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Abstract—The environment of loan in bank is very complex, 

there are not only random factors but also fuzzy factors, so 

the return rates of loan often have fuzzy random 

characteristic. Mean chance is a measure of fuzzy random 

variable. This paper proposes two fuzzy random dependent-

chance programming models of loan portfolio, one is 

minimize the mean chance of a bad outcome under the 

certain expected return rate, one is maximize the mean 

chance of the prospective return rate under the certain 

expected return rate. Hybrid intelligent algorithms are 

employed to solve the models. Finally, two numerical 

examples are given to show the validity and feasibility of the 

models and algorithms. 

  

Index Terms—dependent-chance programming, loan 

portfolio, mean chance, fuzzy random 

   

I. INTRODUCTION 

In order to distribute risk, the bank puts loan in the 

different projects, which is loan portfolio. Essentially, it 

is portfolio selection. Loan portfolio is that the bank 

should decide how to allocate the certain capital in 

proportion so as to obtain the maximal return rates and 

the minimal risk. Since Markowitz[1] initialized the 

mean-variance model of portfolio selection, many 

scholars propose many different methods to solve 

portfolio problem. Tang[2] gave a kind of probability 

criterion portfolio investment model, in the model, the 

objective is to maximize the probability of the 

prospective return rare. Under the constraint of certain 

returen rate, Sheedy[3] establishes the asset allocation 

decision model when the risk changes. Ning[4] gives 

chance programming model of loan portfolio when the 

return rate is fuzzy. Dietsch and Petey[27] proposed a 

internal credit risks model about SME loan. Huang[16] 

measured portfolio risk by the variance based on 

credibility and proposed two new credibility-based fuzzy 

mean-variance models. Tanaka and Guo[15] quantified 

mean and variance of a portfolio through fuzzy 

probability and possibility distributions. These models’ 

objective is mainly maximize the return rates under the 

constraint of certain risk, or minimize the risk under the 

constraint of certain return rate. Risk is primarily 

mathematically defined in three ways: variance, 

semivariance and a probability of a bad outcome. Based 

on Markowitz’s mean-variance model, a large numbe of 

extensions have been proposed[5,6,7,8]. Semivariance is 

another measure of risk proposed by Markowitz[9], 

semivariance is an important improvement of variance 

because it only measures the investment return below the 

expected value. Many models have been built to 

minimize the semivariance from different angles[10,11],. 

The third popular definition of risk is a probability of a 

bad outcome initially by Roy[12]. Much research has 

been undertaken to find ways of minimizing the 

probability of the bad outcome[13,14]. 

However, the above studies mainly focused in two 

directions: stochastic environment and fuzzy environment. 

But the investment environment is so complex, 

sometimes we have to deal with the uncertainty of both 

fuzziness and randomness simultaneously. For example, 

the loan return rate can be regarded to be triangle fuzzy 

variable )1.0,,1.0(   , and   is random 

variable. Thus we have to face “fuzzy return rates with 

random parameters”. To deal with this type of uncertainty, 

this paper proposes that return rates be regarded as fuzzy 

random variable. Huang[23] gave a new optimal model of 

portfolio selection with random fuzzy returns, the paper 

proposed the primitive chance measure of risk, but the  

primitive chance measure only measures the maximum 

possibility of a random fuzzy or fuzzy random event 

occurs under a given probability level, and she did not 

research optimal model in fuzzy random environment. So 

in this paper, we consider the loan portfolio problem in 

fuzzy random environment, and because the mean chance 

measures the mean or expected possibility of the fuzzy 

random event, it can show the possibility of the fuzzy 

random event more extensive than primitive chance, so 

we use the mean chance of a bad outcome to measure the 

risk. Base on mean chance, this paper proposes two new 

dependent-chance programming models, one is minimize 

the mean chance of a bad outcome under the certain 

expected return rate, another is maximize the mean 

chance of the prospective return rate under the certain 

expected return rate, and designs hybrid intelligent 

algorithms to solve the models.  

The rest of the paper is organized as follows. For better 

understanding of the paper, some basic knowledge about 

fuzzy random variables is introduced in section 2. In 

section 3, we propose two new dependent-chance 

programming models based on mean chance. In order to 

give a general algorithm for the models, hybrid intelligent 
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algorithms integrating fuzzy random simulation, neural 

network and genetic algorithm are designed in section 4. 

