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Abstract— A distributed algorithm based on Dynamic ltem-  such algorithm, which does not wait for a complete
set Counting (DIC) for generation of frequent itemsets is  database pass to start counting the candidate itemsets. It
presented by us. DIC represents a paradigm shift from  parefore reduces the number of passes of the database

Apriori-based algorithms in the number of passes of the d tes f b f didate it t
database hence reducing the total time taken to obtain the and generates fewer number of candidate itemsets.

frequent itemsets. We exploit the advantage of Dynamic Why distributed ARM? With the presence of multi-

Itemset Counting in our algorithm- that of starting the national companies at different geographical locations
counting of an itemset as early as possible at the different across the globe, the data they need for decision making
site as soon as they become frequent at atleast one site. js innerently distributed. It is necessary to analyse the

Hence, our algorithm shows remarkable improvement in the data to all id tiviti h | .
amount of time taken because of reduction in the number ala to allow company-wide activiues such as planning,

of passes of the database and comparatively lesser num- Marketing and sales. Analyzing data locally is not enough.
ber of candidates generated. Distributed frequent itemset A straightforward solution is to transfer all data to a
counting and association rule generation have basically e central site where data mining is done. However even
algorithms based onApriori or Sampling. This is the first when such a site is available, it may incur huge com-
algorithm which is based on DIC. . !
o - o munication costs to transfer the local datasets because of
Index Terms— Distributed Association Rule Mining, dy-  theijr sizes. Sometimes the local data cannot be transferred
namic Itemset Counting (DIC), Optimistic Messaging DIC o .aiise of the security or privacy of the datasets. Dis-
tributed Association Rule Mining (DARM) is an active
. INTRODUCTION field in which global association rules are formed for the

ARM has been used extensively for the classicadistributed data. The performance affecting issues in a
pr0b|em of market basket ana|ysis where it is required t(d|Str|bUted environment are the disk 1/0 minimization, the
find the buying habits of customers. Determining whattime required for synchronization between the nodes and
products customers are likely to buy together can be ver{he message transmission over the network.
useful for planning and marketing. Association rules areAlmost all distributed ARM methods have been based
used to show the relationships between these data itenf@? two sequential algorithmic paradigrgriori [3] and

Sampling [9].We have designed our algorithm Optimistic

Many centralized algorithms exist for Association messaging DIC (OPT-DIC) on the Dynamic Itemset
Rule Mining(ARM) [9], [10], [14], [15], [11]. Most Counting (DIC)algorithm. OPT-DIC focusses on disk I/O
of the algorithms depend on the discovery of frequenfninimization by reducing the number of database passes

itemsets for generation of association rules. Since th@nd has almost no issues of synchronization between
total number of itemsets is exponential in terms ofthe nodes. It generates far fewer candidate sets than

the number of items, it is not possible to count theApriori-based, level-wise algorithms because the nodes
frequencies of these sets by reading the database in jusirt counting an itemset early and only if it is frequent

one pass. at atleast one node. This also reduces to a very large extent
the number of bytes transmitted over the network.Our

Different algorithms for the discovery of association algorithm does not send the data but the counts of itemsets

rules aim at reducing the number of passes by generatir@er the network thus security and privacy of the datasets
candidate sets, which are likely to be frequent itemsetdS preserved. _ _ _
They attempt to eliminate infrequent sets as early aghe rest of the paper is organized as follows. Section

