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Abstract—TCPNIA (Timed Colored Petri Nets with 
Inhibitor Arcs, TCPNIA) is a model for specifying real-time 
embedded systems. It integrates features of colored Petri 
nets, timed Petri nets and inhibitor arcs. The methods for 
modeling modules of systems using TCPNIA are proposed. 
A depth-first scheduling algorithm for TCPNIA is 
proposed. The system level resource’s influence to 
schedulable path is considered. Different data in tokens will 
change an execution path and call different data operational 
functions. The influence from data operational functions is 
considered in the scheduling algorithm. The time 
requirement upper bound of a schedulable path can be 
calculated in the algorithm. Tasks’ parallel executions have 
been considered when the time upper bound of the path is 
calculated. The soundness of the algorithm is proved. The 
time and space complexities of the algorithm are also 
analyzed. The compositional conditions and method for 
composing schedulable path are given. A case study shows 
the applicability and feasibility of the method. 

Index Terms—embedded system; real-time property; Petri 
net; modeling; scheduling 

I. INTRODUCTION  
Over the last years, embedded systems have received 

considerable attention. These systems are usually mission 
and safety-critical. The logical and functional results of 
the computation must be correct. Moreover it should meet 
certain time constraints. In hard real-time systems, the 
violation whether to functions or to time constraints may 
lead to catastrophic consequence, such as equipment 
damage, environment pollution, or even loss of human 
lives. Resource consumption has also to be considered, 
due to the running costs of the system and environment 
problems.  

Designing systems with such characteristics is a 
difficult task. Design method with well-defined formal 
semantics is needed for specification and implementation 
of the system. Petri nets [1] are formal models based on 
strict mathematical theories. They are powerful models 
and appropriate for modeling systems with parallelization, 
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synchronization and confliction. Plenty of theoretical 
results and practical tools have been developed around 
Petri nets. Many real-time embedded systems modeling 
techniques have been proposed [2-3]. They are extended 
from Petri nets. But some of them are absence of the 
ability to describe the tasks’ priorities, others can not use 
the traditional Petri nets analysis methods. 

Timed Petri nets [4] allow transitions to be executed 
for a period, which can be used to express events’ time 
consumption. Colored Petri nets [5] allow tokens to have 
multiple data and have the ability to specify complicated 
computing. Inhibitor arcs can be used for describing 
events temporal order [1]. Timed colored Petri nets with 
inhibitor arcs (TCPNIA) [6] integrates the above three 
models to facilitate modeling and analyzing real-time 
embedded systems. In addition, the existing Petri nets 
techniques can be adopted to analyze properties of the 
system.  

Scheduling plays an important role in real-time 
embedded systems. It can produce feasible paths 
guaranteeing time and resource requirements. But 
previous scheduling algorithms mainly concentrated on 
time Petri nets. Scheduling on timed Petri nets is rarely 
researched. Further more, previous scheduling algorithms 
only considered the influences from the logic conditions 
of the system, ignoring the influences from the data and 
functional properties. Pre-runtime scheduling can reduce 
time and resource consumption in run time.  

This paper proposes a depth-first heuristic search pre-
runtime scheduling algorithm without generating the 
whole state space. It provides a scheduling method for 
timed Petri nets. To calculate time consumption, multi-
processors’ parallel executions are considered in the 
algorithm. The influences to the scheduling result from 
the input data and modules’ data operational functions are 
included in the algorithm. 

The main contributions of this paper include:  
• TCPNIA is used to represent real-time embedded 

systems. Modular modeling methods for 
complicated systems using TCPNIA are proposed. 
They can reduce the complexity of modeling and 
enhance the reusability of modules. 
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• A novel scheduling algorithm for TCPNIA is 
proposed. The algorithm considers influences 
from data and their operational functions. The 
influence from system level abstract resource’s 
constraints to scheduling result is also considered. 
The influences from data operational functions 
and system level abstract resource are rarely 
considered in present literatures. The scheduling 
algorithm is also applied to traditional timed Petri 
nets. 

• The time requirement bounds of a schedulable 
path in a TCPNIA model can be got directly from 
the end state in the scheduling algorithm. The 
transitions’ parallel executions are considered 
during calculating the time bounds in a 
schedulable path. 

The rest of this paper is organized as follows: Section II 
describes related work about modeling and scheduling 
real-time embedded systems and indicates the differences 
between previous works and our method; Section III 
describes syntax and semantics of TCPNIA; The 
modeling methods of a real-time embedded system using 
TCPNIA are described in Section IV; Section V proposes 
a scheduling algorithm and analyses the algorithm’s 
soundness and compositional properties; Section VI 
presents a realistic case to illustrate the feasibility of our 
method; And Section VII concludes this paper. 

