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Abstract —In computational flow visualization, integration 

based geometric flow visualization is often used to explore 

the flow field structure. A typical time-varying dataset from 

a Computational Fluid Dynamics (CFD) simulation can 

easily require hundreds of gigabytes to even terabytes of 

storage space, which creates challenges for the consequent 

data-analysis tasks. This paper presents new techniques for 

visualization of extremely large time-varying vector data 

using high performance computing. The high level require-

ments that guided the formulation of the new techniques are 

(a) support for large dataset sizes, (b) support for temporal 

coherence of the vector data, (c) support for distributed 

memory high performance computing and (d) optimum 

utilization of the computing nodes with multi-cores (multi-

core processors). The challenge is to design and implement 

techniques that meet these complex requirements and bal-

ance the conflicts between them. The fundamental innova-

tion in this work is developing efficient distributed visualiza-

tion for large time-varying vector data. The maximum per-

formance was reached through the parallelization of mul-

tiple processes on the multiple cores of each computing 

node. Accuracy of the proposed techniques was confirmed 

compared to the benchmark results. In addition, the pro-

posed techniques exhibited acceptable scalability for differ-

ent data sizes with better scalability for the larger ones. 

Finally, the utilization of the computing nodes was satisfac-

tory for the considered test cases. 

I.  INTRODUCTION 

The massive progress in high performance computing 

resources enabled the simulation of complex phenomena 

in unprecedented details. Examples include data from the 

study of weather forecasting, crash simulation, crack 

propagation in a material, unsteady flow surrounding 

flying vehicles, seismic signals from geological strata, 

and the merging of galaxies. A typical time varying data-

set from a Computational Fluid Dynamics (CFD) simula-

tion can contain hundreds of time steps, and each time 

step can have more than millions of data points. General-

ly, multiple values are stored at each data point. As a re-

sult, some datasets can easily require hundreds of giga-

bytes to even terabytes of storage space, which creates 

challenges for the consequent data analysis tasks. When 

scientists attempt to visualize and understand the data 

generated from simulations, the huge size of the data is 

one of the major challenges. To address these challenges, 

a lot of research work has been pursued [1, 2, 3, 4] focus-

ing on large scale data visualization. However, most of 

the techniques were developed for the visualization of 

scalar data [4].  

Visualization of vector data has also been an active 

area of research [5, 6]. For large scale time-varying 3D 

vector fields, fewer studies have been conducted [7, 8] 

for several reasons. First, the size of the vector data sets 

is three times or more that of the corresponding scalar 

field. Therefore, traditional workstations generally do not 

have the memory capacity or the processing power 

needed to visualize such huge data sets. Second, when 

directly applied to 3D vector data, most of the effective 

2D vector field visualization methods face the “visual 

clutter” problem. Finally, additional attention to temporal 

coherence is required for visualizing time varying vector 

data. Consequently, previous work [5, 9] for vector field 

visualization focused primarily on 2D data sets, steady 

flow fields, and the topological aspect of the vector fields 

(such as, the associated seed/glyph placement problem).  

In this paper, new techniques for visualizing large time 

varying 3D vector fields are presented. The accuracy and 

performance of the proposed techniques were compared 

to other existing ones. Distributed memory architecture is 

addressed therefore we have considered off the shelf sys-

tems like WINDOWS and LINUX clusters as well as 

distributed memory high performance computers. Fur-

thermore, utilizing a cluster of workstations with multi-

core processors was also addressed, as the multi-core 

processors are now main stream, with the number of 

cores increasing, expecting to reach hundreds of proces-

sors per chip in the future [10]. 