possible. Dynamic Itemset Counting (DIC) [1] is one !l discusses the existing centralized algorithms and DIC.
Section Il deals with the issues in Distributed Associatio
_This paper is based on “An Optimistic Messaging Distributédo-  Ryle Mining and the work done in the field of Distributed
rithm for Association Rule Mining ,” by Preeti Paranjapeelitel, Umesh A . Rule Mini Secti IV di he Opti
Deshpande, which appeared in the Proceedings of IEEE Im&009, gsc_)matlon u € Mining. PTC'[IOFI _ISCUSS?S the Opti-
Ahmedabad, Guijarat,India, December 20@.2009 |IEEE. mistic Messaging DIC algorithm.Section V discusses the
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results. We conclude with Section VI. quickly adds counters for the 2,3,4,...k-itemsets. We will
define thisM as a checkpoint. DIC uses these checkpoints
M transactions apart. DIC counts the frequent itemsets
) and the minimal small itemsets. Minimal small itemsets
Let|=1y, 1, ...im be @ set of items. LeD be a database 4re those itemsets which form the boundary between the
of transactions, where each transacfioconsists of a set  frequent itemsets and the infrequent ones. Their subsets
of items such thall CI. The support of an itemsetis e frequent itemsets. For every itemset, the counting
the number of transactions in which the itemset occurs 8Stops from the same point from where it started i.e after
a subset. An itemset is fr.equent_ or large if its support igyne complete database pass. Thus an itemset can be
more than some user defined minimum support thresholgynsigered for counting at the next checkpoint instead
d. Thus support is the number of transactions in they waiting until the end of the previous pass.
dat_abasp that contain the itemXetAn association rule is |t the data is fairly homogeneous and for small values
an implication of the formX = Y whereX C I,Y C I  of M DIC takes very few passes. If the data is non-
andXNY = (. The ruleX = Y holds in the transaction homogeneous or it is very correlated, it may not be
setD with confidence af c% of transactions irD that  egjized that an itemset is actually large until it has

containX also containY. The ruleX = Y hassupport s peen counted in most of the database.This effect can be
in the transaction s if s% of transactions i contain  reqyced considerably with randomizing the order of the
X U Y. The problem of mining association rules is 10 yransactions. The most important issue in the performance
generate all association rules that have a certain usegs any ARM algorithm is the type of data structure used

II. ASSOCIATIONRULE MINING

defined minimum support and confidence. ~ to keep track of the many itemsets generated. Particularly
Several centralized algorithms exist for Associationyne gata structure should support the addition of new
Rule Mining. One of the first algorithms iApri-  jtemsets, the incrementation of counters of those itemsets

ori, [2], [3] on which most of the parallel algorithms are gng maintaining the itemset states as those that are being
based. Apriori is an iterative, level-wise algorithm which oq,nted or active and those which have been counted
uses a bottom-up search starting with the counting ofyer the entire database. When itemsets become large
frequent 1- itemsets. It generates these itemsets afterigg counting of the supersets should be started. The
complete scan of the database. It then uses a self-jo{jcrementation of the counters has to be done efficiently
to find the 2-itemsets from the frequent l-itemsets. liGinerwise the performance of the entire algorithm may
then scans the database to find the frequent 2-itemse&§grade_

and continues this process till the maximal itemsets argne gata structure used in DIC is a trie in which each
generated. The number of passes is equal to the size of themset is sorted by its items.Every itemset that has to
maximal n-itemset. It uses the large itemset property thabe counted or has been counted has a node associated
is any subset of a large itemset must be large. The larggit, it as do all of its prefixes. The empty itemset is the
itemsets are also said to ®wnward closedecause if oot node and every itemset is attached to the root node.
an itemset satisfies the minimum support requirements S| jtemsets are attached to their prefixes containing all
will its subsets. Hence, if we know that an itemset ispyt their last item. Every node stores the last item in the
small then we need not generate its supersets as canglsmset it represents, a counter, as to where in the file
dates because they will also be small.The performancgs counting was started, its state and its branches if it
of Apriori directly depends on the length of the longestis an interior node. The branches point to the supersets

frequent itemset. A remarkable breakthrough in sequentigjs the itemsets. These operations are performed at every
algorithms was achieved by the Dynamic Itemset Countzpeckpoint.

ing (DIC) [1] algorithm which represents a shift in the
method in which frequent itemsets are generated. Since
Dynamic Itemset Counting (DIC) forms the basis of our

distributed algorithm, we would discuss this algorithm in  In centralized data mining the main concern for the
detail. efficiency of a data mining algorithm is its I/O and CPU

time. The 1/O time is the number of diskreads or the num-

ber of passes of the database made by the algorithm.In a

distributed environment the communication cost is added
Dynamic Itemset Counting (DIC) [1] is an algorithm which is determined by the network bandwidth and the

which reduces the number of passes made over the datamber of messages that are sent across the network.