II. RELATED WORK 
Many models have been proposed to represent 

embedded systems. Particularly, Petri nets have been 
extended to model such systems. Peng et al. [7] introduce 
two separate graphs to describe data operation and control 
process respectively. But it can not reflect the 
interrelations of data and control information explicitly. 
PRES/PRES+ (Petri net based Representation for 
Embedded Systems, PRES) [2, 8] can represent data 
operation and control process in a single figure. They 
include data information in a token and describe time 
information explicitly. But they can not describe events' 
temporal orders. It can’t express complicated data and 
control flows perfectly. DFN (Dual Flow Net, DFN) [3] 
introduces data transitions and control transitions 
separately to process data and control information 
respectively in the same net. But it's semantics is different 
obviously from traditional Petri nets. The analysis 
techniques of traditional Petri nets can't be utilized in such 
a model. EPRES (Extended PRES, EPRES) [9], 
developed from PRES+, also can not utilize the analysis 
techniques of traditional Petri nets. TCPNIA integrates the 
ability of timed, colored Petri nets and inhibitor arcs to 
facilitate modeling and analyzing real-time embedded 
systems. Data, control information and their temporal 
relations can be represented explicitly in a single figure. In 
addition, the existing Petri nets techniques can be adopted 
to analyze properties of the system represented with 
TCPNIA. 

A lot of scheduling algorithms [10-14] have been 
developed for real-time systems in the previous decades. 
They do not consider the influence of system’s data 

operational functions. Some of them [12-14] even do not 
consider the resource constraints. Xu et al. [14] propose a 
compositional approach to the schedulability analysis of 
real-time systems modeled in time Petri nets. The absolute 
time constraints are checked to determine the 
schedulability of a path. An absolute time consuming 
calculating method is provided. Jejurikar et al. [11] 
propose an energy-aware task scheduling method for 
embedded real-time systems. Like many of other energy-
aware scheduling methods, that paper only focused on 
DVS (Dynamic Voltage Scaling, DVS) of a processor, 
and did not consider the other resources in system level. 
Further more, previous researches of scheduling methods 
mostly focus on time Petri nets. The scheduling method 
based on timed Petri nets is rarely considered.  

In this paper, we propose a novel pre-runtime 
scheduling algorithm for TCPNIA, which is extended 
from timed Petri nets. It has considered resource 
constraints and data operational functions’ influences. The 
method focuses on abstract resources, which can be fuel, 
power et al. It can also be extended to process multi types 
of resources. Different data values in tokens can change 
the execution path. And the system will call different data 
operational functions based on different input data. Thus, 
the schedulability of a TCPNIA model will be influenced 
by the data operational functions. 

Similar to Xu’s method [14], absolute time conception 
is used to calculate the actual time consumption of a 
schedulable path. The absolute time requirement from the 
initial state is calculated when deciding the schedulability 
of a transition. The method to calculate the absolute time 
used by Xu can not be used for TCPNIA for the semantics 
differences between timed Petri nets and time Petri nets. 
We use tokens’ updated time and transitions’ time 
consumption domain bounds to calculate time 
requirement bounds of a schedulable path in a TCPNIA 
model. The parallel executions have been considered in 
the calculating method. The time consumption bounds of 
the schedulable path are equal to the timestamp’s bounds 
of the final state’s marking. It can be got directly from the 
last state in the scheduling algorithm. 

III. COMPUTATIONAL MODEL 
Colored Petri nets, timed Petri nets and inhibitor arcs 

are integrated into TCPNIA [6]. The syntax and semantics 
of TCPNIA are given in this section. 

A. TCPNIA 
A timed colored Petri net with inhibitor arcs is a tuple 

0, , , , , , , , , ,TCPNIA P T A B I W G F R D M=< > , where P  
is a finite set of places; T  is a finite set of transitions; 

( )A T P⊆ ×  is a set of output arcs; ( )B P T⊆ ×  is a set of 
input arcs; I P T⊂ ×  is the set of inhibitor arcs, which 
satisfies ( )I A B = ∅∩ ∪ ; : ( ) 1W A B →∪  is the weight 
of arcs; : 2 { , }ZG true false→  is a set of guard functions 
defined on transitions, or ig true=  if the transition it  has 
not been given a guard function explicitly; F  is the set of 
transitions’ data operational functions; *:R T → \  is a set 
of non-negative real numbers, which represent the 
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resource consumptions of the transitions; [ ( ), ( )]D t tα β=  
is the set of transitions’ execution time domains, which 
implies that if a transition t  begins to execute, it should 
last for the time of ( )d t , where ( ) ( ) ( )t d t tα β≤ ≤ ; 0M  
is the initial marking. The capacity of each place is 
restricted to one. 

