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Abstract—Pseudoknotted RNA structure prediction is an 

important problem in bioinformatics. Existing polynomial 

time algorithms have no performance guarantee or can 

handle only limited types of pseudoknots. In this paper for 

the general problem of pseudoknotted RNA structure 

prediction, maximum weighted stacking problem is 

presented based on stacking actions, and its polynomial time 

approximation algorithm with O(nlogn) time and O(n) space 

and polynomial time approximation scheme are given. The 

approximate performance ratio of this approximation 

algorithm is 3. Compared with existing polynomial time 

algorithm, they have exact approximation performance and 

can predict arbitrary pseudoknots. 

 

Index Terms—RNA structure, appproximation algorithm, 

approximation scheme, pseudoknot 

 

I.  INTRODUCTION 

RNAs are versatile molecules: messenger RNAs carry 

genetic information and act as the intermediary agent 

between DNAs and proteins; ribosomal RNAs, transfer 

RNAs, and other non-coding RNAs play important 

structural, regulatory, and catalytic roles in cells
 [1]

. To 

understand fully the various functions of RNAs, we need 

to first understand their structures. The primary structure 

of an RNA is the sequence of nucleotides (that is, the four 

different bases A, C, G, and U) in its single-stranded 

polymer. However, these sequences are not simply long 

strands of nucleotides. In RNA, complementary bases of 

guanine and cytosine pair (G, C) by forming a triple 

hydrogen bond, and these of adenine and uracil pair (A, U) 

by a double hydrogen bond; additionally, these of 

guanine and uracil can form a single hydrogen bond base 

pair. An RNA folds into a three-dimensional structure by 

these hydrogen bonds, that are nonconsecutive in the 

sequence. The three-dimensional arrangement of the 

atoms in the folded RNA molecule is its tertiary structure; 

the collection of base pairs in the tertiary structure is the 

secondary structure. Experimental test of RNA tertiary 

structure is too expensive and time consuming to meet 

practical   need, so predicting RNA structure prediction 

by computer becomes a basic method and issue in 

computational biology 
[2][3]

. 

The secondary structure of an RNA is the scaffold of 

its tertiary structure. RNA secondary structure prediction 

is the first step to predict RNA tertiary structure from 

RNA sequence. The best algorithm Zuker predicts RNA 

secondary structure without pseudoknots with O(n
3
) time 

and O(n
2
) space for a sequence of length n and is 

implemented by MFOLD
 
and ViennaRNA programs. But 

they  couldn’t predict pseudoknots. 

Among the most prevalent RNA structures is a motif 

known as the pseudoknot. Pseudoknots play a variety of 

diverse roles in biology 
[2]

. Plausible pseudoknotted 

structures have been proposed 
[4]

 in 1985 and confirmed 
[5]

 

in 1998 for the 3’ end of several plant viral RNAs, where 

pseudoknots are apparently used to mimic tRNA structure. 

Recently, pseudoknots were confirmed in some RNAs of 

humans and many other species [6][7].  

Currently pseudoknot is not included in the majority of 

the study for RNA secondary structure prediction. 

Finding the best secondary structure including arbitrary 

pseudoknots has been proved to be NP-hard 
[8]

.  

Most methods for RNA folding which are capable of 

folding pseudoknots adopt heuristic search procedures 

and sacrifice optimality. Examples of these approaches 

include quasi-Monte Carlo searches and genetic 

algorithms. These approaches are inherently unable to 

guarantee that they have found the best structure, and 

consequently unable to say how far a given prediction is 

from optimality [9][10].  

A different approach to pseudoknotted prediction is the 

maximum weighted matching algorithm, considering 

only the base paired action and no stacking action. The 

maximum weighted matching algorithm folds an optimal 

pseudoknotted structure in O(n
3
) time with low accuracy 

and seems best suited to folding sequences for which a 

previous multiple alignment exists 
[11]

. Another approach 

adopts dynamic programming to predict the tractable 

subclass of pseudokonts based on complex 

thermodynamic model in O(n
4
)-O(n

6
) time[12]-[14].  