II.  BACKGROUND AND RELATEDWORK 

A.Path-line visualization  

The existing techniques for vector data visualization 

can be classified into glyph and field line based methods 

[5, 6], dense texture methods [7, 8, 9], clustering-based 

methods [11, 12], and topology-based methods [13, 14]. 
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In field-line based methods, Lane [5] developed a particle 

tracing system to generate particle traces in unsteady 

flow fields. The system was used to visualize several 3D 

unsteady flow fields from real world problems. The per-

formance of the system was mainly influenced by the 

computational mesh, the number of time steps and the 

number of seed points. The disadvantage was that the 

particle traces were performed sequentially. Later in [15], 

Kenwright and Lane presented an efficient algorithm to 

compute particle paths, streak lines and time lines in un-

steady flows with moving curvilinear grids. The time 

integration, the velocity interpolation, and the step size 

control were all manipulated in the physical space, which 

avoided the need to transform the velocity field to the 

computational space. The problem of the point location 

and the interpolation in the physical space was simplified 

by decomposing hexahedral cells into tetrahedral ones.  

In the cases where the data sets are larger than the 

memory size of the used workstation, many research 

groups focused on parallel I/O operations to overcome 

this problem. Ueng et al. [16] presented an out-of-core 

approach for interactive streamline construction for large 

unstructured tetrahedral meshes containing millions of 

elements. The out-of-core algorithms use an OctTree to 

partition and restructure the raw data into sub-sets stored 

in disk files for fast data retrieval.  

The rapid growth of the data set sizes raised the need 

for efficient visualization techniques. In this manner, the 

use of High Performance Computing (HPC) became a 

rich field of research to visualize large scale steady and 

time-varying scalar fields [4]. Research examples for 

steady flow include; Ahrens et al. [17] where a parallel 

data streaming architectural approach was presented to 

handle the large scale visualization problems on a cluster 

of workstations. For vector field visualization, Bruck-

schen et al. [18] presented a method for real-time visuali-

zation of arbitrarily large time-varying vector fields. 

They proposed an out-of-core scheme in which two dis-

tinct preprocessing and rendering components to enable 

real-time data streaming and visualization. This approach 

yielded low latency application start-up times and small 

memory footprints.  

Afterwards, Ellsworth et al. [19] proposed methods to 

produce an interactive visualization for CFD data sets 

using particle tracing and streak-lines. They also pre-

sented an algorithm for the computations of particle trac-

ing using a cluster of workstations. This algorithm can be 

adapted to work with multi-block curvilinear meshes. In 

addition, they discussed how scalars can be extracted and 

used to color the particles. This research proved that the 

out-of-core visualization can be scaled to more than 300 

billion particles while still achieving an interactive per-

formance on PC computing platform.  

Researchers like Bachthaler et al. [3] adopted a texture 

based technique for vector field visualization on curved 

surfaces using parallel computation via GPU cluster 

computers. By using parallelization, both the visualiza-

tion speedup and the maximum data set size were scaled 

with the number of computing nodes. Many issues per-

taining to the parallel GPU-based vector field visualiza-

tion were addressed in [3]. These issues include the re-

duced locality of memory accesses caused by particle 

tracing, the dynamic load balancing for changing camera 

parameters, as well as the combination of image space 

and object space decomposition in a hybrid approach.  

Hongfeng Yu et al. [20] presented a parallel path line 

construction method to visualize large time-varying 3D 

vector fields. A 4D representation of the vector field was 

introduced to make a time accurate depiction of the flow 

field. The constructed hierarchical representation of the 

4D vector field enabled the interactive visualization of 

the flow field at different levels of abstraction. 

A.Stream surface  visualization  

Stream surfaces, surfaces everywhere tangent to the 

flow, are a viable solution for the visualization of 3D 

vector fields. Firstly they do not suffer from the visual 

complexity the same way seeding many streamlines can. 

Secondly, depth cues can be easily added using shading. 

