
A DIC-based Distributed Algorithm for Frequent
Itemset Generation

Preeti Paranjape-Voditel,
Department of Computer Applications, Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, Maharashtra,

India
Email: preetivoditel@gmail.com

Dr.Umesh Deshpande
Department of Computer Science,Visvesvaraya National Institute of Technology (VNIT),Nagpur, Maharashtra, India

Email: uad@vnitnagpur.ac.in

Abstract— A distributed algorithm based on Dynamic Item-
set Counting (DIC) for generation of frequent itemsets is
presented by us. DIC represents a paradigm shift from
Apriori-based algorithms in the number of passes of the
database hence reducing the total time taken to obtain the
frequent itemsets. We exploit the advantage of Dynamic
Itemset Counting in our algorithm- that of starting the
counting of an itemset as early as possible at the different
site as soon as they become frequent at atleast one site.
Hence, our algorithm shows remarkable improvement in the
amount of time taken because of reduction in the number
of passes of the database and comparatively lesser num-
ber of candidates generated. Distributed frequent itemset
counting and association rule generation have basically used
algorithms based onApriori or Sampling. This is the first
algorithm which is based on DIC.

Index Terms— Distributed Association Rule Mining, dy-
namic Itemset Counting (DIC), Optimistic Messaging DIC

I. I NTRODUCTION

ARM has been used extensively for the classical
problem of market basket analysis where it is required to
find the buying habits of customers. Determining what
products customers are likely to buy together can be very
useful for planning and marketing. Association rules are
used to show the relationships between these data items.

Many centralized algorithms exist for Association
Rule Mining(ARM) [9], [10], [14], [15], [11]. Most
of the algorithms depend on the discovery of frequent
itemsets for generation of association rules. Since the
total number of itemsets is exponential in terms of
the number of items, it is not possible to count the
frequencies of these sets by reading the database in just
one pass.

Different algorithms for the discovery of association
rules aim at reducing the number of passes by generating
candidate sets, which are likely to be frequent itemsets.
They attempt to eliminate infrequent sets as early as
possible. Dynamic Itemset Counting (DIC) [1] is one

This paper is based on “An Optimistic Messaging DistributedAlgo-
rithm for Association Rule Mining ,” by Preeti Paranjape-Voditel, Umesh
Deshpande, which appeared in the Proceedings of IEEE Indicon-2009,
Ahmedabad, Gujarat,India, December 2009.c© 2009 IEEE.

such algorithm, which does not wait for a complete
database pass to start counting the candidate itemsets. It
therefore reduces the number of passes of the database
and generates fewer number of candidate itemsets.
Why distributed ARM? With the presence of multi-
national companies at different geographical locations
across the globe, the data they need for decision making
is inherently distributed. It is necessary to analyse the
data to allow company-wide activities such as planning,
marketing and sales. Analyzing data locally is not enough.
A straightforward solution is to transfer all data to a
central site where data mining is done. However even
when such a site is available, it may incur huge com-
munication costs to transfer the local datasets because of
their sizes. Sometimes the local data cannot be transferred
because of the security or privacy of the datasets. Dis-
tributed Association Rule Mining (DARM) is an active
field in which global association rules are formed for the
distributed data. The performance affecting issues in a
distributed environment are the disk I/O minimization, the
time required for synchronization between the nodes and
the message transmission over the network.
Almost all distributed ARM methods have been based
on two sequential algorithmic paradigms:Apriori [3] and
Sampling [9].We have designed our algorithm Optimistic
messaging DIC (OPT-DIC) on the Dynamic Itemset
Counting (DIC)algorithm. OPT-DIC focusses on disk I/O
minimization by reducing the number of database passes
and has almost no issues of synchronization between
the nodes. It generates far fewer candidate sets than
Apriori-based, level-wise algorithms because the nodes
start counting an itemset early and only if it is frequent
at atleast one node. This also reduces to a very large extent
the number of bytes transmitted over the network.Our
algorithm does not send the data but the counts of itemsets
over the network thus security and privacy of the datasets
is preserved.
The rest of the paper is organized as follows. Section
II discusses the existing centralized algorithms and DIC.
Section III deals with the issues in Distributed Association
Rule Mining and the work done in the field of Distributed
Association Rule Mining. Section IV discusses the Opti-
mistic Messaging DIC algorithm.Section V discusses the

306 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.2.306-313

results. We conclude with Section VI.