The content of a token can be a real number or a 
Boolean value. The real number in a token is used as the 
input of guard functions or data operational functions. The 
Boolean value is only used for the purpose of model’s 
logic control. { | ( , ) }t p P p t B= ∈ ∈D  is used to denote the 
common pre-set of t . { | ( , ) }t p P t p A= ∈ ∈D  is used to 
denote the common post-set of t . * { | ( , ) }t p p t I= ∈  is 
used to denote the inhibitory pre-set of t . ( )pτ  is used to 
represent the content’s type of the place p . Once the type 
of a special place is given, it will not be changed. We give 
a rule that each place in the post-set of a special transition 
has the same data type, expressed by ( )tτ D . The token 
number of the place p  in the marking M  is denoted as 

( , )token M p . The value of ( , )token M p  is 1 or 0. 
( , )M pν  is used to represent the content value of place p  

in the marking M . 
The guard function tg G∈  is defined on the transition 

t . It maps all the input values to a Boolean value, i.e. 
1 2: ( ) ( ) ( ) { , }t ag p p p true falseτ τ τ× × × →" , where { |p  

1 2} { , , }ap t p p p∈ =D " . After firing the transition t , the 
value in each post-set place of t  is decided by 

1 2: ( ) ( ) ( ) ( )t af p p p tτ τ τ τ× × × → D" , where tf F∈ , 

1 2{ , , }at p p p=D " . If tf  is not defined, the value can be 
any element in ( )pτ , where p t∈ D .  

B. Enabled Conditions and Firing Rules 
Let us assume the current marking is M . Some 

transitions may be enabled in the marking M . And some 
of them may fire concurrently. 

A transition t  is said to be enabled if and only if each 
place ip  in the common pre-set of t  has a token, each 
place jp  in the inhibitory pre-set of t  is empty, each of 
its out places different from the places in the common pre-
set is empty, and the values in common pre-set of t  
satisfy tg true= . 

Supposing a transition t  has a common pre-set 

1{ ,t p=D  2 , , }ap p" , an inhibitory pre-set 

1 2{ , , }bt p p p∗ = " , and a common post-set 

1 2{ , , , }ct p p p=D " . If it is enabled, it can be fired 
immediately and lasted for ( )d t  time units, where 

( ) ( ) ( )t d t tα β≤ ≤ . 
The firing of an enabled transition t  changes the 

marking M  into a new marking 'M , lasting for ( )d t  
time units and consuming ( )r t resource units, which is 

denoted as , ( ), ( ) 't d t r tM M⎯⎯⎯⎯→ . As a result of firing the 
transition t , next three events occur in turn: 

a) ' ( ) 0i ip t M p∀ ∈ ⇒ =D ; 
b) ' ( ) 1j jp t M p∀ ∈ ⇒ =D ;  

c) jp t∀ ∈ D , if the data operational function tf  is 

defined, then '
1 2( , ) ( , , , )j t aM p f p p pν = " , otherwise 

'( , ) 1jM pν = . 

C. States in a TCPNIA 
The timestamp of the initial marking 0M  is supposed 

to be zero. 
A state S  of a TCPNIA can be defined as a pair 
( , )S M TS= , where: 

a) M  is a marking of a TCPNIA, and 
b) *:TS M → \  represents the timestamp of the 

marking M , where M  is reached from the initial 
marking 0M , TS  is the abstract time relative to the initial 
state, L TS U≤ ≤  and ,L U ∗∈\ . 

The timestamp domain of the marking M  are denoted 
as [ ( ), ( )]L M U M . 

IV. MODELING REAL-TIME EMBEDDED SYSTEMS 
This section describes modular modeling methods for 

complicated systems using TCPNIA. They can reduce the 
complexity of modeling and enhance the reusability of 
modules. They also provide foundation for hierarchical 
modeling and reusability of analysis results.  

A. Graphical Notations 
TCPNIA is denoted by weighted directed graph. Place 

is expressed with a circle. Transition is expressed with a 
rectangle. An inhibitor arc connects a place to a transition 
and is represented by a dashed line terminating with a 
small circle instead of an arrowhead at the transition. The 
expression on the arc represents the variable of the value 
in the related place. The predicate formula in the left (or 
top) of the rectangle denotes the guard function of the 
related transition. The function formula in the right (or 
bottom) of the rectangle denotes the data operational 
function of the related transition. The symbol [ ( ), ( )]t tα β , 
at the side of the rectangle, denotes the domain of the 
related transition's firing duration time, where ( )tα  and 

( )tβ  are two non-negative real numbers and satisfy the  
following constraints * *( ) ( ) ( ) ( )t t t tα β α β∈ ∧ ∈ ∧ ≤\ \ . 
The symbol ( )R t< >  represents the resource requirement 
to finish the firing of the transition, where *( )R t ∈\  is a 
non-negative real number. It is marked at the side of the 
rectangle. 