Adjacent base pairs form stack, stacking and base 

pairing actions in RNA molecules are the most primary 

and stable actions 
[8]

. Maximum stacking problem has 

also attracted close attention in RNA secondary structure 
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Figure 1.  RNA secondary structure.and pseudoknots. 

prediction containing pseudoknots. Ieong presented the 

problem of maximum stacked base pairing number 
[8]

. 

Lyngsø presented the problem of maximum stacking 

number, proved this problem belongs to NP-hard class 

and designed its polynomial time approximate scheme
[15]

. 

Lyngsø treat all stacks as the same. RNA structural 

experimental results indicate that the different types of 

stacks have the different energy, and the energy of stack 

is determined by the type of its base pairs. So we present 

maximum weighted stacking problem based on biological 

stacking and base pairing actions, and discuss its 

algorithm and complexity. 

We give a polynomial time approximation algorithm 

with O(nlogn) time and O(n) space, and a polynomial 

time approximate scheme to predict arbitrary 

pseudoknots. The approximate performance ratio of this 

algorithm is 3.  

Compared with existing polynomial time algorithm, 

which can handle only limited types of pseudoknots or 

have no performance guarantee, they have exact 

approximation performance and can predict arbitrary 

pseudoknots.  

In section 2 we present the maximum weighted 

stacking problem. In section 3 we give a polynomial time 

approximation algorithm. In section 4 we give a 

polynomial time approximate scheme (PTAS). In section 

5 we briefly conclude the paper. 

II.  RNA STRUCTURE PREDICTION 

One single-stranded RNA molecule can be viewed as a 

sequence of n symbols (bases) drawn from the alphabet 

{A, C, G, U}.  Let sequence s=s1s2…sn be a single-

stranded RNA molecule, where each base si{A, U, C, 

G}, 1≤i≤n. The subsequence si, j = si si+1…s j is a segment 

of s, 1≤i≤j≤ n. 

To a first approximation, one can model its secondary 

structure as follows. If si and sj are complementary bases 

(A&U, C&G, U&G), then si and sj may constitute a base 

pair (i, j). Each base can at most take part in one base pair, 

in other words, the set of base pairs forms a matching. It 

also turn out that secondary structures are noncrossing as 

Fig.1. 

Definition1 (RNA secondary structure, S) Concretely 

we say that a secondary structure S on s is a set of base 

pairs S={(i, j)}, where i, j{1,2,…,n}, that satisfies the 

following conditions. 

(i)      (No sharp turns.) The ends of each pair in S are 

separated by at least three intervening bases; that is, if (i, 

j)S, then i<j-3. 

(ii) For any pair (i, j) in S, (i, j) {(A,U), (C,G), 

(U,G), (U, A), (G,C), (G,U)}. 

(iii) S is a matching: no base appears in more than 

one pair. 

(iv) (The noncrossin condition.) If (i, j) and (k, l) are 

two pairs in S, then they are compatible, that is, they are 

juxtaposed (e.g. i<j<k<l) or nested (e.g. i<k<l<j). 
Base pair and internal unpaired bases construct loops. 

If (i, j) and (i+1, j-1)S, base pairs (i, j) and (i+1, j-1) 

constitute stack (i, i+1: j-1, j), and m(≥1) consecutive 

stacks form the helix (i, i+m: j-m, j) with the length of 

m+1. The energy of helix (p, p+m-1: i-m+1,i) is denoted 

as E(p, p+m-1:i-m+1,i).  

If base pairs (i, j) and (k, l) are incompatible, they 

constitute pseudoknots (i<k<j<l or k<i<l<j) as Fig.1.  

Stack is the only type of loops that stabilize the 

secondary structure [8]. Maximum stacking number 

problem treat all stacks as the same. In RNA, 

complementary bases of guanine and cytosine pair (G, C) 

by forming a triple hydrogen bond, and these of adenine 

and uracil pair (A, U) by a double hydrogen bond; 

additionally, these of guanine and uracil can form a single 

hydrogen bond base pair. RNA structural experimental 

results indicate that the different types of base pairs and 

stacks have the different energy, and the energy of stack 

is determined by the type of its base pairs. So we present 

maximum weighted stacking problem based on biological 

stacking and base pairing actions, and discuss its 

algorithm and complexity. 