In section 5, two numerical examples are given to show 

the new models and the efficiency of the algorithms. 

Finally, a brief summary of this paper is given in section 

6. 

Ⅱ  PRELIMINARIES 

Fuzzy random variable is a math description of fuzzy 

random phenomenon, it has different math definings, it 

was first introduced by Kwakernaak[17,18], then Puri and 

Ralescu[19], Liu and Liu[20] gave the defferent measure 

of fuzzy random variable. And according to the need of 

different theory, many scholars gave the different 

mathematical definitions and different measures of fuzzy 

random variable. In this paper, we use the definitions of 

fuzzy random variable given by Liu and Liu[20]. 

Roughly speaking, a fuzzy random variable is a 

measurable function from a probability space to a 

collection of fuzzy variables. The primitive chance 

measure, mean chance measure of a fuzzy random event 

have been defined by Liu[21], and the concepts of 

expected value operator of fuzzy random variable was 

also presented by Liu[24]. Fuzzy random theory play an 

important role in solving optimization problems 

involving both fuzziness and randomness. In this paper, 

we will employ the fuzzy random theory to solve the loan 

portfolio problem in a fuzzy random environment. 

In order to better understanding this paper, some 

concepts of probability, possibility, necessity and 

credibility measure were first briefly reviewed, and then 

we introduce the concept of a fuzzy random variable and 

the expected value, primitive chance measure, mean 

chance measure of a fuzzy random variable.  

Definition 1 Let  be a nonempty set, and Α a 

ebma lg of subsets of  . The set function Pr  is 

called a probability measure if 

 (1) 1}Pr{  ;  

(2) 0}Pr{ A  for any ΑA ; 

(3) for any countable sequence of mutually disjoint 

events 






 
1

1 }Pr{}{
i

iii AA . 

Then the triplet Pr)( Α ,,  is called a probability space.  

Definition 2  Let   be a nonempty set, and )(P   

the power set of  , if for each )(P A , there is a 

nonnegative number )(Pos A , called possibility, such 

that 

(1) 0}{Pos  , 1}{Pos  ;  

(2) }{Possup}{Pos iiii AA    for any arbitrary 

collection }{ iA  in )(P  .  

Then the triplet )Pos),(P,(   is called a possibility 

space. 

Definition 3 Let   be a fuzzy variable on a possibility 

space )Pos),(P,(   with membership function  , 

and r  a real number. The possibility, necessity, and 

credibility of a fuzzy event, characterized by r , is 

defined by 

),(sup}{Pos ur
ru




  

),(sup1}{Pos1}{Nec urr
ru




  

}).{Nec}{Pos(
2

1
}{Cr rrr    

The expected value of a fuzzy variable is defined by 

 





0

0

}{}{][ drrCrdrrCrE   . 

In order to avoid the action of  , at least one of 

the two integrals of above formula is finite. 

Definition 4 （Liu and Liu[20]）A fuzzy random 

variable   is a measurable function from a probability 

space Pr)( Α ,,  to a collection of fuzzy variables. 

Example 1  Let )5.1,,5.0(   , and 

)1exp(～ , then   is called a fuzzy random variable. 

Example 2 Let Pr),,( Α  be probability space, if 

),,,( 21 m   and m ,,, 21  are fuzzy 

variables. Then the function 

 





















mm if

if

if









      

                

     

    ,

)(
22

11


 

is a fuzzy random variable.  

Definition 5  (Liu and Liu[20]） Let   be a fuzzy 

random variable defined in probability space Pr),,( Α , 

The expected value of   is defined by 





0

})]([|Pr{][ drrEE 

 


0

})]([|Pr{ drrE   

In order to avoid the action of  , at least one of 

the two integrals of above formula is finite. 

Definition 6 (Liu[21], Gao and Liu[22]) Let 

),,,( 21 nξ    be fuzzy random vector that is 

defined in probability space Pr),,( Α , 

mn RRf :  is measurable function. Then the 

primitive chance of a fuzzy random event characterized 

by 0)( f  is a function from (0,1] to [0,1], defined as 









}}0))(({Cr|Pr{|sup{

)}(0)({Ch

f

f
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We call )}(0)({Ch  f    primitive chance of the 

fuzzy random event 0)( f .  