B. Data and Control Modeling 
Embedded systems specification usually consists of 

control functions and data operational functions. TCPNIA 
can specify data operational functions and control 
functions simultaneously in the same figure. A place’s 
marking represents the logic value, i.e. the empty of the 
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mark represents false, otherwise it represents true. The 
token’s value represents data information used by 
operational function. The transition with data operational 
function represents data operation, otherwise it represents 
control function. Guard function reflects the influence 
from data information to control logic. Fig. 1(a) shows an 
example of data operation with guard function modeled 
with TCPNIA. Fig. 1(b) shows an example of control 
function modeled with TCPNIA. 

x y

[1,2]<1>

1p
2p

1t

3p

( , )g x y ( , )f x y

 
(a) data operation 

1p

1t

2p

3p
 

(b) control function 

Figure 1.  Example of data and control modeling 

C. Modules Modeling 
A real-time embedded system is composed by several 

different types of components, which are called modules 
[15]. Conflict, parallel and sequence modules’ modeling 
methods are similar to the traditional Petri nets [1]. We 
propose here the following modules: branch, 
synchronization, inhibitor, loop, mutual exclusion and 
communication modules. They are depicted in Fig. 2 and 
simply described as follows. 

1) Branch Module 
Supposing that the system has n  tasks after the task 1t , 

such as shown in Fig. 2(a). These tasks enabled at the 
same time after the firing of task 1t . Also, they need the 
out of 1t  as their input data or guard conditions. As a 
result, the n  tasks get the same enabled time. Branch 
module can represent this situation. 

2) Synchronization Module 
Usually parallel tasks need to be synchronized with 

each other at some point. The synchronization module, 
shown in Fig. 2(b), states that all the previous tasks have 
finished, and they need to be synchronized for assembly. 

3) Inhibitor Module 
The net shown in Fig. 2(c) represents a system with 

priority. The transition 1t  has priority over the transition 

2t . The transition 1t  can fire as long as place 1p  has a 
token and 3p  is empty. But if 2t  want to fire, not only 2p  
should have a token and 4p  should be empty, but also 1p  
should be empty. It has been shown that such a system 
can only be molded with inhibitor arcs[16], like the arc 
from 1p  to 2t  in Fig. 2(c). 

4) Loop Module 
Fig. 2(d) shows that the transition 1t  may be called 

several times continuously when the guard condition is 
satisfied. The transition 1t  may represent a module. 
During that time, other transitions, whose input places 
include 1p , can not be executed, because their guard 
conditions can not be satisfied, for 1 2g g= ¬  in Fig. 2(d). 

5) Mutual Exclusion Module 
It is common in embedded systems that some modules 

should execute mutually exclusively. Fig. 2(e) shows that 
1Module  and 2Module  can not execute at the same time. 

One of them can begin the execution only after the other 
has finished the execution or the other is idle. The place 

0p  is the control place of the mutually exclusive modules. 
6) Communication Module 

In the TCPNIA model, the communication of data or 
control information between modules is realized by 
sharing the common places. The shared common places 
are out places of one module and the input places of the 
other module. To communicate between 1Module  and 

2Module  in Fig. 2(f), the following two conditions should 
be fulfilled: (a) m n= ; (b) 1 2( ) ( )i ip pτ τ= , where 

1,2, ,i m= " . 

D. Time and Resource Modeling 
Any task needs a time duration to finish a special 

function. The time a transition t  needs to finish the firing 
is expressed by ( )d t , where ( ) ( ) ( )t d t tα β≤ ≤ . The real 
number domain [ ( ), ( )]t tα β  is labeled at the side of the 
transition t , such as the mark [1, 2]  in Fig. 2(b).  

Resource requirement is also labeled at the transition 
in the model. It represents the resource consumption in the 
firing of the corresponding transition, like the mark 1< >  
in Fig. 2(b). 

 

[1,2]<1>

...

1p

2p
1np +

1t

2t 3t  
(a) branch module 

x y

[1,2]<1>

...
1p np

1np +

3t
( , )g x y ( , )f x y

1t 2t

 
(b) synchronization module 

1p
2p

3p 4p

1t 2t

 
(c) inhibitor module

1g

2g

1p
1t

2t
2p

 
(d) loop module 

11p

21p

0p

11t 12t

21t 22t

1Module

2Module

 
(e) mutual exclusion module

11t

21t

11p 1p m

21p 2p n

1Module

2Module
 

(f) communication module

Figure 2.  Proposed modeling modules 
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V. SCHEDULING ANALYSIS 
We can get the TCPNIA model of a real-time 

embedded system through composing the modules build 
through the methods in Section IV. The model is not only 
used for representing the given specification, but also for 
analyzing and verifying the system properties. This 
section will give a scheduling method of a TCPNIA 
model. Verification methods will not  be discussed in this 
paper for the space limitation. 

To conveniently describe the scheduling algorithm, we 
give the definition of equivalence between two markings 
in a TCPNIA model. 

Definition 1 Two markings, 1M  and 2M , of a 
TCPNIA model are said to be equal if and only if 

a) p P∀ ∈ , 1 2( , ) ( , )token M p token M p= ; and 
b) p P∀ ∈ , 1 2( , ) ( , )M p M pν ν= . 