Definition2 (stacking fold model of pseudoknotted 

RNA structure prediction, SFM): For RNA sequence s, 

s{A, U, C, G}*, a secondary structure S is a set of base 

pairs such that if (i, j)S then 

(i)      The ends of each pair in S are separated by at 

least four intervening bases; that is, if (i, j)S, then i<j-3. 

(ii) For any pair (i, j) in S, (i, j) ∈{ (A,U), (C,G), 

(U,G), (U, A), (G,C), (G,U)}. 

(iii) S is a matching: no base appears in more than 

one pair. 

(iv) If (i+1, j-1)S, then (i, j) and (i+1, j-1) form 

stack with the weight of w(i, i+1:j-1, j).  

(v) If (i+1, j-1),(i’, j’),(i’+1, j’-1)S, si=si’ , sj=sj’ 

and si+1=si’+1, sj-1=sj’-1, then w(i,i+1:j-1,j)=w(i’, i’+1: j’-

1,j’). That is, the size of stacking force is determined by 

base pair itself and adjacent bases pair.  

(vi) If (i+1, j-1)S, then the weight of S is W(S)= 

∑1i<jnw(i, i+1:j-1, j).  

So the determinant problem of maximum weighted 

stacking is to determine if there is a secondary structure S 

under SFM model with W(S) K for given RNA sequence 

s and constant K. The optimal problem of maximum 

weighted stacking is to find a secondary structure S with 

maximal weight for given RNA sequence s under SFM 

model. 

If  W(i, i+1:j-1, j)=-E(i, i+1:j-1, j), then the solution of 

maximum weighted stacking is the minimal energy 

structure. Not only the weight maybe the value of energy, 
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but also maybe the results of phylogeny analysis, or other 

auxiliary information.  

Definition3: If (i, j), (i+1, j-1), …, (k, l) are all base 

pair in si,j, i<k<l<j, then the structure enclosed by (i, j) 

and (k, l) is denoted as stem S[i,j], and the length of S[i,j] 

is denoted as LS[i, j]＝(k-i+1).    

Lemma1：Let the length of stem A[i, j] is LA[i, j]. We 

split A[i, j]  into k segments: a1,a2,…,ak, such that 

La1+La2+…+ Lak=LA. The number of stacks in the k 

segments is Lai-k=LA-k. 

Proof： 

By the definition of stem, the base pairs in A[i, j] are (i, 

j), (i+1, j-1), …, (i+ LA[i, j]-1, l- LA[i, j]+1) , and the 

number  of stacks in A[i, j] is LA[i, j]-1.  

Similarly, the number of stacks in ai is Lai -1, 1ik. 

So the number of stacks in the k segments is Lai-

k=LA-k. 

Theorem1 ： The maximum weighted stacking 

problem belongs to NP-hard. 

Proof： 

If W(i, i+1:j-1, j)=1, the maximum weighted stacking 

problem become the  maximum stacking number problem, 

which belongs to NP-hard [15]. The proof is by reduction 

from the BIN PACKING problem, known to be strongly 

NP hard [16].
 

In the BIN PACKING problem we are given k items of 

sizes a1,….,ak and B bins each with capacity C, and have 

to determine whether the items fit into the bins. Or in 

more mathematical terms, we need to determine whether 

the k elements a1,….,ak can be partitioned into B sets, 

with the sum of elements in any set at most C. Given an 

instance of BIN PACKING we construct the RNA 

sequence s and the target K. 

 

kaK

A...AGAGGAAAA...ACACCs

k

i

i

GB

CCCaaa

C

k






1

  of  substring  

21

  

 

As A’s can only form base pairs with U’s in  SFM  

model, all base pairs in a legal structure for s will be (C,G) 

base pairs and s clearly meets the assumptions discussed 

above. Furthermore, any C in s is separated from any G in 

s by at least three other bases, so any otherwise unpaired 

C can form a legal base pair with any otherwise unpaired 

G in s. 