while keeping the number of itemsets which are countedount Distribution, Data Distribution, Candidate Distri-

in any pass relatively low. In the firdWl transactions bution [4], ODAM(An Optimized Distributed Association

the algorithm starts counting the 1-itemsets. Aftdr Rule Mining Algorithm [5], [6], [7] are a few of the

transactions for a given minimum support threshold, if anymodified versions oApriori. [8] is a distributed algorithm

of the itemsets exceeds the minimum support threshold ibased orSampling

thoseM transactions, then we start counting the 2-itemset§he Count Distribution (CD) algorithm focuses on min-

before waiting for a complete scan of the database. limizing communication. In the first pass, each processor

this way, DIC starts counting the 1-itemsets and therdynamically generates its local candidate set depending

IIl. DISTRIBUTED ASSOCIATIONRULE MINING

A. Dynamic Itemset Counting (DIC)
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on the items actually present in its local data partitionitems which become frequent.

Hence candidates counted by different processors maye call everyM (which may vary for each node, de-
not be identical. Each processor exchanges local counts fiending on the size of the database), in OPT-DIC, a
develop global candidate counts;, is a set of candidate checkpoint.

k-itemsetsor potentially frequent itemsets where<lk  In this algorithm we also send and recieve messages at this
< N and N is the number of nodes in the distributed checkpoint. At each node at every checkpoint, messages
network . After each scan each processor broadddsts in the incoming queue are checked for counts of itemsets
and synchronization takes place at this step. a set of which have become potentially frequent at other sites. If
frequentk- itemsetr itemsets with minimum support is counting for those itemsets has not begun at that node, it
now generated frond’y,. Each processor then decides tobegins counting for that itemset.

terminate or continue to the next pass and as all processov¥ith this step we would like to mention that OPT-DIC
have the samd ;, this decision will be identical. Thus starts counting only those itemsets which have become
every processor scans its local data asynchronously ilocally frequent at atleast one node. This reduces the
parallel and synchronizes at the end of each pass toumber of candidates who may ultimately not contribute
develop global counts. to the frequent itemset generation.

In the Data Distribution algorithm, each processor count§he node sends messages at checkpoints regarding the
mutually exclusive candidates. Thus as the number ofounts of itemsets which can be potentially frequent with-
processors is increased, a large number of candidates cant waiting for complete counting of that itemset. Because
be counted in one pass. Onngorocessor configuration, of this particular aspect of the algorithm, we describe
Data Distribution will be able to count in a single pass athe algorithm as an optimistic messaging distributed al-
candidate set that would requingpasses in CD. The first gorithm. This initiates early counting of that itemset at
pass of the algorithm is the same as CD where all thether sites. The main advantage of this algorithm is that
candidate 1-itemsets are counted. For all passes greaierdoes not wait to synchronize with the other sites. It
than 1, processaP?, where 1< i < N generate€’;, from  reports the potential candidate itemsets as soon as they
Lj—1)- P retains onlyl /N*" of the itemsets, that it will turn potentially frequent at the next checkpoint. This kad
count. If candidate sef, generated by>* is C}, then all  to a significant reduction in the number of passes of the
suchCj. sets are disjoint and their union is the origifgl.  database as compared to CD.

Processors exchandg, so that every processor has the

complete L, for generating the candidate itemsgt. L

for the (k + 1)!" pass. The drawback of this algorithm is A. Description of OPT-DIC

that every processor must broadcast its local data to all In OPT-DIC every site needs to maintain certain infor-
other processors in every pass. mation with respect to every other site. To maintain this
The Candidate Distribution algorithm partitions the datainformation, the messages used in OPT-DIC are:

and candidates in such a way that each processor may1 7, . number of transactions present at nddé

proceed independently. In some passwhere | can 2 ¢i ... -candidate itemset at node’
be determined heuristically, the frequent itemsgis, 3 Ci,,.. - candidate itemset with its intermediate local

wnter

are divided between processors in such a way that a  ¢ount at nodeV?,

processor generates a unique candidate set irrespective ofy %01 - candidate itemset with its final local count
the other processors. Till pass Candidate Distribution at nodeN’,

behaves similar to Count or Data Distribution. At the g F, - Final message at nodé’, indicating completion
same time data is repartitioned so that a processor counts ¢ counting.

its candidate set independently. No communication o‘

counts or data tuples is done except for pruning the IocalnItIaIIy each node broadcasts message sending its

. e L number of transactions to every node. DIC is run locally
candidate set. This information is sent asynchronousl o ) .