Hultquist [27] proposed a technique for steam surface 

construction from stream-lines. The technique approx-

imated the stream surface by triangular tilling of adjacent 

pairs of integrated stream-lines. This algorithm accessed 

the sampled field data more efficiently and provided bet-

ter control over the sampling density across the width of 

the evolving surface representation. But, the algorithm 

failed in flow fields which have divergence, convergence, 

or curvature. In [28], V. Gelder et al. described a method 

for generating stream surfaces, given a three dimensional 

vector field defined on a curvilinear grid. The method can 

be characterized as semi-global; that is, it tried to find a 

surface that satisfied constraints over a region, expressed 

as integrals (actually sums, due to discreteness), rather 

than locally propagating the solution of a differential eq-

uation. Gelder presented a method for generating stream 

surfaces that simultaneously solves constraints over a 

large region of space, rather than working in one local 

region at a time. Yet, there was an element of down-

stream propagation. The efficiency was based on the fast 

procedure for solving tri-diagonal linear systems. The 

implementation so far had limited flexibility.  Garth et al 

[29] presented an explicit algorithm for the integration of 

stream surfaces that was based upon Hultquist’s original 

idea [27] of advancing a front of connected stream-lines 

through the flow field and adaptively inserting and delet-

ing streamlines where the flow diverges or converges. 

The algorithm eliminated this shortcoming by employing 

streamline integration based on arc length rather than 

parameter length, which proved to be a more intuitive 

and accurate approach for the creation of a graphical re-

presentation. Schafhitzel et al [30] introduced a point-

based algorithm for computing and rendering of stream 

surfaces in 3D flows. Surface points were generated by 

particle tracing, and an even distribution of those par-

ticles on the surfaces was achieved by selective particle 

removal and creation. Texture-based surface flow visua-
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lization was added to show inner flow structure on those 

surfaces. The visualization method was designed for 

steady and unsteady flow alike: both the path surface 

component and the texture-based flow representation 

were capable of processing time-dependent data. In addi-

tion Schafhitzel et al. presented a real-time method for 

creating and rendering stream surfaces and path surfaces 

that enabled the user to manipulate seed curves interac-

tively, even for unsteady flows. The streamlines and 

path-lines were generated by a GPU-based particle trac-

ing algorithm. They dealt with local flow divergence by 

inserting and removing particles according to the particle-

density criterion. Based on the particle traces, the corres-

ponding surfaces were created and displayed by point set 

surfaces. 

Garth et al. [31] presented a novel approach for the di-

rect computation of integral surfaces. The approach was 

based on a separation of the integral surface computation 

into two stages: surface approximation and generation of 

a graphical representation. The proposed method was 

based on the adaptively-refined advancing front para-

digm, and was applicable to visualize both stationary and 

time-varying vector fields. Treatment of the latter was 

achieved in a streaming fashion, thus allowing the me-

thod to work even on extremely large datasets with thou-

sands of time steps. 

McLoughlin et al. [32] introduced an algorithm for the 

construction of stream and path surfaces that was fast, 

simple and didn’t rely on any complicated data structures 

or surface parameterization, thus making it suitable for 

inclusion into any visualization application. This algo-

rithm will be the base-line of our new technique for 

stream surfaces visualizing. 

 In this paper, we address the problem of visualizing 

time varying vector data using both path-lines and stream 

surfaces techniques on vector data visualization. In this 

manner, new techniques for visualizing huge datasets are 

introduced. The proposed techniques best utilize a cluster 

of workstations with multi-core processors.  Hybrid ar-

chitecture is introduced, in which the distributed memory 

architecture is combined with the shared memory paral-

lelism.  

The rest of the paper is organized as follows: Section 

III describes the main system architecture and the prepro-

cessing phase which is applied on the data before visuali-

zation, while section IV describes the proposed visualiza-

tion pipelining techniques. In section V, the results of the 

techniques applied to multiple data-set sizes are presented 

and discussed. Finally, section VI contains the conclu-

sions and the future work. 

III.  ARCHITECTURE AND DATA PREPROCESSING 

In this paper, we mainly adopted distributed memory 

architecture for the proposed technique. As shown in Fig. 

1, the proposed visualization system consists of central 

rendering, I/O management, user interface and a data root 

for communicating with HPC facilities. 