II. A SSOCIATIONRULE M INING

Let I= i1, i2, ...im be a set of items. LetD be a database
of transactions, where each transactionT consists of a set
of items such thatT ⊆I. The support of an itemsetX is
the number of transactions in which the itemset occurs as
a subset. An itemset is frequent or large if its support is
more than some user defined minimum support threshold
δ. Thus support is the number of transactions in the
database that contain the itemsetX. An association rule is
an implication of the formX ⇒ Y whereX ⊂ I, Y ⊂ I
andX∩Y = ∅. The ruleX ⇒ Y holds in the transaction
set D with confidence cif c% of transactions inD that
containX also containY. The ruleX ⇒ Y hassupport s
in the transaction setD if s%of transactions inD contain
X ∪ Y. The problem of mining association rules is to
generate all association rules that have a certain user-
defined minimum support and confidence.

Several centralized algorithms exist for Association
Rule Mining. One of the first algorithms isApri-
ori, [2], [3] on which most of the parallel algorithms are
based. Apriori is an iterative, level-wise algorithm which
uses a bottom-up search starting with the counting of
frequent 1- itemsets. It generates these itemsets after a
complete scan of the database. It then uses a self-join
to find the 2-itemsets from the frequent 1-itemsets. It
then scans the database to find the frequent 2-itemsets
and continues this process till the maximal itemsets are
generated. The number of passes is equal to the size of the
maximal n-itemset. It uses the large itemset property that
is any subset of a large itemset must be large. The large
itemsets are also said to bedownward closedbecause if
an itemset satisfies the minimum support requirements so
will its subsets. Hence, if we know that an itemset is
small then we need not generate its supersets as candi-
dates because they will also be small.The performance
of Apriori directly depends on the length of the longest
frequent itemset. A remarkable breakthrough in sequential
algorithms was achieved by the Dynamic Itemset Count-
ing (DIC) [1] algorithm which represents a shift in the
method in which frequent itemsets are generated. Since
Dynamic Itemset Counting (DIC) forms the basis of our
distributed algorithm, we would discuss this algorithm in
detail.

A. Dynamic Itemset Counting (DIC)

Dynamic Itemset Counting (DIC) [1] is an algorithm
which reduces the number of passes made over the data
while keeping the number of itemsets which are counted
in any pass relatively low. In the firstM transactions
the algorithm starts counting the 1-itemsets. AfterM
transactions for a given minimum support threshold, if any
of the itemsets exceeds the minimum support threshold in
thoseM transactions, then we start counting the 2-itemsets
before waiting for a complete scan of the database. In
this way, DIC starts counting the 1-itemsets and then

quickly adds counters for the 2,3,4,...k-itemsets. We will
define thisM as a checkpoint. DIC uses these checkpoints
M transactions apart. DIC counts the frequent itemsets
and the minimal small itemsets. Minimal small itemsets
are those itemsets which form the boundary between the
frequent itemsets and the infrequent ones. Their subsets
are frequent itemsets. For every itemset, the counting
stops from the same point from where it started i.e after
one complete database pass. Thus an itemset can be
considered for counting at the next checkpoint instead
of waiting until the end of the previous pass.
If the data is fairly homogeneous and for small values
of M, DIC takes very few passes. If the data is non-
homogeneous or it is very correlated, it may not be
realized that an itemset is actually large until it has
been counted in most of the database.This effect can be
reduced considerably with randomizing the order of the
transactions. The most important issue in the performance
of any ARM algorithm is the type of data structure used
to keep track of the many itemsets generated. Particularly
the data structure should support the addition of new
itemsets, the incrementation of counters of those itemsets
and maintaining the itemset states as those that are being
counted or active and those which have been counted
over the entire database. When itemsets become large
the counting of the supersets should be started. The
incrementation of the counters has to be done efficiently
otherwise the performance of the entire algorithm may
degrade.
The data structure used in DIC is a trie in which each
itemset is sorted by its items.Every itemset that has to
be counted or has been counted has a node associated
with it as do all of its prefixes. The empty itemset is the
root node and every itemset is attached to the root node.
All itemsets are attached to their prefixes containing all
but their last item. Every node stores the last item in the
itemset it represents, a counter, as to where in the file
its counting was started, its state and its branches if it
is an interior node. The branches point to the supersets
of the itemsets. These operations are performed at every
checkpoint.

