≥) and

(scheduling(TCPNIA,firing(M,t), endM , ()R r t− , Ti)){
 put(stack, t);
 updateVariables(lp,up);
 ' '() max(())L M lp M= ;

 ' '() max(())U M up M= ;

 put(L, '()L M);

 put(U, '()U M);
}

}
return false;

}

Figure 3. Scheduling algorithm of TCPNIA

Temporary variables lp and up are introduced to
save the temporary results in the algorithm. (,)lp M p
and (,)up M p represent the low and upper absolute time
domain bounds when the token of place p is updated.
They are set to be zero in the initial marking 0M .

Supposing a transition t has a common pre-set

1{ ,t p=D 2 , , }ap p" , an inhibitory pre-set

1 2{ , , }bt p p p∗ = " , and a common post-set

1 2{ , , , }ct p p p=D " . If it is enabled, it can be fired in the
absolute time domain [(), ()]f fL t U t , where

1 1 1
() max(max((,)),max((,)), max((,)))

a b c

f i j ki j k
L t lp M p lp M q lp M q

= = =
=

 and

1 1 1
() max(max((,)), max((,)), max(

a b c

f i ji j k
U t up M p up M q

= = =
=

(,)))kup M q . After the firing of t , lp and up is updated
through the process (,)updateVarialbes lp up in the
algorithm in Fig. 3. In the process

(,)updateVarialbes lp up , the variables are updated as
follows:

a) '(,) () ()i i fp t lp M p L t tα∀ ∈ ⇒ = +D and
'(,)iup M p = () ()fU t tβ+ ;

b) '(,) () ()j j fp t lp M p L t tα∀ ∈ ⇒ = +D and
'(,)jup M p = () ()fU t tβ+ .

The algorithm described in Fig. 3 is recursive. This
algorithm will give a feasible path from the initial state
M to the target state endM , with the total time constraint
Ti and resource constraint R . It can be detailed with
following steps:

a) If current marking is equal to the target marking, i.e.
endM M== , then the algorithm will return true and exit.

b) Put all enabled transitions in M in the variable
enSet.

c) Get one of enabled transition t from enSet, and
remove it from the set.

d) If the time upper bound and resource requirement
can be satisfied, the algorithm try to recursively test the
following state marking after fire t , i.e. recursively call
the algorithm with new initial state marking, time and
resource constraints. If a feasible path δ can be found
through the recursive method, put every transition in the
path δ in a stack respectively. The most early time and
last time when a new marking 'M can be got through the
path δ are also put in a stack respectively.

e) If the feasible path does not exist, the algorithm will
return false, otherwise return true.

f) If the algorithm returns true, the sequential
transitions can be got from the variable stack.

Supposing we get a schedulable path, which includes
1 2 i nt t t t" " , from 0M to endM . The resource

consumption can be calculated by
1

()
n

i
i

S t
=
∑ . And the

required time domain of system’s executing is
[(), ()]end endL M U M , which can be got directly from the
timestamp’s bounds of the end state.

In the algorithm, the data value of a token is
considered through the comparison of two markings. It
means that the data operational function of each
transition will influence the scheduling result. Further
more, the algorithm uses the time domain bounds of a
transition and its enabled time domain bounds to
calculate the time constraints in a schedulable path. It has
considered the parallel execution of transitions. The time
consuming domain of a schedulable path can’t be

344 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

calculated by
1 1

[(), ()]
n n

i i
i i

t tα β
= =
∑ ∑ , which did not consider

the parallel execution instance.

B. Soundness of the Algorithm
Theorem 1 The scheduling algorithm will terminate in

finite steps.

Proof: Every transition’s execution in a TCPNIA
model needs some time and resource. Given the time and
resource limitations, the time will be expired or the
resource will be exhausted after finite steps in the
algorithm. The algorithm will terminate at that time. In
the other situation, the algorithm will terminate due to no
live transition exists after several steps. Or the algorithm
will find a reasonable path, and then terminate. So the
Theorem 1 holds.

Theorem 2 If the scheduling algorithm returns true,
the access path is schedulable.