 

 

Figure 1 Visualization system components 

The proposed visualization system is based on the Vi-

sualization Tool Kit (VTK) [21], as an application builder 

for the implementation of several visualization algo-

rithms. The core toolkit should be an object oriented 

cross-platform software package and have an easy inter-

face for the classes that perform visualization algorithms, 

rendering and interaction techniques. 

The first challenge is the huge size of the data sets un-

der consideration, which cannot be loaded in the main 

memory of a single workstation. When using distributed 

memory based visualization, a preprocessing step should 

be performed to partition the data sets. This step is per-

formed by the master computing node in order to facili-

tate loading data by the working computing nodes. In this 

manner, the input to the preprocessing step is several 

files. Each one contains the datasets of a specific time 

step. Domain partitioning is considered as one of the 

most eminent techniques of the out-of-core visualization 

researches [2]. 

Each of the input files is parsed and restructured in an 

OctTree, which has   leaves at its end; these leaves 

represent new smaller files, which will be the input for 

the computing nodes. Each node in the OctTree consists 

of a containing cube representing a subset of the main 

dataset. Starting with the first file that represents the first 

time step, from   time steps, a containing cube is gener-

ated to contain all the dataset. The vertices of this cube 

are inserted into the parent node of the OctTree as an 

object. Then, the containing cube is decomposed into 

smaller sub-cubes using three cutting planes perpendicu-

lar to the  ,   and   axes. Each sub-cube is inserted in the 

OctTree as a child node for the parent cube. Next, each 

sub-cube is examined against the stopping condition. If it 

doesn’t meet the condition, it will be decomposed again 

into smaller sub-cubes using the same method. These 

new sub-cubes are also inserted as children for the parent 

cube in the OctTree. The cubes are to be divided into 

smaller cubes in a breadth first manner. This process con-

tinues until all leafs containing cubes of the OctTree sa-

tisfy the stopping condition. A cube is considered satisfy-

ing the stopping condition, when it represents a segment 

of the dataset smaller than a predefined threshold. The 

threshold is defined by the size of the maximum dataset 

that computing nodes can process independently. Fig. 2 

shows a 2D representation of the OctTree for a 2D data 

set. 
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Figure 2.  Representation of the OctTree for a 2D data grid 

IV.  PROPOSED VISUALIZATION TECHNIQUES 

The proposed technique uses domain partitioning be-

tween the computing nodes along with pipelining archi-

tecture to distribute computations between the computing 

nodes and utilize them efficiently. In this manner, the 

proposed technique combines the use of distributed 

memory architecture with the shared memory parallelism 

to improve performance and scalability 

A.  Path-Line visualization  

To achieve the best performance and scalability, the 

proposed technique tries to keep all computing nodes 

fully utilized all the time. The system architecture for this 

technique consists of one master node responsible for 

data preprocessing and handling of tasks, one node work-

ing as data storage, one rendering node and   computing 

nodes as shown in Fig. 3. Message Passing Interface 

(MPI) is used as the main communication backbone be-

tween nodes [22]. After the preprocessing phase, each 

data file representing a time step is divided into smaller 

ones. These files are shared between computing nodes. 

Information about all the computing nodes is stored in a 

hash table in the master computing node. The key ele-

ment of the hash table is the computing node number. 

The value of each key is an object containing the time 

step and the file number that is currently loaded in the 

computing node memory as shown in Fig. 4. For the 

path-lines to be visualized, a stack of seeding points is 

constructed on the master computing node and shared 

between all the other computing nodes. 