Theorem 1 (Gao and Liu[22]) Let ξ  be fuzzy random 

vector that is defined in probability space Pr),,( Α , 

mn RRf :  is measurable function, then 

)}(0)({Ch  f  is a decreasing function of  . 

Definition 7 (Liu[24]) Let ),,,( 21 nξ    be 

fuzzy random vector that is defined in probability space 

Pr),,( Α , 
mn RRf :  is measurable function. 

Then the mean chance of a fuzzy random event 

characterized by 0)( f  is defined as 

 
1

0
)}(0)({}0)({  dfChfCha

 

The value of the primitive chance at   measures the 

maximum possibility of a fuzzy random event occurs 

under a given probability level  , while the mean 

chance measures the mean or expected possibility of the 

fuzzy random event[26]. The geometric meaning of mean 

chance is shown in Fig.1, mean chance equals to the area 

encircled by the curve and the coordinate axis.  

 

 

 

 

Ⅲ  TWO NEW DEPENDENT-CHANCE PROGRAMMING 

MODELS OF LOAN PORTFOLIO 

Supposing the bank will loan for n  projects, let 
ix  

represent the loan proportion for the ith project, 

),,,( 21 nxxxX   is decision vector, 

),,,( 21 n   is the vector that is composed of 

return rates of n  kinds of loan, i  represents the ith 

return rate, it is a fuzzy random variable, 0R  is the preset 

bad outcome return rate. In order to avoid risk, we can 

minimize the mean chance of the return rates less than the 

preset bad outcome 0R  under the constraint of expected 

return rates no less than  , so the following model can 

be given: 





































nix

x

xE

ts

RxCh

i

n

i

i

n

i

ii

n

i

ii

a

,,2,1,0

1

][

..

)(min

1

1

1

0







                            (1) 

 

If we set the prospective return rate is 1R , the target is 

to maximize the mean chance of the return rates more 

than 1R  under the constraint of expected return rates no 

less than  , we can get the following model: 





































nix

x

xE

ts

RxCh

i

n

i

i

n

i

ii

n

i

ii

a

,,2,1,0

1

][

..

)(max

1

1

1

1







                           (2) 

Because the return rates of loan are  fuzzy random 

variables, it is hard to find out crisp equivalents of the 

above models, so hybrid intelligent algorithms are 

employed  to solve the models.  

Ⅳ  HYBRID INTELLIGENT ALGORITHM 

Now we mainly take model(1) for example to illustrate 

the solving process. Since return rates are fuzzy random 

variables, it is difficult to solve model(1) in traditional 

ways. To provide a general solution to the model (1), we 

design a hybrid intelligent algorithm integrating genetic 

algorithm(GA), fuzzy random simulation and neural 

network(NN). Fuzzy random simulation is applied to 

compute the objective values of mean chance 





n

i

ii

a RxCh
1

0 )(   and the expected return rate 




n

i

iixE
1

][  , GA is employed to find the optimal 

solution. In order to reduce the computational work, 

neural network is trained to approximate the objective 

values of mean chance 



n

i

ii

a RxCh
1

0 )(   and the 

expected return rates 


n

i

iixE
1

][  .  

A   Fuzzy random simulation: 

We should utilize fuzzy random simulation to estimate 

the uncertain functions[24]: 

Fig.1  Geometric meaning of mean chance 
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











n

i

ii

n

i

ii

a

xExU

RxChxU

1

2

1

01

][:

)(:





 

Fuzzy random simulation for )(1 xU : we first 

compute primitive chance )()(
1

0 



n

i

ii RxCh  

through step 1 to step 4.  

Step1 Generate 
m ,,, 21   from   according to 

the probability measure Pr . 

Step 2 Comput the credibility 





n

i

kiik RxCr
1

0})({  , mk ,,2,1  , 

respectively, by fuzzy simulation. 

Step 3  Set 'm as the integer part of m . 

Step 4  Return the 'm th largest element in sequence 

},,,{ 21 m  .  