Hence, we can find a structure S with W(S) =K iff we 

can partition the k substrings of C’s of lengths a1,….,ak  

into B groups that can each be fully base paired using one 

substring of  C consecutive G’s; i.e. the total length of the 

substrings of C’s in any group can be at most C. Clearly 

this is possible iff the original BIN PACKING problem 

has a solution.  

The length of s is ∑ai+k+BC+B+1. As BIN PACKING 

is strongly hard we can assume that are all a1,….,ak ,  B, C 

polynomially bounded by the size of the original BIN 

PACKING instance.  

Hence, |s| is also polynomially bounded by the size of 

the original BIN PACKING instance. Clearly the same 

holds for a fair representation of the target K. 

Constructing s and K in time polynomial in the size of 

their representations is trivial. 

So the theorem is true, and the maximum stacking 

number problem is a special case of the maximum 

weighted stacking problem. In fact, the maximum 

weighted stacking problem is a special case of the 

maximum weighted independent set. 

III.  APPROXIMATION  ALGORITHM 

We further simplify sequences s, change G into A, 

change U and C into B, then base pair (A,U), (C,G) and 

(G,U) into (A,B), the type of stacking is reduced into 

three classes ((A,A: B,B), (A,B: A,B), (B,A: B,A)). 

A.  Approximation Algorithm 

Definition4: Given arbitrary subsequences si,j and sk,l 

of s, if 1i<k j<l or 1k<il< j, then si,j conflicts with 

sk,l. 

 Lemma2: If we group all stacks of s into two sets 

((A,B: A,B),(B,A: B,A)) and (A,A:B,B) by the type of stack, 

then W(s) 2*max(A1, A2), A1 is the weight of maximum 

stacks formed by {(A,A: B,B)} set, and A2 is the weight of 

maximum stacks formed by {(A,B: A,B),(B,A: B,A)}set. 

Proof： 

For stacking structure, there are properties of the 

relative independence and partition, which make the 

element only form stack with the element in the same set. 

The stacks from the different set may conflict, so they 

can’t stay in S at the same time. So 

W(s)A1+A22*max(A1,A2). 

According to above theory, we design an 

approximation algorithm SA for the maximum weighted 

stacking problem as follows.  

B.  Performance 

Lemma3: Given the subsequence SB=B
k
 and 

SA={si,j=A
x
|2xk}, we descending sort SA by the length 

of si,j , take out the subsequence from SA in turn and 

match that from SB, then the number of matched stacks is 

the biggest one. 

Proof :  

Let max(x) be M. When kM, the lemma is obviously 

right.  

When k=M+1, the subsequence A
M 

will match with B
k
, 

then the number of stacks is k-2. If we use the 

subsequence si,j with the length of less M , then the 

number of stacks is less than k-2 according to lemma1. 

We suppose that the lemma is right when k=m>M. 

When k=m＋1, the length of stacks is more than m-2 in 

our algorithm. If we replace the selected subsequences 

with the other subsequences in SA, then the length of 

stacks would less than or equal to the replaced one by 

lemma1. So the general matched stacks is less than or 

equal to our result.  

Therefore the lemma is right.  

Lemma4: For any instance I for the maximum 

weighted stacking problem, let the optimal solution be 

OPT(I) with the weight of W(OPT(I)), and the solution of 
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SA is SA(I) with the weight of W(SA(I)), then 

W(OPT(I) )/W(SA(I))3. 

Proof: 

The set of Ax and Bx is corresponding to the stacking 

class of (A, A: B, B). Let the optimal solution to the 

stacking class of (A, A: B, B) is OPT(A1) with the weight 

of W(OPT(A1)). 

The stack formed by Step1 is belong to perfect match, 

so the number of matched stack  that of stack in OPT(A1) 

formed by corresponding elements.  