. ; . t every node. Each node initiates counting of an itemset

and processors do not wait for complete information to

. - .| at the(n-1) other nodes, if that itemset looks potentially
arrive. Each processor opportunistically starts countin

the candidate sets using whatever information has arrivegrequem at its site. It does so by broadcasting a mes-

Experimentation involving Count Distribution, Data Dis- $a9eCypnaiaate At the next checkpoint. After recieving
tribution and Candidate Distribution [4] has shown that

the counts, it can locally decide whethkris globally
Count Distribution (CD) outperforms the other two. We frequent or not. Each nod&'* maintains information
have compared our algorithm against CD.

associated with each itemskto indicate whether it is
locally frequent or infrequent and globally frequent or
infrequent or unknown. The messages to be broadcast are
IV. OPTIMISTIC MESSAGINGDIC maintained in a message quefg,; and broadcast at the
We present a distributed algorithm based on DICnext checkpoint. All incoming messages are kept in an
namely Optimistic Messaging DIC (OPT-DIC). OPT-DIC incoming message queug;,,. When a nodeN? counts
runs DIC at each node. the itemsel over the entire database and it locally or
DIC readsM transactions and performs all operations ofglobally frequent, a messagé,,,,,, with the count ofl is
incrementation of the counters and adding supersets afenerated aiv’. If no itemsets are to be counted locally,
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N broadcastg; and waits for incoming messages(i

1) F;, where(1 < j < n;i # j) messages are recieved It is not necessary that at every checkpoint a message
by N, then all nodes have completed counting. is generated.We consider the worst case here, where we
consider a message at every checkpoint and average
candidate sets &s;/.

If p (wherep can be a non-integer) is the number of
database scans, the number of messages broadcast by
each node in the worst case are:

px(n—1)x Y O}

B. Algorithm Optimistic Messaging DIC (OPT-DIC)

For each node N, we performthe follow ng
begin
Run DI C |l ocal ly
At each checkpoint at N!
I. For any message min Q;, do

begin ,
Lo1f mis O C. The Algorithm

update count of I for j . L .
2 1f mis Y The basic essence of DIC lies in the fact that counting

inter

a) Start counting of I,

if not yet started

b) If I is globally frequent
OR gl obal I y infrequent

for itemsets starts very early. At every checkpoint, all
itemsets which have become locally frequent are marked
so. These have become frequent recently, they are not
OR UNKNOWK marked frequent py any o'gher site (indicated by amessage
Mark I from any other site initiating counting for that itemset).
end Such itemsets are broadcast to the other sites to initiate
counting at the other sites. Thus counting is initiated at

I'l. I'f counting of | all sites only if an itemset becomes frequent at atleast one

conpl ete do

PP is locally int site

is |loca i nfrequent ' . . .
AND( global ly f reéuent) a The OPT-DIC algorithm retains the basic essence of DIC
R in the distributed version in terms of communicating the

(I is locally frequent
AND gl obal I'y infrequent)
Add C%e fOr 1 in Qout

itemsets at the next checkpoint when they become likely
candidates locally. This helps the other sites in starting
the counting for those itemsets, if counting for them

end has not already been started. This is done at the next
I1l1. During counting of | do possible checkpoint. In the worst case the communication
begi n _ complexity is such that there is a message broadcast at
ICJf? : beco"Els a : IOCfiL candi date every checkpoint.So iD is the size of the databadd, is
turns locally frequent ; ; ;
AND | mar ked  UNKNOMN the interval which represents the number of transactions

Add ' R i between two checkpoint®,/M will represent the number
inter candidate; : : : -

t0 Qour of checkpoints.IfN is the number of sites ang is the
end number of passes the message complexity in the worst
case will beD*(N-1}xp/M. To reduce the number of
messages the interval between checkpoints (the value of
M) can be increased but many a times this adversely
affects the performance as there is a delay in conveying
the candidate itemsets which are locally frequent.
The disadvantage of CD and mawpriori-based algo-
rithms is that the number of bytes transmitted increase
end rapidly with the number of nodes.This is also because a

lot of globally infrequent but locally frequent candidate
It messages are sent at every checkpoint and If thefgemsets are broadcast between nodes. This factor is

arel such checkpoints and if we are grouping messagegquced to a great extent in OPT-DIC as a node starts
for every checkpoint, theiin-1) such messages will be ¢oyniing an itemset only if it is frequent at atleast one
sent at every checkpoint by each site, if there are gjie Without communicating with the other nodes CD
such sites.The number of these checkpoints will alsgygceeds with its entire database pass and then broadcasts
depend on the number of database scans i.e if we hayge jtemsets generated. This may contain many itemsets

| such checkpoints in one database scan and an averaggich may not contribute towards the global frequent
of p such scans and i€’} are the average number of jiomset generation.