Proof:

a) The algorithm selects an enabled transition in every
iterative step under the marking at that time. So every
marking in the trace 0 1 1 2 2 n nM t M t M t M" can be reached
from the marking 0M , i.e. 1 2 nt t t" is a schedulable path
without considering time and resource constraints.

b) Before the transition is selected, the algorithm
affirms that the amount of remained resource is large than
the resource requirement of the transition. The amount of
remained resource is subtracted after adding the transition
in the path. So the path got from the algorithm satisfying
resource constraints.

c) Before adding a transition, the time requirement
upper bound and the latest enabled time of the transition
are considered through the inequation

(() ()) 0fTi U t tβ− + ≥ . So the time constraint is satisfied
in the path got through the algorithm in Fig. 3.

Besides, the algorithm returns true, so nM is the
target marking in the trace 0 1 1 2 2 n nM t M t M t M" . Thus,
Theorem 2 holds.

C. Complexity of the Algorithm
The state space size is ()mO k in a Petri net with m

places [17], where k is the states number of each place.
But in the algorithm of Fig. 3, only partial places are
visited and only partial states of each place are used. So
the state space size is less than ()mO k .

The TCPNIA model is supposed to have n
transitions. The scheduling algorithm will be called

2 / 4n times recursively at the most. Once the algorithm
is called, all the n transitions’ enabled conditions are
checked. To decide whether a transition is enabled, m
places’ tokens are visited at the most. So the algorithm’s
time complexity is 3()O n m× at worst. Once the
algorithm is called, it will save n enabled transitions at

the most. So the algorithm’s space complexity is 3()O n
at the worst.

D. Compositional Analysis of Scheduling
In this section, we will discuss how to conduct a

scheduling of TCPNIA by decomposing the reachable
markings. The similar method is first used by Xu [14].
The analysis of some repeated subsequence can be
simplified through decomposition and composition. It can
enhance component’s reusability and reduce scheduling
complexity.

Theorem 3 Let 1 10 11 11 1 1()(1)m mM t M t M mδ = ≥" and

2 20 21 21 2 2()(1)n nM t M t M nδ = ≥" be two schedulable
sequences, where 10M and 20M are reachable from 0M .

1 2δ δ is schedulable if and only if 1 20mM M== ,

1 2 1 2
1 1

() ()
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑ and

1 2() ()m nU M U M+ 1 2T T T≤ + ≤ , where R is the
resource consumption constraint of the transitions from

10M to 2nM , T is the time consumption upper bound of
the transitions from 10M to 2nM .

Proof:
a) Necessary condition:

1 10 11 11 1 1()(1)m mM t M t M mδ = ≥" and 2 20 21(M tδ = "

2 2)(1)n nt M n ≥ are schedulable. Supposing that 1 2δ δ =

10 11 11 1 20 21 21 2 2()m n nM t M t M t M t M" " is also schedulable.
From the path 10 11 11 1mM t M t" , the system can get only
one marking, so we can get 1 20mM M== ,

1 2 1 2
1 1

() ()
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑ and

1 2() ()m nU M U M+ ≤ 1 2T T T+ ≤ .
b) Sufficient condition:

1 10 11 11 1 1()(1)m mM t M t M mδ = ≥" ,

2 20 21 21 2(nM t M tδ = " 2)(1)nM n ≥ . Besides 10M and

20M are reachable from 0M . Moreover, 1 20mM M== . So

2nM can be reached from 10M through the path

11 12 1 21 22 2m nt t t t t t" " . In the condition,

1 10 11 11 1 1()m mM t M t Mδ = " is schedulable. So we can get

1 1
1

()
m

i
i

R t R
=

≤∑ . In the same way, we can get

2 2
1

()
n

j
j

R t R
=

≤∑ , 1 1()mU M T≤ and 2 2()nU M T≤ . Such that,

1 2 1 2
1 1

() ()
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑ and

1 2() ()m nU M U M+ ≤ 1 2T T T+ ≤ .
According to step a and b, Theorem 3 holds.
According to Theorem 3, the schedulability of

sequence 1 2 i nδ δ δ δ δ= " " can be decided respectively
by (1..)i i nδ = and the markings between them.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 345

© 2011 ACADEMY PUBLISHER

VI. CASE STUDY
This section describes how to model and schedule a

train pulling in system using TCPNIA. Based on the
scheduling result, the model is analyzed and amended to
meet time and resource constraints.