III. D ISTRIBUTED ASSOCIATIONRULE M INING

In centralized data mining the main concern for the
efficiency of a data mining algorithm is its I/O and CPU
time. The I/O time is the number of diskreads or the num-
ber of passes of the database made by the algorithm.In a
distributed environment the communication cost is added
which is determined by the network bandwidth and the
number of messages that are sent across the network.
Count Distribution, Data Distribution, Candidate Distri-
bution [4], ODAM(An Optimized Distributed Association
Rule Mining Algorithm [5], [6], [7] are a few of the
modified versions ofApriori. [8] is a distributed algorithm
based onSampling.
The Count Distribution (CD) algorithm focuses on min-
imizing communication. In the first pass, each processor
dynamically generates its local candidate set depending

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 307

© 2011 ACADEMY PUBLISHER

on the items actually present in its local data partition.
Hence candidates counted by different processors may
not be identical. Each processor exchanges local counts to
develop global candidate counts.Ck is a set of candidate
k-itemsetsor potentially frequent itemsets where 1≤ k
≤ N and N is the number of nodes in the distributed
network . After each scan each processor broadcastsCk

and synchronization takes place at this step.Lk, a set of
frequentk- itemsetsor itemsets with minimum support is
now generated fromCk. Each processor then decides to
terminate or continue to the next pass and as all processors
have the sameLk, this decision will be identical. Thus
every processor scans its local data asynchronously in
parallel and synchronizes at the end of each pass to
develop global counts.
In the Data Distribution algorithm, each processor counts
mutually exclusive candidates. Thus as the number of
processors is increased, a large number of candidates can
be counted in one pass. On an-processor configuration,
Data Distribution will be able to count in a single pass a
candidate set that would requiren passes in CD. The first
pass of the algorithm is the same as CD where all the
candidate 1-itemsets are counted. For all passes greater
than 1, processorP i, where 1≤ i ≤ N generatesCk from
L(k−1). P i retains only1/N th of the itemsets, that it will
count. If candidate setCk generated byP i is Ci

k
then all

suchCi

k
sets are disjoint and their union is the originalCk.

Processors exchangeLi

k
so that every processor has the

completeLk for generating the candidate itemsetCk+1

for the (k + 1)th pass. The drawback of this algorithm is
that every processor must broadcast its local data to all
other processors in every pass.
The Candidate Distribution algorithm partitions the data
and candidates in such a way that each processor may
proceed independently. In some passl, where l can
be determined heuristically, the frequent itemsetsLl−1

are divided between processors in such a way that a
processor generates a unique candidate set irrespective of
the other processors. Till passl, Candidate Distribution
behaves similar to Count or Data Distribution. At the
same time data is repartitioned so that a processor counts
its candidate set independently. No communication of
counts or data tuples is done except for pruning the local
candidate set. This information is sent asynchronously
and processors do not wait for complete information to
arrive. Each processor opportunistically starts counting
the candidate sets using whatever information has arrived.
Experimentation involving Count Distribution, Data Dis-
tribution and Candidate Distribution [4] has shown that
Count Distribution (CD) outperforms the other two. We
have compared our algorithm against CD.

IV. OPTIMISTIC MESSAGINGDIC

We present a distributed algorithm based on DIC
namely Optimistic Messaging DIC (OPT-DIC). OPT-DIC
runs DIC at each node.
DIC readsM transactions and performs all operations of
incrementation of the counters and adding supersets of

items which become frequent.
We call everyM (which may vary for each node, de-
pending on the size of the database), in OPT-DIC, a
checkpoint.
In this algorithm we also send and recieve messages at this
checkpoint. At each node at every checkpoint, messages
in the incoming queue are checked for counts of itemsets
which have become potentially frequent at other sites. If
counting for those itemsets has not begun at that node, it
begins counting for that itemset.
With this step we would like to mention that OPT-DIC
starts counting only those itemsets which have become
locally frequent at atleast one node. This reduces the
number of candidates who may ultimately not contribute
to the frequent itemset generation.
The node sends messages at checkpoints regarding the
counts of itemsets which can be potentially frequent with-
out waiting for complete counting of that itemset. Because
of this particular aspect of the algorithm, we describe
the algorithm as an optimistic messaging distributed al-
gorithm. This initiates early counting of that itemset at
other sites. The main advantage of this algorithm is that
it does not wait to synchronize with the other sites. It
reports the potential candidate itemsets as soon as they
turn potentially frequent at the next checkpoint. This leads
to a significant reduction in the number of passes of the
database as compared to CD.