7
candidate sets generated at #& checkpoint by sitg
then the message complexity in the worst case will be:

At the it" checkpoint the number of messages are:

IV.If no itensets are to be counted
Broadcast F".

N' waits for inconming messages

If (n—1) F/ messages received

(1<j<nyi#j)

Counting at all nodes is conplete.

V. EXPERIMENTATION AND ANALYSIS

(n—1)x

c’

Total messages in one pass:

(n—1)x

iy O
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We have compared OPT-DIC and CD using a Discrete
Event-based Simulator. We have tested Optimistic Mes-
saging DIC and CD on the benchmark datasets namely
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mushroom dataset [12], the retail dataset and two syn- 900
thetic datasets T1014D100K and T40110D100K generated  goo |
from [13]. The mushroom dataset is a multivariate,dense
dataset with 8124 transactions, 119 items and an average
transaction size of 23.The retail dataset is sparse with
16,470 items, 88,162 transactions and average transactiort
size of 10.The datasets T1014D100K and T40110D100K 400 |
are sparse with 1000 items and 1,00,000 transactions each 300 |
and the average transaction size as 10 and 40 respectively. o |
The performance metrics we have considered are the |
total time taken, number of passes, number of diskreads, 5 3 P - 5 = s
number of bytes and the number of messages. The number No of nodes

of diskreads take into account the number of passes so we
have not elaborated on the number of passes.

From the above datasets, for T1014D100K, we have
experimented on the value of minimum suppdms 1% 800
and M as 100. For T40110D100K, we have takénas
4% andM as 100. For the Retail dataset,has been
taken as 10% antfl as 100. Since Mushroom is a dense 600 ¢
dataset, we have taken a higher valué afs 50% and o 500l "
as 100. We have packetized the mesages generated at thé
end of each pass in CD and at a checkpoint in OPT-DIC 400 r
with a MTU of 1500 bytes and a header of 20 bytes. 300 |
To calculate the disk access time we have considered
the seek time (3 msec), disk latency time (2 msec) and 200 ‘ ‘ ‘ ‘ ‘ ‘
disk transfer rate (1000 Mbps). To calculate time for 2 25 3 35 4 45 5 55 6
transmission across the network, latency time (15 msec) No of nodes

a_nd bandwidth (1 Mbps) have been CQnSidered' We now Figure 2. Time taken for T404D100K far = 4% and M=100
discuss the performance of the algorithms according to
the above performance metrics on equipartitions and on
gaussian paritions.

700
600 r

500 ¢,

Figure 1. Time taken for T1014D100K faf = 1% and M=100

700

200

180 r

A. Results for Equipartitions 100

We have tested the results of the algorithm by equiparti-
tions and on gaussian partitioning, i.e. to check the result
on variable paritions as well as for similar partitions. 80 |
(1) Total time taken : Due to the huge size of the 60 |

database and the disk and network latency, time taken 20 |
is heavily dependent upon the maximum number of 20 |
passes and the number of messages transmitted. In 5 P A s 0 12
case of CD, sites synchronize at the end of every No of nodes

pass. This makes the sites with minimum records
wait for the sites with maximum records to send
their counts.In case of OPT-DIC, none of the sites
try to synchronize. They send messages but as long 700
as there is data to be mined locally, they do not wait
for messages from other sites.