A. System Requirement
A train pulling in system is a real-time embedded

system composed of a number of control equipments.
There are two special railways, slow railway and fast
railway, such as shown in Fig. 4. The slow railway is
special for slow trains. And the fast railway is special for
fast trains. It has two platforms for trains to stop. One is
special for slow trains. The other is a common platform
both for slow and fast trains. But the fast train has the
priority to use the common platform. Each platform can
be provided only for one train to stop at the same time.
The fast train can only stop at the common platform. The
slow train can stop at any platforms as long as they are
available. When the slow train has stop at the platform,
the fuel meter should be checked. Adding fuel is
necessary if and only if the fuel amount is less than five
units. After leaving the platform, the slow train should go
on the slow railway. And the fast train will go on the fast
railway also. The scheduling task is to find a feasible path,
from waiting for stopping to leaving the platform, in the
model to meet the following constraints.

1) Safety Conditions
Two slow trains can stop at different platforms at the

same time. One slow train and one fast train can be in
slow specific platform and common platform respectively
in parallel. There’s no more than one train in the same
platform at any moment.

Figure 4. A simple railway station example

2) Time Constraints
The slow train can be in the platform no more than 15

time units. And the fast train can’t in the platform more
than 8 time units.

3) Resource Constraints
The slow train should consume less than 15 units

resource every time it stops at the platform. The fast train
should consume no more than 25 units resource during the
stopping.

B. Modeling
Using the techniques described in Section IV, we can

get the system’s TCPNIA model, which is shown in Fig. 5.

Conflict, parallel, sequence, branch, synchronization,
inhibitor, loop, mutual exclusion and communication
modeling methodologies described in Section IV are used.
The inhibitor arc 2 7(,)p t represents that a fast train has
the priority to use the common platform. The detailed
processes of modeling are ignored for the space limitation
of the paper. The places and transitions are described in
Tab. I. A transition may represent a module. A transition’s
time requirement domain and resource requirement are
marked at the side of the transition in Fig. 5. Some
resource requirements are not marked in the model, it
means that the resource requirements can be ignored
during the execution of the corresponding transitions. If
we compose several modules, some loop modules will be
shown clearly.

At every platform, there is fuel meter checking and
fuel adding equipment. It can be abstracted as a common
module which is shown in Fig 6.

3

1

1

x

xx

x

5x ≥

x

5x <

10 x−

1p

2p

3p

4p

5p

6p

1
7p 1

8p
9p

10p 11p

12p 13p
14p

1t

2t

3t
1
4t

1
5t

6t

7t

8t
9t

10t
11t 12t

13t

[20,30]

[2,3]

<3>

<10>

[5,6]

<3>

[2,3]

<5> [2,4]

<5>

[8,10] <2>

[3,5]

<1>

[3,4]

[1,2]

<5>

[2,3]

<12>

[1,2]

<6>

[40,50]

14t

15t

x
x

5x ≥

x

5x <

10 x−<5> [2,4]

2
7p 2

8p
2
4t

2
5t

Figure 5. TCPNIA model of a train pulling in system

x
x

5x ≥

x

5x <
10 x−7p

8p

4t

5t

Figure 6. Fuel checking and adding

The safety conditions can be represented by CTL
(Computation Tree Logic, CTL) [16] formulas. The
temporal logic formulas can be verified using model
checking [18] tools. The model checker will return
whether CTL formulas are satisfied in the TCPNIA model
shown in Fig. 5. We ignore the details of model checking
process in this paper.

346 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

TABLE I. LEGEND FOR FIG. 5

Place / Transition Description

1p A slow train waiting for pulling in

2p A fast train waiting for pulling in

3p Slow train specific platform

4p Common platform with the fast train having priority

5p , 10p Slow train has entered into the platform

6p , 11p Slow train has finished passengers up and down
1
7p , 2

7p Slow train is waiting for checking fuel meter
1
8p , 2

8p Slow train has finished fuel adding

9p Slow train has left the platform

12p Fast train has entered into the platform

13p Fast train has finished passengers up and down

14p Fast train has left the platform

1t Slow train entering the slow train specific platform

2t , 8t , 11t Passengers up and down

3t , 9t Slow train is leaving the platform
1
4t , 2

4p Check the fuel meter, but not add fuel
1
5t , 2

5t Check the fuel meter and add fuel

6t A slow train is arriving

7t Slow train is entering the common platform

10t Fast train is entering the common platform

12t Fast train is leaving the platform

13t A fast train is arriving

14t A slow train is going on the slow railway after leaving
the platform

15t A fast train is going on the fast railway after leaving the
platform

C. Scheduling
To schedule the situation only a slow train is waiting

for stopping, we suppose that the initial marking of the
system model is the same as shown in Fig. 5, i.e.