A. Description of OPT-DIC

In OPT-DIC every site needs to maintain certain infor-
mation with respect to every other site. To maintain this
information, the messages used in OPT-DIC are:

1 Ti - number of transactions present at nodeN i

2 Ci

candidate
- candidate itemset at nodeN i

3 Ci

inter
- candidate itemset with its intermediate local

count at nodeN i,
4 Ci

final
- candidate itemset with its final local count

at nodeN i,
5 Fi - Final message at nodeN i, indicating completion

of counting.

Initially each node broadcasts messageTi, sending its
number of transactions to every node. DIC is run locally
at every node. Each node initiates counting of an itemset
I at the(n-1) other nodes, if that itemset looks potentially
frequent at its site. It does so by broadcasting a mes-
sageCi

candidate
at the next checkpoint. After recieving

the counts, it can locally decide whetherI is globally
frequent or not. Each nodeN i maintains information
associated with each itemsetI to indicate whether it is
locally frequent or infrequent and globally frequent or
infrequent or unknown. The messages to be broadcast are
maintained in a message queueQout and broadcast at the
next checkpoint. All incoming messages are kept in an
incoming message queueQin. When a nodeN i counts
the itemsetI over the entire database and ifI is locally or
globally frequent, a messageCi

final
with the count ofI is

generated atN i. If no itemsets are to be counted locally,

308 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

N i broadcastsFi and waits for incoming messages. If(n-
1) Fj , where(1 ≤ j ≤ n; i 6= j) messages are recieved
by N i, then all nodes have completed counting.

B. AlgorithmOptimistic Messaging DIC (OPT-DIC)

For each node N i, we perform the following
begin

Run DIC locally
At each checkpoint at N i

I. For any message m in Qin do
begin
1. If m is C

j

final

update count of I for j

2. If m is C
j
inter

a) Start counting of I,
if not yet started
b) If I is globally frequent
OR globally infrequent
OR UNKNOWN

Mark I
end

II. If counting of I complete do
begin
If (I is locally infrequent
AND globally frequent)
OR
(I is locally frequent
AND globally infrequent)

Add Ci
final for I in Qout

end

III. During counting of I do
begin
If I becomes a local candidate
OR I turns locally frequent
AND I marked UNKNOWN

Add Ci
inter OR Ci

candidatel

to Qout

end

IV.If no itemsets are to be counted
Broadcast F i.

N i waits for incoming messages
If (n − 1) F j messages received
(1 ≤ j ≤ n; i 6= j)

Counting at all nodes is complete.

end

If messages are sent at every checkpoint and if there
are l such checkpoints and if we are grouping messages
for every checkpoint, then(n-1) such messages will be
sent at every checkpoint by each site, if there aren
such sites.The number of these checkpoints will also
depend on the number of database scans i.e if we have
l such checkpoints in one database scan and an average
of p such scans and ifCj

i
are the average number of

candidate sets generated at theith checkpoint by sitej
then the message complexity in the worst case will be:
At the ith checkpoint the number of messages are:
(n − 1) × Cj

i

Total messages in one pass:
(n − 1) ×

∑
l

i=1
Cj

i

It is not necessary that at every checkpoint a message
is generated.We consider the worst case here, where we
consider a message at every checkpoint and average
candidate sets asCj

i
.

If p (where p can be a non-integer) is the number of
database scans, the number of messages broadcast by
each node in the worst case are:
p × (n − 1) ×

∑
l

i=1
Cj

i

C. The Algorithm

The basic essence of DIC lies in the fact that counting
for itemsets starts very early. At every checkpoint, all
itemsets which have become locally frequent are marked
so. These have become frequent recently, they are not
marked frequent by any other site (indicated by a message
from any other site initiating counting for that itemset).
Such itemsets are broadcast to the other sites to initiate
counting at the other sites. Thus counting is initiated at
all sites only if an itemset becomes frequent at atleast one
site.
The OPT-DIC algorithm retains the basic essence of DIC
in the distributed version in terms of communicating the
itemsets at the next checkpoint when they become likely
candidates locally. This helps the other sites in starting
the counting for those itemsets, if counting for them
has not already been started. This is done at the next
possible checkpoint. In the worst case the communication
complexity is such that there is a message broadcast at
every checkpoint.So ifD is the size of the database,M is
the interval which represents the number of transactions
between two checkpoints,D/M will represent the number
of checkpoints.IfN is the number of sites andp is the
number of passes the message complexity in the worst
case will beD∗(N-1)∗p/M. To reduce the number of
messages the interval between checkpoints (the value of
M) can be increased but many a times this adversely
affects the performance as there is a delay in conveying
the candidate itemsets which are locally frequent.
The disadvantage of CD and manyApriori-based algo-
rithms is that the number of bytes transmitted increase
rapidly with the number of nodes.This is also because a
lot of globally infrequent but locally frequent candidate
itemsets are broadcast between nodes. This factor is
reduced to a great extent in OPT-DIC as a node starts
counting an itemset only if it is frequent at atleast one
site. Without communicating with the other nodes CD
proceeds with its entire database pass and then broadcasts
the itemsets generated. This may contain many itemsets
which may not contribute towards the global frequent
itemset generation.