Let   change from 0 to 1, then 



n

i

ii

a RxCh
1

0 )(   

can be  computed through the following formula  

 



1

0
1

0

1

0 ))(()(
n

i

ii

n

i

ii

a dRxChRxCh 

In the above step 2, the fuzzy simulation process of 

})({ 0RfCr  is described as follows: 

Generate 
k  in  evenly and make  }{ kPos , 

let }{ kk Posv  , Nk ,,2,1  ,   is a small 

number enough, the credibility of })({ 0RfCr   can 

be estimated by the following formula 



})))((|1{min

}))((|max(
2

1

0
1

0
1

Rfv

RfvL

kk
Nk

kk
Nk















, then L  is the 

fuzzy simulation value of })({ 0RfCr  . 

 

Fuzzy random simulation for )(2 xU  is described as 

follows: 

Step 1  Set 0e . 

Step 2  Generate   from   according to the 

probability measure Pr . 

Step 3  



n

i

iixEee
1

)]([  , 


n

i

iixE
1

)]([   

can be computed by fuzzy simulation. 

Step 4  Repeat the second to third steps for N  times. 

Step 5  NexE
n

i

ii /][
1




 . 

In the above step 3, the fuzzy simulation process of 

expected value of )]([ fE  is as following step 1 to step 

8. 

Step 1  Set 0g . 

Step 2  Generate 
k  evenly in   and make 

 }{ kPos , let }{ kk Posv  , Nk ,,2,1  ,   

is a small number enough. 

Step 3 Let ))(())(( 1 Nffa    , 

))(())(( 1 Nffb    . 

Step 4  Generate r  evenly in ],[ ba . 

Step 5  If 0r , then })({ rfCrgg   . 

Step 6  If 0r , then })({ rfCrgg   . 

Step 7 Repeat the fourth to sixth steps for N  times. 

Step 8 NabgbafE /)(00)]([  . 

B  Train NN 

We use BPA back propagation algorithm to train NN 

to approximate the objective value of mean chance 





n

i

ii

a RxCh
1

0 )(   and the expected return rates 




n

i

iixE
1

][  [24]. First, generate trainning data set, one 

trainning data is expressed as },,,,,{ 2121 UUxxx n , 

where 



n

i

ii

a RxChU
1

01 )(   and 





n

i

iixEU
1

2 ][  , 21 ,UU can be computed by fuzzy 

random simulation. When generating input data 

},,,{ 21 nxxx  , we set )/( 21 nii xxxxx   , 

ni ,,2,1  , Which ensure that 



n

i

ix
1

1  always 

holds. Then use BPA back propagation algorithm to train 

NN. The training purpose is to find the most suitable 

weights   that can minimize the error between the 

output of NN and 21 ,UU . It is usually enough to train 

the NN with one hidden layer. In the paper, the NN has 

one hidden layer connecting the input layer and the 

output layer in a feed-forward way and has two neurons 

in the output layer. 

Supposing the NN has l  neurons in the input layer, p  

neurons in the hidden layer and m neurons in the output 

layer. Now,  there are N samples 

},,,;,,,{ ,2,1,,2,1, mkkklkkk dddxxx   , 

Nk ,,2,1  . 

When the k-th sample is used, the outputs of the hidden 

neurons are 
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



l

j

ijkijik xx
1

0

0,

01

, )(  , pi ,,2,1  . 

And the outputs of the NN are 





p

j

ijkijik xy
1

1

0

1

,

1

,  , mi ,,2,1   

C  Genetic algorithm:  

Initialization process: We randomly initialize 

sizepos _  number of chromosomes, a chromosome is 

expressed as ),,,( 21 nxxx  , 
nxxx ,,, 21   are 

randomly generated in the interval [0,1].  Let 

)/( 21 nii xxxxx   , ni ,,2,1  , which 

ensure that 



n

i

ix
1

1  always holds. Then check their 

feasibility by NN, if  


n

i

iixE
1

][ , it is a feasible 

chromosome .  

Selection process:We select chromosomes by spinning 

the roulette wheel such that the better chromosomes will 

have. The selection process is as follows:[24] 

Firstly, If there are sizepos _  chromosomes 

sizepopVVV _21 ,,,   at the current generation, we can 

order these chromosomes from good to bad, the better the 

chromosomes is, the smaller the ordinal number it has. 