0 1(,) 1token M p = , 0 1(,) 3M pν = , 0 3(,) 1token M p = ,

0 3(,) 1M pν = , 0(,token M 4) 1p = and 0 4(,) 1M pν = .
When 9p has a token, the slow train has finished
stopping and leaved the platform. It is denoted as eM . At
that time, 3(,) 1etoken M p = , 3(,)eM pν 1= ,

4(,) 1etoken M p = , 4(,) 1eM pν = , 9(,) 1etoken M p =
and 9(,) 1eM pν = . The timestamp of 0M is set to zero
initially. The end state can be denoted as

(,)end end endS M TS= . According to the requirement in
Section VI(A), the condition 15endTS ≤ should be met.
The scheduling task is to find a path 0 1l l lmt t tδ = " ,
which satisfies 0 endS Sδ⎯⎯→ and meets the resource
constraint.

 At such an initial situation, the slow train can stop
either platform, as long as the system execution path

meets time and resource constraints. We can call the
scheduling algorithm in Fig. 3 by calling the function

0(, , ,escheduling TCPNIA M M 15,15) . The algorithm will
return false for the resource insufficiency. If we change
the resource requirement of 8t to no more than nine, the
algorithm will return the path 2

7 8 5 9t t t t , or 2
7 5 8 9t t t t

randomly. And 9 12endTS≤ ≤ , which means that the time
consumption is less than 15 time units. And it meets the
limitation of fifteen time units. On the other hand, if we
change the time requirements’ domains of 1t , 2t and 3t to
be [3,3.5] , [8,8] and [3,3.5] respectively, the algorithm
may get the path 1

1 2 5 3t t t t or 1
1 5 2 3t t t t randomly. And it will

consume thirteen resource units. At that time
14 15endTS≤ ≤ , which also meets the limitation of fifteen
time units.

If we change the initial marking to the instance that
0 1(,) 0token M p = , 0 2(,) 1token M p = , 0 2(,) 1M pν = ,

and the other places’ markings are the same as in Fig. 5.
The timestamp of 0M is also set to be zero initially. The
target marking eM satisfies the following conditions:

2(,)etoken M p 0= , 14(,) 1etoken M p = , 14(,) 1eM pν =
and the other tokens remain the initial values. According
to the requirements in Section VI(A), 8endTS ≤ should be
met.

By calling the function 0(, , ,escheduling TCPNIA M M
25,8) , the algorithm will return true and give a
schedulable path 10 11 12t t tδ = . In the state endS ,
0 7endTS≤ ≤ . And it consumes 23 units resource. In the
path 0 10 1M t M , the marking 1M satisfy the conditions:

1 2(,) 0token M p = , 1 12(,) 1token M p = and

1 12(,) 1M pν = . The algorithm can get a schedulable path

1 10tδ = from the initial marking 0M to the marking 1M ,
with 2 time units bound and 5 resource units bound. And
it can also get a schedulable path 2 11 12t tδ = from the
marking 1M to the marking eM , with 5 time units
bound and 18 resource units bound. Then the time
consuming amount satisfies 2 5 7 8+ = ≤ , and the
resource requirement satisfies 5 18 23 25+ = ≤ . So the
conditions in the Theorem 3 are satisfied. Thus the
schedulability of 10 11 12t t tδ = can be got from the
composition of 1δ and 2δ .

VII. CONCLUSION
TCPNIA integrates features of colored Petri nets,

timed Petri nets and inhibitor arcs. So it can represent
multi types of data, control information and resources in a
single figure. The temporal relations can also be
represented in the figure conveniently. Moreover, analysis
methods of traditional Petri nets can also be used in
TCPNIA. Modular modeling methods for complicated
systems using TCPNIA are proposed. They can reduce the

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 347

© 2011 ACADEMY PUBLISHER

complexity of modeling and enhance the reusability of
modules.

To schedule the system described with TCPNIA, a
depth-first heuristic search algorithm is proposed. The
algorithm has considered not only the factors of resource
and time constraints, but also the influences from data
operational functions. The influences from data
operational functions and system level abstract resource
are rarely considered in present literatures. The time
requirement domain bounds of a schedulable path can be
got directly from the timestamp domain bounds of the end
state in the algorithm. Transitions’ parallel executions are
considered when calculating the time requirement bounds
of the schedulable path. The proposed scheduling method
can also be used for traditional timed Petri nets model.
The case study has shown the feasibility of our method.