V. EXPERIMENTATION AND ANALYSIS

We have compared OPT-DIC and CD using a Discrete
Event-based Simulator. We have tested Optimistic Mes-
saging DIC and CD on the benchmark datasets namely

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 309

© 2011 ACADEMY PUBLISHER

mushroom dataset [12], the retail dataset and two syn-
thetic datasets T10I4D100K and T40I10D100K generated
from [13]. The mushroom dataset is a multivariate,dense
dataset with 8124 transactions, 119 items and an average
transaction size of 23.The retail dataset is sparse with
16,470 items, 88,162 transactions and average transaction
size of 10.The datasets T10I4D100K and T40I10D100K
are sparse with 1000 items and 1,00,000 transactions each
and the average transaction size as 10 and 40 respectively.
The performance metrics we have considered are the
total time taken, number of passes, number of diskreads,
number of bytes and the number of messages. The number
of diskreads take into account the number of passes so we
have not elaborated on the number of passes.
From the above datasets, for T10I4D100K, we have
experimented on the value of minimum supportδ as 1%
and M as 100. For T40I10D100K, we have takenδ as
4% andM as 100. For the Retail dataset,δ has been
taken as 10% andM as 100. Since Mushroom is a dense
dataset, we have taken a higher value ofδ as 50% andM
as 100. We have packetized the mesages generated at the
end of each pass in CD and at a checkpoint in OPT-DIC
with a MTU of 1500 bytes and a header of 20 bytes.
To calculate the disk access time we have considered
the seek time (3 msec), disk latency time (2 msec) and
disk transfer rate (1000 Mbps). To calculate time for
transmission across the network, latency time (15 msec)
and bandwidth (1 Mbps) have been considered. We now
discuss the performance of the algorithms according to
the above performance metrics on equipartitions and on
gaussian paritions.

A. Results for Equipartitions

We have tested the results of the algorithm by equiparti-
tions and on gaussian partitioning, i.e. to check the results
on variable paritions as well as for similar partitions.
(1) Total time taken : Due to the huge size of the

database and the disk and network latency, time taken
is heavily dependent upon the maximum number of
passes and the number of messages transmitted. In
case of CD, sites synchronize at the end of every
pass. This makes the sites with minimum records
wait for the sites with maximum records to send
their counts.In case of OPT-DIC, none of the sites
try to synchronize. They send messages but as long
as there is data to be mined locally, they do not wait
for messages from other sites.
From Figure 1 we observe that the time required for
OPT-DIC for T10I4D100K is around 52% less than
that required for CD and this reduction in time is al-
most constant for an increase in the number of nodes.
The time required for OPT-DIC for T40I10D100K is
around 32% less than that required for CD and this
reduction in time is almost constant for an increase
in the number of nodes. We have observed that
the rate of reduction in time required for OPT-DIC
as compared to CD for Retail is almost constant
between 60 to 70%. We observe that the rate of

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8

tim
e

No of nodes

CD
OPT

Figure 1. Time taken for T10I4D100K forδ = 1% andM=100

 200

 300

 400

 500

 600

 700

 800

 2 2.5 3 3.5 4 4.5 5 5.5 6

tim
e

No of nodes

CD
OPT

Figure 2. Time taken for T404D100K forδ = 4% and M=100

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 4 6 8 10 12

To
ta

l t
im

e
re

qu
ire

d

No of nodes

CD
OPT

Figure 3. Time taken for mushroom forδ = 50% andM=100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7

To
ta

l t
im

e

No of nodes

CD
OPT

Figure 4. Time taken for retail forδ = 10% and M=100

310 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

 200000

 220000

 240000

 260000

 280000

 300000

 2 3 4 5 6 7 8

av
er

ag
e

di
sk

re
ad

s

No of nodes

CD
OPT

Figure 5. Diskreads required for T10I4D100K forδ = 1% andM=100

 40000

 60000

 80000

 100000

 120000

 2 3 4 5 6 7

av
er

ag
e

di
sk

re
ad

s

No of nodes

CD
OPT

Figure 6. Diskreads required for ’retail’ forδ = 10% and M=100

reduction in time required for OPT-DIC as compared
to CD for Mushroom increases with the increase in
number of nodes.