From Figure 1 we observe that the time required for 500 |
OPT-DIC for T1014D100K is around 52% less than
that required for CD and this reduction in time is al-
most constant for an increase in the number of nodes.
The time required for OPT-DIC for T40110D100K is
around 32% less than that required for CD and this 200 |
reduction in time is almost constant for an increase
in the number of nodes. We have observed that
the rate of reduction in time required for OPT-DIC No of nodes
as compared to CD for Retail is almost constant
between 60 to 70%. We observe that the rate of

140 %,
120 | %
100

Total time required

Figure 3. Time taken for mushroom fér= 50% and M=100

600

400 ¢,

Total time

300 r

Figure 4. Time taken for retail fof = 10% and M=100
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average diskreads

; 1.6e+07

CD;‘*

300000 co
OPT -~ 1.4e+07 | OPT -y |

280000 1

1.2e+07 q

1e+07 | B
260000 | B
8e+06 q

240000 - 1 6e+06 | i

Total bytes transmitted

4e+06 B
220000 B

2e+06 B

200000 §,mimizm @ m i @ s g s @i e S b 0 o
2 3 4 5 6 7 8 2 3 4 5 6 7 8
No of nodes No of nodes

re

Figure 5. Diskreads required for T1014D100K k= 1% and M=100 Figure 7. Bytes generated for T1014D100K e 1% and M=100

average diskreads

(2)

T CD
cD OPT --o,~
120000 | OPT e 2e+06 - i
o
£
100000 IS 1.5e+06 [ 1
g
80000 e é 1e+06 b
=
60000 | £
" 500000 | 1
40000
‘ 0 . . -
2 3 4 5 6 7 2 3 4 5 6 7
No of nodes No of nodes
Figure 6. Diskreads required for 'retail’ faf = 10% and M=100 Figure 8. Bytes generated for retail for= 10% and M=100
8000 q
reduction in time required for OPT-DIC as compared 7000 .
to CD for Mushroom increases with the increase in 6000 ,
number of nodes. 8 oo |
Number of diskreads : The number of passes in %
. 000 1
OPT-DIC are much less than those in CD as seen £ 4
in figures 5 and 6. Local counts of all itemsets is g 3000 1
always maintained. As a resultifglobally frequent 2000 ¢" 1
itemsets are not locally frequent at the same site, 1000 ]
they would never be used to generate a candidate at o ‘ ‘ ‘ ‘ ‘
the next level. Not only does this reduce the number 2 3 4 5 6 7 8
of candidates but it can save upto one extra pass. All No of nodes
these factors reduce the number of diskreads. Figure 9. Messages generated for T1014D100Ksfe: 1% andM=100

®3)

(4)

We observe that the diskreads in OPT-DIC are

around 50% less than those in CD. This is a major

component of the time required. turned potentially frequent, messages are generated
Number of Bytes transmitted: at that checkpoint.In the worst case, a message is
The number of bytes transmitted by CD in the first  proadcast at every checkpoint. Hence the number of
pass is quite high as it sends the counts and names messages is higher in OPT-DIC compared to CD.
of all the frequent 1-itemsets. In Subsequent passeS, But though the number of messages is higher, OPT-
only counts of all candidates are transmitted.Please  p|c fares much better than CD in the time taken.
refer to figures 7 and 8. In the case of OPT-DIC

the count and name of each itemset with cardinality

more than 1 is transmitted. But the number of i o

candidate itemsets generated in CD are far more thalf- Results for Gaussian Partitioning

those in OPT-DIC. We have partitioned the database using the gaussian dis-
Number of messages transmitted: By messages hergibution which represents the actual distribution of datta
we mean the number of packets transmitted over th&arious sites in an actual distributed setup. Using similar
network. In case of OPT-DIC, if some itemsets haveperformance metrics as applied to equipartitioning, we
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4000 r OPT renr - with respect to the time taken, the maximum number of
3500 | 1 diskreads and the total number of bytes transmitted. It
@ 3000 | 1 transmits larger number of messages than CD but since
g 2500 | ] the total time required by OPT-DIC is much lower the
g 2000 | | other parameters offset the impact of larger number of
S 1500 | PR messages.
1000 e R |
500 | oomeeermr ™ | VI. CONCLUSION
: 1 In this paper, we have presented an algorithm, OPT-
2 25 8 3 4 45 5 55 6 DIC, based on Dynamic Itemset Counting which repre-

No of nodes

‘ The above results show that OPT-DIC outperforms CD

sents a different approach to frequent itemset generation

Figure 10. Messages generated for mushroons fer50% andM=100  in a distributed ARM environment. We have observed
that compared to CD, OPT-DIC shows much higher

800 ‘ ‘ performance gain on sparse as well as dense datasets.
CD
OPT ---e--
700 q
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600 q
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