The number of stack formed by step2  that of stack in 

OPT(A1) formed by corresponding elements  by lemma3.  

Let the number of stack in split Bx be Nx, and the 

number of stack formed by corresponding elements in 

OPT(A1) be Ox.  Let the number of stack formed by AZ 

be NAZ, the number of stack in split BZ be NBZ, and the 

number of stack formed by corresponding elements in 

OPT(A1) be OZ.  

1) If AZ  BZ and B2  , then A2 = , and the length 

of Ax matched with B2 is at least 3.  

Let the element number of B2 is k, then N2  2k/3. But 

O2  k, so N2  (2/3) O2. 

Let the element number of B3 is k, then the length of Ax 

corresponding to B3 is more than 3. N3  4k/3, and O3  

2k, so N3  (2/3) O3. 

Let the element number of B4 is k, then the length of Ax 

corresponding to B4 is more than 2. N4  2k, and O4  3k, 

so N4  (2/3) O4. 

When the length of Bx is more than 4, each split can at 

most reduced one stack. Let BZ = k, then NAZ  2k/3. The 

number of reduced stack in splitting BZ  k/5, so NBZ  

(NAZ - k/5)  (7/10 ) NAZ  (7/10 ) OZ. 

2)  If AZ  BZ and B2 = , then the length of Ax 

corresponding to B3 is equal to 2, or more than 3. 

When the length of Ax is equal to 2, each of B3 can 

formed stack only with one A2. Let the number of element 

in B3 is k, the number of A2 corresponding to B3 is greater 

than k, therefore the optimal value can be get after 

segmentation. 

When the length of Ax is greater than 3, N3  4k/3. In 

addition, O3  2k, so N3  (2/3) O3. 

When the length of Bx is greater than 3, each split can 

at most reduce one stack. Let BZ = k, there are four cases 

as follows. 

a) If the length of corresponding Ax is equal to 2, and 

Bx is an even number, then the splitting of BZ can not 

reduce the number of stack. 

b) If the length of corresponding Ax is equal to 2, and 

Bx is an odd number, then NAZ  3k/5. Because the 

reduced number  k/5, NBZ  (NAZ - k/5)  (2/3) NAZ  

(2/3)OZ.  

c) If the length of corresponding Ax is greater than 2, 

and the length of Bx is equal to four, then N4 2k, which 

the number of elements in B4 is equal to k. In addition, O4 

3k, so N4  (2/3) O4. 

//Given s=s1s2…sn, let the weight of (A,A:B,B)、(A,B:A,B) and 

(B,A:B,A) is W(A,A:B,B) 、 W(A,B:A,B) and W(B,A:B,A) 

respectively. 

Approximation algorithm SA: 

step1: Search all Ak subsequences and Bk subsequences (2≤k≤n) in 

s, put them into sets A2,A3,..,An and B2,B3,.,Bn by the length. 

Then count AZ=2|A2|+3|A3 |+..+n |An | and BZ= 2|B2 |+3|B3  

|+..+n|Bn|. At last match all subsequences of Ax and Bx one by  

one, delete matched elements and record the number of 

matched elements Px. 

step2: If AZBZ，descending sort the elements in Bn,Bn-1,., B2，put 

the elements of An,An-1,., A2 on them in turn by descending sort. 

Then cut the sequence according to Bn,Bn-1,., B2 to make best of 

forming stacks and calculate the number of stacks S12. 

If AZ<BZ, descending sort the elements in An,An-1,., A2，put the 

elements of Bn,Bn-1,., B2 on then in turn by descending sort. 

Then cut the sequence according to An,An-1,., A2  to make best 

of forming stacks and calculate the number of stacks S12. 

S1= S11+ S12=∑2≤x≤n(x-1)*Px+ S12. 

Step3: Search all subsequences of AB and BA in s, then built graph  

C1 and C2 using the subsequences as vertexes, and evaluate the 

vertexes with W(A,B: A,B) or W(B,A:B,A) by the type of stack. 