We are planning to study automatic task construction
method for a real-time embedded system modeled by
TCPNIA in the future. Model driven architecture will be
used in software development life cycle to enhance
systems’ reliability, performance, dependability et al. So
we will concentrate on model transformations from UML
2.0 to TCPNIA in the future. Thus, the properties
described in UML model can be verified and analyzed
formally through TCPNIA model.

REFERENCES
[1] T. Murata, “Petri nets: Properties, analysis and

applications,” Proceedings of the IEEE, vol. 77, no. 4,
1989, pp. 541-580.

[2] L.A. Cortés, P. Eles and Z. Peng, “Modeling and formal
verification of embedded systems based on a Petri net
representation,” Journal of Systems Architecture, vol. 49,
no. 12-15, 2003, pp. 571-598.

[3] M. Varea, B.M. Al-Hashimi, L.A. Cortés, P. Eles and Z.
Peng, “Dual flow nets: Modeling the control/data-flow
relation in embedded systems,” ACM Transactions on
Embedded Computing Systems, vol. 5, no. 1, 2006, pp. 54-
81.

[4] H.H. Chin, C.-F. Huang and A.A. Jafari, “Implementing
timed Petri net in security information systems,” Proc.
Thirty-Ninth Southeastern Symposium on System Theory,
IEEE Press, 2007, pp. 214-220.

[5] K. Jensen, L.M. Kristensen and L. Wells, “Coloured Petri
nets and CPN tools for modelling and validation of
concurrent systems,” International Journal on Software
Tools for Technology Transfer, vol. 9, no. 3, 2007, pp.
213-254.

[6] Y. Nian-hua and Y. Hui-qun, “Modeling and verification
of embedded systems using timed colored Petri net with

inhibitor arcs,” Journal of East China University of
Science and Technology, vol. 36, no. 3, 2010, pp. 411-417.

[7] Z. Peng and K. Kuchcinski, “Automated transformation of
algorithms into register-transfer level implementations,”
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 13, no. 2, 1994, pp.
150-166.

[8] L.A. Cortés, P. Eles and Z. Peng, “A Petri net based model
for heterogeneous embedded systems,” Proc. 17th IEEE
NORCHIP Conference, 1999 of Conference, pp. 248-255.

[9] S. Liu and C. Mu, “An extended Petri net EPRES for
embedded system modeling,” Proc. Proceedings of the
Fifth IEEE International Symposium on Embedded
Computing, IEEE Computer Society, 2008, pp. 9-13.

[10] E. Tavares, B. Silva, P. Maciel and P. Dallegrave,
“Software synthesis for hard real-time embedded systems
with energy constraints,” Proc. 20th International
Symposium on Computer Architecture and High
Performance Computing, IEEE computer society, 2008,
pp. 115-122.

[11] R. Jejurikar and R. Gupta, “Energy-aware task scheduling
with task synchronization for embedded real-time
systems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 25, no. 6, 2006,
pp. 1024-1037.

[12] M. Bertogna, M. Cirinei and G. Lipari, “Schedulability
analysis of global scheduling algorithms on multiprocessor
platforms,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 4, 2009, pp. 553-566.

[13] E. Tavares, R. Barreto, P. Maciel, J. Meuse Oliveira, L.
Amorim, et al., “Software synthesis for hard real-time
embedded systems with multiple processors,” SIGSOFT
Software Engineering Notes vol. 32, no. 2, 2007, pp. 1-10.

[14] D. Xu, X. He and Y. Deng, “Compositional schedulability
analysis of real-time systems using time Petri nets,” IEEE
Transactions on Software Engineering, vol. 28, no. 10,
2002, pp. 984-996.

[15] K. Balasubramanian, J. Balasubramanian, J. Parsons, A.
Gokhale and D.C. Schmidt, “A platform-independent
component modeling language for distributed real-time
and embedded systems,” Journal of Computer and System
Sciences, vol. 73, no. 2, 2007, pp. 171-185.

[16] T. Agerwala, A complete model for representing the
coordination of asynchronous processes, Baltimore: Johns
Hopkins University, Hopkins Computer Science Program,
Research Report, 1974.

[17] A. Valmari, “The state explosion problem,” Lectures on
Petri nets I: Basic models, Lecture notes in computer
science 1491, Springer-Verlag, 1998, pp. 429-528.

[18] E.M. Clarke, O. Grumberg and D.E. Long, “Model
checking and abstraction,” ACM Transactions on
Programming Languages and Systems, vol. 16, no. 5,
2002, pp. 1512-1542.

348 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