A. Scheduling Algorithm 
Scheduling is to find a feasible path from 0M  to 

endM  in a TCPINA model, satisfying time and resource 
constraints. A depth-first search algorithm for scheduling 
a TCPINA model is proposed in Fig. 3. The path can be 
got from part of the reachable states using this algorithm. 

boolean scheduling(TCPNIA, M , endM , R, Ti ) { 

if( endM M== ) return true; 
enSet = en(M); //en(M) represents all enabled transitions in marking 

M 
while (not empty(enSet)){ 
      t=get(enSet); //get an enabled transition arbitrarily 

enSet = enSet - t;  
if(( ( ( ) ( )) 0fTi U t tβ− + ≥ ) and ( ( ) 0R r t− ≥ ) and 

(scheduling(TCPNIA,firing(M,t), endM , ( )R r t− , Ti )){ 
              put(stack, t); 
              updateVariables(lp,up); 
              ' '( ) max( ( ))L M lp M= ; 

              ' '( ) max( ( ))U M up M= ; 

              put(L, '( )L M ); 

              put(U, '( )U M ); 
} 

} 
return false; 

} 

Figure 3.  Scheduling algorithm of TCPNIA 

Temporary variables lp  and up  are introduced to 
save the temporary results in the algorithm. ( , )lp M p  
and ( , )up M p  represent the low and upper absolute time 
domain bounds when the token of place p  is updated. 
They are set to be zero in the initial marking 0M . 

Supposing a transition t  has a common pre-set 

1{ ,t p=D  2 , , }ap p" , an inhibitory pre-set 

1 2{ , , }bt p p p∗ = " , and a common post-set 

1 2{ , , , }ct p p p=D " . If it is enabled, it can be fired in the 
absolute time domain [ ( ), ( )]f fL t U t , where 

1 1 1
( ) max(max( ( , )),max( ( , )), max( ( , )))

a b c

f i j ki j k
L t lp M p lp M q lp M q

= = =
=

 and 

1 1 1
( ) max(max( ( , )), max( ( , )), max(

a b c

f i ji j k
U t up M p up M q

= = =
=  

( , )))kup M q . After the firing of t , lp  and up  is updated 
through the process ( , )updateVarialbes lp up  in the 
algorithm in Fig. 3. In the process 

( , )updateVarialbes lp up , the variables are updated as 
follows:  

a) '( , ) ( ) ( )i i fp t lp M p L t tα∀ ∈ ⇒ = +D  and  
'( , )iup M p =  ( ) ( )fU t tβ+ ;  

b) '( , ) ( ) ( )j j fp t lp M p L t tα∀ ∈ ⇒ = +D  and  
'( , )jup M p =  ( ) ( )fU t tβ+ . 

The algorithm described in Fig. 3 is recursive. This 
algorithm will give a feasible path from the initial state 
M  to the target state endM , with the total time constraint 
Ti  and resource constraint R . It can be detailed with 
following steps: 

a) If current marking is equal to the target marking, i.e. 
endM M== , then the algorithm will return true and exit.  

b) Put all enabled transitions in M  in the variable 
enSet. 

c) Get one of enabled transition t  from enSet, and 
remove it from the set. 

d) If the time upper bound and resource requirement 
can be satisfied, the algorithm try to recursively test the 
following state marking after fire t , i.e. recursively call 
the algorithm with new initial state marking, time and 
resource constraints. If a feasible path δ  can be found 
through the recursive method, put every transition in the 
path δ  in a stack respectively. The most early time and 
last time when a new marking 'M  can be got through the 
path δ  are also put in a stack respectively. 

e) If the feasible path does not exist, the algorithm will 
return false, otherwise return true. 

f) If the algorithm returns true, the sequential 
transitions can be got from the variable stack.  

Supposing we get a schedulable path, which includes 
1 2 i nt t t t" " , from 0M  to endM . The resource 

consumption can be calculated by 
1

( )
n

i
i

S t
=
∑ . And the 

required time domain of system’s executing is 
[ ( ), ( )]end endL M U M , which can be got directly from the 
timestamp’s bounds of the end state. 

In the algorithm, the data value of a token is 
considered through the comparison of two markings. It 
means that the data operational function of each 
transition will influence the scheduling result. Further 
more, the algorithm uses the time domain bounds of a 
transition and its enabled time domain bounds to 
calculate the time constraints in a schedulable path. It has 
considered the parallel execution of transitions. The time 
consuming domain of a schedulable path can’t be 
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calculated by 
1 1

[ ( ), ( )]
n n

i i
i i

t tα β
= =
∑ ∑ , which did not consider 

the parallel execution instance. 

B. Soundness of the Algorithm 
Theorem 1 The scheduling algorithm will terminate in 

finite steps. 