If the subsequence corresponding to C1 conflicts with the 

subsequence corresponding to C2,  draw a line between the 

vertexes.  

Step4: Calculate the maximum weighted independent set formed 

by C1 and C2, then delete the vertexes which not belong to the 

maximum weighted independent set, and count the number of 

stacks S2＝|C1|/2, S3= |C2|/2 

Step5: If W(A, A: B,B)S1 W(A,B: A,B) S2+ W(B,A:B,A) S3, outpur 

W(A, A: B,B) S1，otherwise output W(A,B: A,B) S2+W(B,A:B,A) S3.  
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Sequence：AAABBBBABBBAABA 

 

(11,12) 

(3,4) 

(13,14) 

(8,9:) 

C1 

S2 

C2 

S3 
S1 

(7,8) 

(14,15) 

AAA-BBB 

BBBB 

AA 

 

 

Figure 2.  Example of approximation algorithm 

 

d) If the length of corresponding Ax is greater than 2, 

and the length of Bx is more than four, then NAZ  2k/3. 

Because the number of reduced stack  k/5, NBZ  (NAZ 

- k/5)   (7/10) NAZ  (7/10) OZ.  

Therefore in step 2, NBZ (2/3) OZ. 

Similarly, when AZ < BZ, NBZ  (2/3) OZ in step2. 

That is, W(A, A: B, B)S1  (2/3) W(OPT(A1))  

2) Fig.C1 and C2 is corresponding to the class of stack (A, 

B: A, B) and (B, A: B, A). Let the optimal value of Fig. C1 

and C2 be OPT(A2). 

If two vertices are both in Fig.C1 or C2, and they can 

constitute a stack, then a line is added to connect them. 

Due to the relative characteristics of independence in 

stack structure and classification: there is no conflict 

between any two vertices in C1 or C2. If we don’t 

consider the connect lines in C1 and C2, C1 and C2 will 

form two cliques, and arbitrary vertex in the clique can 

add to the optimal structure with the same probability, as 

shown in Fig2. 

Step4 select the maximal weighted stack from the 

stacks formed by conflict fragments. If the C1 or C2 is an 

odd number, you may lose a stack.  

By removing the greatest degree vertex from the 

vertexes with large weight and adding its adjacent vertex, 

the adjusted stacks have the greatest weight, as shown in 

Fig1. After deleting the conflict lines and vertexes, C1 

and C2 still constitute two cliques with the stack of S2= 

|C1|/2 and S3= |C2|/2 respectively. 

So the calculated value of weight is W(A, B: A, B)S2 + 

E(B, A: B, A)S3  W(OPT(A2)). 

By lemma2, W(OPT(I))  2*max(W(OPT(A1)), 

W(OPT(A2)))  2*max((3/2) W(A, A: B, B) S1, W(A, B: A, 

B)S2 + W(B, A: B, A)S3)  3 W(SA(I)). 

Therefore W(OPT(I) )/W(SA(I))3. 

Lemma5: Given sequence s with the length of n, 

algorithm SA has O(nlogn) time and O(n) space . 

Proof: 

Because the sum of A
k
 and B

k
 <n, so the time 

complexity for searching and counting in Step1 is O(n), 

and the space complexity is O(n). 

The time complexity for sorting and selecting in Step2 

is O(nlogn), and the space complexity is O(n). 

Because  the sum of AB segment and BA segment <n, 

so the time complexity for searching and constructing 

figure in Step3 is O(n), and the space complexity is O(n). 

In step4, linear time is used to calculate the maximal 

weighted independent set with the degree less than 2 by 

dynamic programming, moreover the time and space 

complexity for deleting and counting is O(n). 

The time complexity of Step3 is O(1). So the time and 

space complexity of this algorithm is reduce to O(nlogn) 

and O(n) respectively. 

Theorem2: For any instance I for the maximum 

weighted stacking problem, algorithm SA is the 

approximation one with the polynomial time and the 

approximate performance ratio of 3.
  

Proof: 

By lemma 4 and lemma 5, the theorem is right. 