(2) Number of diskreads : The number of passes in
OPT-DIC are much less than those in CD as seen
in figures 5 and 6. Local counts of all itemsets is
always maintained. As a result ifn globally frequent
itemsets are not locally frequent at the same site,
they would never be used to generate a candidate at
the next level. Not only does this reduce the number
of candidates but it can save upto one extra pass. All
these factors reduce the number of diskreads.
We observe that the diskreads in OPT-DIC are
around 50% less than those in CD. This is a major
component of the time required.

(3) Number of Bytes transmitted:
The number of bytes transmitted by CD in the first
pass is quite high as it sends the counts and names
of all the frequent 1-itemsets. In subsequent passes,
only counts of all candidates are transmitted.Please
refer to figures 7 and 8. In the case of OPT-DIC
the count and name of each itemset with cardinality
more than 1 is transmitted. But the number of
candidate itemsets generated in CD are far more than
those in OPT-DIC.

(4) Number of messages transmitted: By messages here,
we mean the number of packets transmitted over the
network. In case of OPT-DIC, if some itemsets have

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 2 3 4 5 6 7 8

To
ta

l b
yt

es
 tr

an
sm

itt
ed

No of nodes

CD
OPT

Figure 7. Bytes generated for T10I4D100K forδ = 1% andM=100

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2 3 4 5 6 7

To
ta

l b
yt

es
 tr

an
sm

itt
ed

No of nodes

CD
OPT

Figure 8. Bytes generated for retail forδ = 10% andM=100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 3 4 5 6 7 8

no
 o

f m
es

sa
ge

s

No of nodes

CD
OPT

Figure 9. Messages generated for T10I4D100K forδ = 1% andM=100

turned potentially frequent, messages are generated
at that checkpoint.In the worst case, a message is
broadcast at every checkpoint. Hence the number of
messages is higher in OPT-DIC compared to CD.
But though the number of messages is higher, OPT-
DIC fares much better than CD in the time taken.

B. Results for Gaussian Partitioning

We have partitioned the database using the gaussian dis-
tribution which represents the actual distribution of dataat
various sites in an actual distributed setup. Using similar
performance metrics as applied to equipartitioning, we

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 311

© 2011 ACADEMY PUBLISHER

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 2.5 3 3.5 4 4.5 5 5.5 6

no
 o

f m
es

sa
ge

s

No of nodes

CD
OPT

Figure 10. Messages generated for mushroom forδ = 50% andM=100

 100

 200

 300

 400

 500

 600

 700

 800

 2 2.5 3 3.5 4 4.5 5 5.5 6

To
ta

l t
im

e

No of nodes

CD
OPT

Figure 11. Time taken for gaussian distribution of T10I4D100K δ = 1%

andM=100

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2 2.5 3 3.5 4 4.5 5 5.5 6

To
ta

l m
es

sa
ge

s

No of nodes

CD
OPT

Figure 12. Messages generated for gaussian distribution ofT10I4D100K
for δ = 1% andM=100

analyse the results for gaussian partitions.

(1) Time taken: We observe that with gaussian partition-
ing the performance gain in terms of reduction in the
time required in OPT-DIC is much higher than that
with equipartitioning.

(2) Bytes transmitted:
The total bytes transmitted in gaussian partitioning
show much reduction than in equipartitioning

(4) Messages transmitted: There is definitely a reduction
in the number of messages in gaussian distribution
for both CD as well as OPT-DIC but the messages
in OPT-DIC are more than those in CD.

The above results show that OPT-DIC outperforms CD
with respect to the time taken, the maximum number of
diskreads and the total number of bytes transmitted. It
transmits larger number of messages than CD but since
the total time required by OPT-DIC is much lower the
other parameters offset the impact of larger number of
messages.