Proof: Every transition’s execution in a TCPNIA 
model needs some time and resource. Given the time and 
resource limitations, the time will be expired or the 
resource will be exhausted after finite steps in the 
algorithm. The algorithm will terminate at that time. In 
the other situation, the algorithm will terminate due to no 
live transition exists after several steps. Or the algorithm 
will find a reasonable path, and then terminate. So the 
Theorem 1 holds. 

Theorem 2 If the scheduling algorithm returns true, 
the access path is schedulable. 

Proof:  

a) The algorithm selects an enabled transition in every 
iterative step under the marking at that time. So every 
marking in the trace 0 1 1 2 2 n nM t M t M t M"  can be reached 
from the marking 0M , i.e. 1 2 nt t t"  is a schedulable path 
without considering time and resource constraints. 

b) Before the transition is selected, the algorithm 
affirms that the amount of remained resource is large than 
the resource requirement of the transition. The amount of 
remained resource is subtracted after adding the transition 
in the path. So the path got from the algorithm satisfying 
resource constraints. 

c) Before adding a transition, the time requirement 
upper bound and the latest enabled time of the transition 
are considered through the inequation 

( ( ) ( )) 0fTi U t tβ− + ≥ . So the time constraint is satisfied 
in the path got through the algorithm in Fig. 3. 

Besides, the algorithm returns true, so nM  is the 
target marking in the trace 0 1 1 2 2 n nM t M t M t M" . Thus, 
Theorem 2 holds. 

C. Complexity of the Algorithm 
The state space size is ( )mO k  in a Petri net with m  

places [17], where k  is the states number of each place. 
But in the algorithm of Fig. 3, only partial places are 
visited and only partial states of each place are used. So 
the state space size is less than ( )mO k . 

The TCPNIA model is supposed to have n  
transitions. The scheduling algorithm will be called 

2 / 4n  times recursively at the most. Once the algorithm 
is called, all the n  transitions’ enabled conditions are 
checked. To decide whether a transition is enabled, m  
places’ tokens are visited at the most. So the algorithm’s 
time complexity is 3( )O n m×  at worst. Once the 
algorithm is called, it will save n  enabled transitions at 

the most. So the algorithm’s space complexity is 3( )O n  
at the worst. 

D. Compositional Analysis of Scheduling 
In this section, we will discuss how to conduct a 

scheduling of TCPNIA by decomposing the reachable 
markings. The similar method is first used by Xu [14]. 
The analysis of some repeated subsequence can be 
simplified through decomposition and composition. It can 
enhance component’s reusability and reduce scheduling 
complexity. 

Theorem 3 Let 1 10 11 11 1 1( )( 1)m mM t M t M mδ = ≥"  and  

2 20 21 21 2 2( )( 1)n nM t M t M nδ = ≥" be two schedulable 
sequences, where 10M  and 20M  are reachable from 0M . 

1 2δ δ  is schedulable if and only if 1 20mM M==  , 

1 2 1 2
1 1

( ) ( )
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑  and 

1 2( ) ( )m nU M U M+  1 2T T T≤ + ≤ , where R  is the 
resource consumption constraint of the transitions from  

10M  to 2nM , T  is the time consumption upper bound of 
the transitions from  10M  to 2nM . 

Proof:  
a) Necessary condition: 

1 10 11 11 1 1( )( 1)m mM t M t M mδ = ≥"  and 2 20 21(M tδ = "  

2 2 )( 1)n nt M n ≥  are schedulable. Supposing that 1 2δ δ =  

10 11 11 1 20 21 21 2 2( )m n nM t M t M t M t M" "  is also schedulable. 
From the path 10 11 11 1mM t M t" , the system can get only 
one marking, so we can get 1 20mM M== , 

1 2 1 2
1 1

( ) ( )
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑  and 

1 2( ) ( )m nU M U M+ ≤  1 2T T T+ ≤ . 
b) Sufficient condition: 

1 10 11 11 1 1( )( 1)m mM t M t M mδ = ≥" , 

2 20 21 21 2( nM t M tδ = "  2 )( 1)nM n ≥ . Besides 10M  and 

20M  are reachable from 0M . Moreover, 1 20mM M== . So 

2nM  can be reached from 10M  through the path 

11 12 1 21 22 2m nt t t t t t" " . In the condition, 

1 10 11 11 1 1( )m mM t M t Mδ = "  is schedulable. So we can get 

1 1
1

( )
m

i
i

R t R
=

≤∑ . In the same way, we can get 

2 2
1

( )
n

j
j

R t R
=

≤∑ , 1 1( )mU M T≤  and 2 2( )nU M T≤ . Such that, 

1 2 1 2
1 1

( ) ( )
m n

i j
i j

R t R t R R R
= =

+ ≤ + ≤∑ ∑  and 

1 2( ) ( )m nU M U M+ ≤  1 2T T T+ ≤ . 
According to step a and b, Theorem 3 holds. 
According to Theorem 3, the schedulability of 

sequence 1 2 i nδ δ δ δ δ= " "  can be decided respectively 
by ( 1.. )i i nδ =  and the markings between them. 
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VI. CASE STUDY 
This section describes how to model and schedule a 

train pulling in system using TCPNIA. Based on the 
scheduling result, the model is analyzed and amended to 
meet time and resource constraints. 