IV. APPROXIMATION SCHEME 

A.  Approximation Scheme 

We divide sequence into single base, adjacent double 

bases, and adjacent K (Kinteger and K2) bases in all 

possible ways, then built graph using them as vertexes. If 

two subsequences can form a stem, a line is added to 

connect them, and the stem energy is assigned to it as its 

weight, we compute the maximum weighted matching for 

each partition, and choose the maximum weighted 

matching of all the partitions as the result. 

As each base belongs to adjacent i bases or single base, 

the number of partitions is K
n
, 2≤i≤K. For each partition, 

O(n
3
) time is required to compute the maximum weighted 

matching, so the time complexity is O(n
3
K

n
) to compute 

maximum weight matching of all the partitions. 

But we need only consider the type and energy of 

paired adjacent i bases, not paired adjacent i bases 

themselves, 2≤i≤K. So we represent the energy of paired 

adjacent i bases as weight, and save the number of 

unpaired adjacent i bases for each type of adjacent i bases 

in order to pair with back complementary ones. For each 

type of unpaired adjacent i bases, if two partitions all 

have the same the number of this type of unpaired 

adjacent i bases, and they have the same paired weight, 

then they have the same results.  

Moreover for each type of unpaired adjacent i bases, if 

the partitions all have the same the number of this type of 

unpaired adjacent i bases, we need only choose the one 

with maximal weight from these partitions according to 

the theory of optimization. 

Let dk=2iK4
i
,
 
matrices S[x1][x2]…[xdk], SA[x1] [x2]…[xdk] 

and SB[x1][x2]…[xdk] represent respectively the maximal 

energy of sequences s1,i, s1,i-1, s1,i-2 with xi unpaired 

adjacent yi bases in the ith type (1idk, 0xini). 

Because each partition has at most n/2 stack, then we can 

reduce computation by branch-bound method. Base on 

above principle, we give an approximation scheme for 

pseudoknotted RNA secondary structure prediction.  

B.  Performance 

Lemma6: Let OPT(I) be the maximal energy that can 

be formed by any secondary structure of sequence I. Let 

SAA[I] be  the output by algorithm SAA. Then, OPT(I) / 

SAA[I]  1+1/(K-1), Kinteger and K2. 
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Figure 3.  Example of approximation algorithm 

//Let s=s1s2…sn be the input sequence, Kinteger and E(S) is  

the output energy of the algorithm. 

//Initially, E(S)= , matrices S=0, SA=0, and SB=0.  

SAA(s) 

1. for m=2 to K do 

Divide sequence s into n-m+1 adjacent m bases in all 

possible ways.  

Compute the number of each types of adjacent m bases. 

end for 

2. Sort all type of adjacent bases such that n1n2 ...ndk, 

dk=2iK4i. qi=ni+1. 

3. for i=2 to n do 

for m=2 to K do 

Assuming the type of adjacent m bases si-m+1... 

si-1si is the kth and that of adjacent m bases sp sp+1...sp+m-1 

paired with si-m+1... si-1si is the lth.  

1) S[x1]...[xk+1]...[xdk] = SB[x1]...[xk]...[xdk],  if S [x1]...[xk+1]... 

[xdk]< SB[x1 ] ... [xk] ...[xdk] and x1y1+x2y2+... +xdkydki-m. That 

is, si-m+1...si-1 si is adjacent m bases waiting for pair. 

2) S[x1]...[xl-1]...[xdk] = SB[x1]...[xl]...[xdk]+E(i-m+1,i: j, j+m -1),   

if S[x1]... [xl-1]...[xdk]< SB[x1]...[xl]... [xdk] + E(p, p+m -1:i-m+1,i) 

and x1y1+x2y2 +...+ xdkydk i-m. That is, si-m+1... si-1si forms 

helix with adjacent m bases waiting for pair.  

end for  

SB=SA, SA=S, if x1y1+x2y2+...+xdkydki. 

end for 

4. E(S)=max(S[x1][x2]...[xdk]), if x1y1+x2y2 +...+xdkydk i. 

 

 

Proof:  

Let the stem in OPT(I) are x1,x2,...,xm with the length of 

l1,l2,...,lm and the energy of Ex1, Ex2,..., Exm, m1. 

xqOPT(I),1 q  m, if lq  K, then we choose that 

Eq= Exq; otherwise we divide xq into stem with the length 

of 2, and group these stems into K set Xq1,Xq2,...,XqK. 