Let a parameter )1,0(a  in the genetic system be given, 

we can define the rank-based evaluation function as 

follows 
1)1()(  i

i aaVeval , sizepopi _,,2,1   

Note that 1i  means the best chromosome, 

sizepopi _  means the worst one. 

Secondly, calculate the cumulative probability 
iq  for 

each chromosome 
iV , 

00 q , 



i

j

ji VEvalq
1

)( ,

sizepopi _,,2,1  . 

where )(VEval is evaluation function. 

Thirdly, generate a random number r in ],0( _ sizepopq , 

and select the chromosome iV  if r  satisfies 

ii qrq 1 . 

Fourthly, repeat the third step pop_size times and 

obtain pop_size copies of chromosome. 

Crossover operation: A crossover parameter cp  is 

defined first[24]. Repeating the following process from 

1i  to sizepos _ : generating a random number r  

from the interval [0, 1], the chromosome 
iV  is selected as 

a parent if cpr  . We denote the selected parents by 

,,, '

3

'

2

'

1 VVV ,and divided them into the following pairs: 

),,( '

2

'

1 VV  ),( '

4

'

3 VV , .),,( '

6

'

5 VV  The crossover 

operation on each pair is illustrated by ),,( '

2

'

1 VV  At first, 

we generate a random number c  from the open interval 

(0,1), then the operator on  
'

1V  and 
'

2V  will product two 

chile X and Y as follows: 
'

2

'

1 )1( VccVX  ，
'

2

'

1)1( cVVcY   

If ),,,( 21 nxxxX  , ),,,( 21 nyyyY  , Let 

)/( 21 nii xxxxx   , 

),,,/( 21 nii yyyyy  , ni ,,2,1  , which 

ensure that 



n

i

ix
1

1  and  



n

i

iy
1

1always hold. 

Checking whether  


n

i

iixE
1

][  and 

 


n

i

iiyE
1

][  through NN, if both children are 

feasible, then we replace the parents with them. If not, we 

keep the feasible one if it exists, and then redo the 

crossover operator by regenerating a random number c  

until two feasible children are obtained or a given number 

of cycles is finished. 

Mutation operation[24]:  We define a parameter 
mp  

as the probability of mutation. This probability gives us 

the expected number of sizepospm _  of 

chromosomes undergoing the mutation operations. 

Repeating the following steps from 1i  to sizepos _ : 

generating a random number r  from the interval [0,1], 

the chromosome 
iV  is selected as a parent for mutation if 

mpr  . For each  selected parents 
iV , we mutate it in 

the following way. Let M  be an appropriate large 

positive number. We choose a mutation direction d  in 
nR  randomly. Let dMVX  ,  

If ),,,( 21 nxxxX  , Let 

)/( 21 nii xxxxx   , checking the feasibility 

through NN, If X  is not feasible, we set M  as a 

random number between 0 and M  until it is feasible. If 

the above process cannot find a feasible solution in a 

predetermined number of iterations, then we set 0M .  

D Hybrid intelligent algorithm 

The hybrid intelligent algorithm that is integrated 

fuzzy random simulation, genetic algorithm and NN is 

summarized as follows[24]: 

  Step 1 Generate training data set for the following 

uncertain functions by fuzzy random simulation. 
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  Step 2 Train NN to approximate the objective value 

of mean chance 

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Step 3 Determine the population size sizepos _ , 

crossover probability 
cp , mutation 

mp  in genetic 

algorithm. 

Step 4 Initialize feasible sizepos _  chromosomes. 

Use the trained NN to check the feasibility of  

chromosomes.  

Step 5 Update the chromosomes by crossover and 

mutation operations in which the feasibility of offspring 

may be checked by the trained neural network. 

Step 6 Calculate the objective values for all 

chromosomes by the trained neural network. 

Step 7 Compute the fitness of each chromosome 

according to the objective values. 

Step 8 Select the chromosomes by spinning the 

roulette wheel. 

Step 9 Repeat the fifth to eighth steps for a given 

number of cycles. 

Step 10 Report the best chromosome as the optimal 

solution.  

The method to solve model(2) is similar. 

Ⅴ NUMBER EXAMPLE 

To illustrate the optimization idea and to test the 

effectiveness of the proposed algorithm, two numerical 

example is presented here. Supposing there are five kinds 

of loan in model(1) and model (2), each return rate is 

fuzzy random variable, described as follows. 