A. System Requirement 
A train pulling in system is a real-time embedded 

system composed of a number of control equipments. 
There are two special railways, slow railway and fast 
railway, such as shown in Fig. 4. The slow railway is 
special for slow trains. And the fast railway is special for 
fast trains. It has two platforms for trains to stop. One is 
special for slow trains. The other is a common platform 
both for slow and fast trains. But the fast train has the 
priority to use the common platform. Each platform can 
be provided only for one train to stop at the same time. 
The fast train can only stop at the common platform. The 
slow train can stop at any platforms as long as they are 
available. When the slow train has stop at the platform, 
the fuel meter should be checked. Adding fuel is 
necessary if and only if the fuel amount is less than five 
units. After leaving the platform, the slow train should go 
on the slow railway. And the fast train will go on the fast 
railway also. The scheduling task is to find a feasible path, 
from waiting for stopping to leaving the platform, in the 
model to meet the following constraints. 

1) Safety Conditions 
Two slow trains can stop at different platforms at the 

same time. One slow train and one fast train can be in 
slow specific platform and common platform respectively 
in parallel. There’s no more than one train in the same 
platform at any moment. 

 
Figure 4.  A simple railway station example 

2) Time Constraints 
The slow train can be in the platform no more than 15 

time units. And the fast train can’t in the platform more 
than 8 time units. 

3) Resource Constraints 
The slow train should consume less than 15 units 

resource every time it stops at the platform. The fast train 
should consume no more than 25 units resource during the 
stopping. 

B. Modeling 
Using the techniques described in Section IV, we can 

get the system’s TCPNIA model, which is shown in Fig. 5. 

Conflict, parallel, sequence, branch, synchronization, 
inhibitor, loop, mutual exclusion and communication 
modeling methodologies described in Section IV are used. 
The inhibitor arc 2 7( , )p t  represents that a fast train has 
the priority to use the common platform. The detailed 
processes of modeling are ignored for the space limitation 
of the paper. The places and transitions are described in 
Tab. I. A transition may represent a module. A transition’s 
time requirement domain and resource requirement are 
marked at the side of the transition in Fig. 5. Some 
resource requirements are not marked in the model, it 
means that the resource requirements can be ignored 
during the execution of the corresponding transitions. If 
we compose several modules, some loop modules will be 
shown clearly. 

At every platform, there is fuel meter checking and 
fuel adding equipment. It can be abstracted as a common 
module which is shown in Fig 6. 
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Figure 5.  TCPNIA model of a train pulling in system 
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Figure 6.  Fuel checking and adding 

The safety conditions can be represented by CTL 
(Computation Tree Logic, CTL) [16] formulas. The 
temporal logic formulas can be verified using model 
checking [18] tools. The model checker will return 
whether CTL formulas are satisfied in the TCPNIA model 
shown in Fig. 5. We ignore the details of model checking 
process in this paper. 
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TABLE I.  LEGEND FOR FIG. 5 

Place / Transition Description 

1p  A slow train waiting for pulling in 

2p  A fast train waiting for pulling in 

3p  Slow train specific platform 

4p  Common platform with the fast train having priority 

5p  , 10p  Slow train has entered into the platform 

6p , 11p  Slow train has finished passengers up and down 
1
7p , 2

7p  Slow train is waiting for checking fuel meter 
1
8p , 2

8p  Slow train has finished fuel adding 

9p  Slow train has left the platform 

12p  Fast train has entered into the platform 

13p  Fast train has finished passengers up and down 

14p  Fast train has left the platform 

1t  Slow train entering the slow train specific platform 

2t , 8t , 11t  Passengers up and down  

3t , 9t  Slow train is leaving the platform 
1
4t , 2

4p  Check the fuel meter, but not add fuel 
1
5t , 2

5t  Check the fuel meter and add fuel 

6t  A slow train is arriving 

7t  Slow train is entering the common platform 

10t  Fast train is entering the common platform 

12t  Fast train is leaving the platform 

13t  A fast train is arriving 

14t  A slow train is going on the slow railway after leaving 
the platform 

15t  A fast train is going on the fast railway after leaving the 
platform 

 

C. Scheduling 
To schedule the situation only a slow train is waiting 

for stopping, we suppose that the initial marking of the 
system model is the same as shown in Fig. 5, i.e. 