Xq1={ (i,i+1: j-1,j), (i+K+1,i+K+2: j-K-2,j-K- 1),...} 

Xq2={ (i+1,i+2: j-2,j-1), (i+K+2,i+K+3: j-K-3, j- K-

2), .... } 

.... 

Xqk={ (i+K,i+K+1:j-K-1,j-K), (i+2K+1,i+2K+2: j-2K-2, 

j-2K-1) ,.... } 

Let the energy of Xq1,Xq2,...,XqK is EXq1, EXq2,...,EXqK 

respectively, then Exq= EXq1 + EXq2 +...+ XqK. 

After that, we sort EXq1,EXq2,..,EXqK such that EXqa1  

EXqa2 …  EXqaK and delete the energy EXqaK in order to 

just divide xq into stems whose length is not more than K.  

For example, for x1,x2OPT(I) in Fig.3, when K=4, we 

divide x1 into four groups of 1-4, then delete the energy 

of the second group so that x1 is divided into two stems 

with the length of 2 and 4.  

Let the sum of left energy is Eq, then 

Eq  (EXq1+EXq2+...+EXqK)(K-1) /K=(K-1) Exq/K. 

After above handle, all helices in OPT(I) become the 

structures formed by the stems whose length is not more 

than K, then 1qmEq1qm(K-1)Exq/K= (K-1)OPT(I)/K. 

Also the length of sequence s1,i is i, so each partition of 

s meets the condition x1y1 + x2y2 + ...+ xdkydk  i. 

Obviously SAA[I] is the optimal structure formed by 

stems whose length is not more than K. 

Therefore, SAA[I]1qmEq(K-1)OPT(I)/K 

OPT(I)/SAA[I]K/(K-1)=1+1/(K-1).  

 Lemma7: Given an RNA sequence s of length n, 

algorithm SAA computes the maximal energy that can be 

formed by s in O((n/2dk)
dk+1

)time and O((n/dk)
dk

)space. 

Proof:  

The time complexity of Step1 is O(Kn). 

The time complexity of Step2 is O(KnlogKn). 

The time complexity of Step3 is O(K 2in 

(x1+1)(x2+1)....(xdk+1) ). 

The time complexity of Step4 is 

O((x1+1)(x2+1)....(xdk+1) ). 

By the condition x1y1+x2y2+...+xdkydkI, we can see that 

when i is big enough, x1x2...xdk (i/ 2dk)
dk

. 

So the time complexity of algorithm SAA is O(K 2in 

(x1+1)(x2+1)....(xdk+1))=O(K 2in 

(i/2dk)
dk

)=O((n/2dk)
dk+1

). 

By the condition n1+n2+...+ndk(K-1)n and 

n1n2....ndk, we can see that the space complexity of 

algorithm SAA is SAA O(q1q2....qdk )=O((n/dk)
dk

). 

Theorem3: The Algorithm SAA is a 1+ 

approximation algorithm for the problem of constructing 

a secondary structure S with maximal energy for given 

RNA sequence s under SFM model, =1/(K-1), 

Kinteger and K2. 

Proof:  

By Lemmas 6 and 7, the result follows. 
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V. CONCLUSION 

In this paper for the general problem of pseudoknotted 

RNA structure prediction, maximum weighted stacking 

problem is presented based on stacking, and its 

polynomial time approximation algorithm with O (nlogn) 

time and O(n) space and polynomial time approximation 

scheme are given. The approximate performance ratio of 

this approximation algorithm is 3. Compared with 

existing polynomial time algorithm, they have exact 

approximation performance and can predict arbitrary 

pseudoknots 
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