VI. CONCLUSION

In this paper, we have presented an algorithm, OPT-
DIC, based on Dynamic Itemset Counting which repre-
sents a different approach to frequent itemset generation
in a distributed ARM environment. We have observed
that compared to CD, OPT-DIC shows much higher
performance gain on sparse as well as dense datasets.

ACKNOWLEDGMENT

We are thankful to Shreyas Belle and Rahul Suresh
for their valuable contribution in the implementation of
OPT-DIC.

REFERENCES

[1] S.Brin and R.Motwani and J.Ullman and Shalom Tsur,Dy-
namic Itemset Counting and Implication Rules for Market
Basket Data,SIGMOD Record, volume 6,number 2,pages
255-264,June 1997.

[2] R.Agrawal and T.Imilienski and A.Swami,Mining Associa-
tion Rules between Sets of items in large Databases,Proc.
of the ACM SIGMOD int’l Conf. on Management of
Data,May,1993,pages 207-216.

[3] R.Agrawal and R.Srikant,Fast Algorithms for Mining Asso-
ciation Rules, Proceedings of the 20th VLDB Conference,
Santiago, Chile,1993,

[4] R.Agrawal and J.Schafer,Parallel Mining of Association
Rules,IEEE Transactions on Knowledge and Data Engineer-
ing”,volume 8,number 6, pages 962-969,1996.

[5] M.Ashrafi and D.Taniar and K.Smith,ODAM:An Optimised
Distributed Association Rule Mining Algorithm,IEEE Dis-
tributed Systems Online,5,3, March,2004,1541-4922.

[6] Cheung.D and Han.J and Ng.V and Fu.A and Fu.Y,A Fast
Distributed Algorithm for Mining Association Rules, Proc of
Tnt’l Conf on Parallel and Distributed Information Systems,
Miami Beach Florida, 31-44.

[7] Assaf Schuster and Ran Wolff,Communication-Efficient
Distributed Mining of Association Rules,ACM SIGMOD,
Boston,4,May,2001.

[8] Assaf Schuster and Ran Wolff and Dan Trock,A high
Performance Distributed Algorithm for Mining Association
Rules

[9] Toivonen.H, Sampling Large Databases for association
Rules, VLDB Journal,pages = 134-145.

[10] Lin.D.I and Kedem.Z.M,Pincer Search: A new algo-
rithm for discovering the maximum frequent set,Extending
Database Technology,October-December, 1999,14-25

[11] Mohammed Zaki,Parallel and Distributed Association
Mining: A Survey, IEEE Concurrency,October-
December,1999,14-25.

[12] UCI Machine Learning Repository,
http://archive.ics.uci.edu/beta/datasets/Mushroom.

[13] Srikant.R,Synthetic Data Generation Code for asso-
ciation and sequential Patterns,IBM Quest website at
http://www.almaden.ibm.com/cs/quest.

[14] Margaret Dunham,Data Mining, Introductory and Ad-
vanced Topics, Pearson Education,2006.

312 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

[15] J.Han and M.Kamber,Data Mining, Concepts and Tech-
niques,Morgan Kaufmann Elsevier Science India.

Preeti Paranjape-Voditel is currently a Ph.D. candi-
date at The Department of Computer Science and En-
gineering,Visvesvarayya National Institute of Technology
(VNIT),Nagpur, Maharashtra, India. She received her MTechin
Computer Science and Information Technology from the Indian
Institute of Technlogy, Kharagpur, WestBengal, India and BE
in Electronics from Walchand College of Engineering, Sangli,
Maharashtra, India. She is presently working as an Assistant
Professor in the Department of Computer Applications, Shri
Ramdeobaba Kamla Nehru Engineering College, Nagpur, Ma-
harashtra, India. Her research interests include Distributed Data
Mining, Algorithms and Databases.

Umesh Deshpandereceived his PhD in Computer Science and
Engineering in 2005 from the Indian Institute of Technlogy,
Kharagpur, WestBengal, India. He recieved his Masters from
the Indian Institute of Technlogy, Bombay, Maharashtra, India
and BE from Visvesvarayya National Institute of Technology
(VNIT),Nagpur, Maharashtra, India. He is currently an Asso-
ciate Professor in the Department of Computer Science and
Engineering at Visvesvaraya National Institute of Technology
(VNIT),Nagpur, Maharashtra, India. His current research in-
terests include distributed systems,real-time operatingsystems,
multi-agent systems and Data Mining.

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 313

© 2011 ACADEMY PUBLISHER