0 1( , ) 1token M p = , 0 1( , ) 3M pν = , 0 3( , ) 1token M p = , 

0 3( , ) 1M pν = , 0( ,token M  4 ) 1p =  and 0 4( , ) 1M pν = . 
When 9p  has a token, the slow train has finished 
stopping and leaved the platform. It is denoted as eM . At 
that time, 3( , ) 1etoken M p = , 3( , )eM pν  1= , 

4( , ) 1etoken M p = , 4( , ) 1eM pν = ,   9( , ) 1etoken M p =   
and 9( , ) 1eM pν = .   The timestamp of 0M  is set to zero 
initially. The end state can be denoted as 

( , )end end endS M TS= . According to the requirement in 
Section VI(A), the condition 15endTS ≤  should be met.  
The scheduling task is to find a path 0 1l l lmt t tδ = " , 
which satisfies 0 endS Sδ⎯⎯→  and meets the resource 
constraint. 

 At such an initial situation, the slow train can stop 
either platform, as long as the system execution path 

meets time and resource constraints. We can call the 
scheduling algorithm in Fig. 3 by calling the function 

0( , , ,escheduling TCPNIA M M  15,15) . The algorithm will 
return false for the resource insufficiency. If we change 
the resource requirement of 8t  to no more than nine, the 
algorithm will return the path  2

7 8 5 9t t t t , or 2
7 5 8 9t t t t  

randomly. And 9 12endTS≤ ≤ , which means that the time 
consumption is less than 15 time units. And it meets the 
limitation of fifteen time units. On the other hand, if we 
change the time requirements’ domains of 1t , 2t  and 3t  to 
be [3,3.5] , [8,8]  and [3,3.5]  respectively, the algorithm 
may get the path  1

1 2 5 3t t t t  or 1
1 5 2 3t t t t  randomly. And it will 

consume thirteen resource units. At that time 
14 15endTS≤ ≤ , which also meets the limitation of fifteen 
time units. 

If we change the initial marking to the instance that 
0 1( , ) 0token M p = , 0 2( , ) 1token M p = , 0 2( , ) 1M pν = , 

and the other places’ markings are the same as in Fig. 5. 
The timestamp of 0M  is also set to be zero initially. The 
target marking eM  satisfies the following conditions: 

2( , )etoken M p  0= , 14( , ) 1etoken M p = , 14( , ) 1eM pν =  
and the other tokens remain the initial values. According 
to the requirements in Section VI(A), 8endTS ≤  should be 
met. 

By calling the function 0( , , ,escheduling TCPNIA M M  
25,8) , the algorithm will return true and give a 
schedulable path 10 11 12t t tδ = . In the state endS , 
0 7endTS≤ ≤ . And it consumes 23 units resource. In the 
path 0 10 1M t M , the marking 1M  satisfy the conditions: 

1 2( , ) 0token M p = , 1 12( , ) 1token M p =  and 

1 12( , ) 1M pν = . The algorithm can get a schedulable path 

1 10tδ =  from the initial marking 0M  to the marking 1M , 
with 2 time units bound and 5 resource units bound. And 
it can also get a schedulable path 2 11 12t tδ =  from the 
marking 1M  to the marking eM , with 5 time units  
bound and 18 resource units bound. Then the time 
consuming amount satisfies 2 5 7 8+ = ≤ , and the 
resource requirement satisfies 5 18 23 25+ = ≤ . So the 
conditions in the Theorem 3 are satisfied. Thus the 
schedulability of 10 11 12t t tδ =  can be got from the 
composition of 1δ  and 2δ . 

VII. CONCLUSION 
TCPNIA integrates features of colored Petri nets, 

timed Petri nets and inhibitor arcs. So it can represent 
multi types of data, control information and resources in a 
single figure. The temporal relations can also be 
represented in the figure conveniently. Moreover, analysis 
methods of traditional Petri nets can also be used in 
TCPNIA. Modular modeling methods for complicated 
systems using TCPNIA are proposed. They can reduce the 
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complexity of modeling and enhance the reusability of 
modules. 

To schedule the system described with TCPNIA, a 
depth-first heuristic search algorithm is proposed. The 
algorithm has considered not only the factors of resource 
and time constraints, but also the influences from data 
operational functions. The influences from data 
operational functions and system level abstract resource 
are rarely considered in present literatures. The time 
requirement domain bounds of a schedulable path can be 
got directly from the timestamp domain bounds of the end 
state in the algorithm. Transitions’ parallel executions are 
considered when calculating the time requirement bounds 
of the schedulable path. The proposed scheduling method 
can also be used for traditional timed Petri nets model. 
The case study has shown the feasibility of our method. 

We are planning to study automatic task construction 
method for a real-time embedded system modeled by 
TCPNIA in the future. Model driven architecture will be 
used in software development life cycle to enhance 
systems’ reliability, performance, dependability et al. So 
we will concentrate on model transformations from UML 
2.0 to TCPNIA in the future. Thus, the properties 
described in UML model can be verified and analyzed 
formally through TCPNIA model. 
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