)075.0,075.0,045.0,012.0( 11111  

, )01.0,01.0(~ 2

1 N  ; 

)06.0,06.0,015.0( 2222   , 

)03.0,02.0(~ 2

2 N ; 

)085.0,085.0,04.0,02.0( 33333  

, )02.0,01.0(~ 2

3 N ; 

)09.0,09.0,05.0,02.0( 44444   ,  

)03.0,03.0(~ 2

4 N ; 

)08.0,08.0,016.0( 5555   ,  

)04.0,02.0(~ 2

5 N  

Let 02.00 R , 05.0 , the model(1) is 

formulated as follows:  
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                       (3) 

the model(3) is solved through running hybrid 

intelligent algorithm, the parameters in the algorithm are 

set as follows: 500 cycles in simulation, 2000 data in 

NN(NN has 5 input neurons, 15 hidden neurons, 2 output 

neuron), 400 generations in GA, the population size 

30_ sizepop , the crossover probability 3.0cP , 

the mutation probability 2.0mP . The run of the 

hybrid intelligent algorithm shows the best allocation 

proportion is 

)0431.0,2124.0,2103.0,0994.0,4348.0(* X ,  

the minimal mean chance of the return rates less than 

the preset bad outcome -0.02 is 0.073272. The genetic 

process of algorithm is shown as Fig.2: 
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In order to further test the effectiveness of the designed 

algorithm, we use more numerical experiments with 

different values of parameters in the GA. The results are 

shown in Table 1. 

Table 1 Comparison of objective value for model(3) at 

different parameters in the GA 

Number of 

generations 
sizepos _  

cP  mp  
Objective 

value 

400 30 0.3 0.2 0.073272 

400 50 0.5 0.2 0.073232 

400 80 0.3 0.5 0.073221 

500 60 0.1 0.4 0.073222 

500 100 0.6 0.3 0.073225 

800 30 0.3 0.3 0.073226 

800 90 0.3 0.2 0.073228 

1000 70 0.2 0.3 0.073222 

1000 30 0.3 0.2 0.073261 

Fig.2 Genetic process of algorithm for model(3) 

222 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



   

From table 1, we can see when different values of 

parameter in GA are set, the objective value changes very 

tiny, so the designed algorithm is robust to set parameters 

and effective to solve the model(3). 

 

Let 07.01 R , 05.0 , the model(2) is 

formulated as follows:  
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                （4） 

Through running hybrid intelligent algorithm we solve 

model(4), the parameters setting are as same as above. 

The run of the hybrid intelligent algorithm shows the 

maximal mean chance of the return rates more than the 

prospective return rate 0.07 is 0.556277, the best 

allocation proportion is 

)0136.0,9251.0,0363.0,0059.0,0192.0(* X , 

the genetic process of algorithm is shown as Fig.3: 
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Similarly, we test the effectiveness of the designed 

algorithm for model(4) through setting different values of 

parameters in the GA. The results are shown in Table 2. 

From table 2, we can see that the designed algorithm is 

robust to set parameters and effective to solve the 

model(4). 

 

 

 

 

 

Table 2 Comparison of objective value for model(4) at 

different parameters in the GA 

Number of 

generations 
sizepos _  

cP  
mp  

Objective 

value 

400 30 0.3 0.2 0.556277 

400 50 0.5 0.2 0.567125 

400 80 0.3 0.5 0.573905 

500 60 0.1 0.4 0.574286 

500 100 0.6 0.3 0.548707 

800 30 0.3 0.3 0.557875 

800 90 0.3 0.2 0.579590 

1000 70 0.2 0.3 0.570203 

1000 30 0.3 0.2 0.568431 

   

Ⅵ  CONCLUSION 

 

In the paper, we discuss the optimization of loan 

portfolio under fuzzy random environment, give two new 

dependent-chance programming models of loan portfolio 

based on mean chance and design hybrid intelligent 

algorithms integrating genetic algorithm, fuzzy random 

simulation and neural network to solve the models. At the 

end, two numerical examples are presented to illustrate 

the modelling idea and the effectiveness of the proposed 

algorithm.  
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