 
 

Figure 3.  The proposed Pipeline 

 

Figure 4. Hash table of the computing nodes  

The pipeline starts by constructing an OctTree on the 

master node, while the data set is divided into small ones 

and transferred to the data storage (as explained before in 

the preprocessing phase). Each computing node requests 

a seeding point to process, from the master node, and the 

master finds the most appropriate one to be sent. To find 

the mesh cell that contains this seeding point, the corres-

ponding computing node searches the OctTree to find the 

containing sub domain. Next, the computing node applies 

the Fan Cell Searching algorithm [23] to know which 

mesh cell contains this seeding point. Then, the compu-

ting node interpolates the velocity components and ap-

plies the numerical integration method [24] to advance 

the path-line. The advancement of the path-line is re-

turned to the master computing node to be inserted in the 

queue. Information (like time-step, file number where the 

seeding point is located, and the cell number that contains 

the most recent point on the path-line,..) is saved with the 

seeding point to help the master node in identifying the 

best computing node for further advancement as shown 

in Fig. 5. 
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Figure 5. Seeding points queue 

When computing node requests another seeding point, 

from the master computing node, the master node identi-

fies the file that is already in its memory. Therefore, it 

sends the most appropriate seeding point to this compu-

ting node. This process is performed through searching 

the queue, for a seeding point, using the time step and the 

file number. If none is found, the master searches for a 

seeding point within the same time step only. If there is 

no seeding point in the same time step, or the file num-

ber, the master node sends any seeding point in the next 

time step to the computing node. This reduces the time 

needed to load the data file to the computing node’s 

memory and decreases the number of fetch processes. 

During the idle time of the master node, it parses the 

OctTree for each seeding point in the queue to identify its 

containing sub-cube (file number).  

In this fashion, the master computing node starts a sin-

gle thread for each computing node. Each thread is re-

sponsible for all the communication between the master 

node and the computing nodes. All these threads share 

the main memory of the master node, which contains the 

OctTree. The data storage machine uses memory caching 

module to reduce the reading time. 

B.  Computing nodes with multicore processors 

The same pipelining architecture is modified to make 

use of computing nodes with multiple core presences 

employing OPENMP [25]. In this manner, each compu-

ting node will serve with multiple cores running in paral-

lel and sharing the same memory. Using multi-core adds 

some constrains to the technique in order to optimize the 

usage of the shared memory of the multi-core processor. 

If we deal with each core as a separate node, each process 

will load different file in the memory. As the memory 

capacity of the computing node can load only one data 

file, the maximum file size in the preprocessing step will 

be divided by the number of cores per processor. To 

achieve better utilization for the memory of each compu-

ting node, the hash table, that keeps the information about 

the computing nodes, has to be changed to contain infor-

mation about the different cores of each node as shown in 

Fig. 6. The master node will try to optimize the assign-

ment of the seeding points using the information in the 

modified hash table. This optimization comes through the 

assignment of the seeding points located in a single data 

file to the cores of a single computing node if possible. 

 

 

Figure 6.  Snapshot for the computing nodes hash table for multi-core 

implementation  

C.  Stream surface visualization 

The implementation of the proposed technique for 

stream surface visualization is based on the easy integral 

stream surface algorithm introduced by McLoughlin [23]. 

This algorithm proposed a special handling for the diver-

gence, convergence and rotation. 

Figure 7. Convergence and divergence in the flow  

The integral surface is constructed from quad primi-

tives. The technique is based on two important distances 

to consider when constructing a new quad:       the dis-

tance between neighboring flow line points that corres-

pond to the same integration time t and     the advance-

ment distance.  To obtain a smooth and accurate surfaces, 

the appropriate lengths of     and   is determined so 

that we maintain an appropriate sampling rate of the un-

derlying vector field. The sampling rate is guided by the 

Nyquist Limit, namely, the sampling frequency must be 

(at least) twice that of the underlying data frequency for 

accurate reconstruction. Thus we choose an initial     : 

    < ½       . 

Divergence and convergence is tested while advancing 

in the flow field. As soon as any quad reach     > 1/2 
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       and       and        we simply divide the 

quad. When     
 +      

    < 
 

 
       and        and 

       It is handled by terminating the middle flow 

line. Two quad primitives are merged into a single quad 

as shown in Fig.7. 

V. RESULTS AND DISCUSSION 

The proposed technique for path-line visualization was 

tested and evaluated using a 8 GB dataset of the unsteady 

flow in Driven Cavity [26]. The technique was tested on 

a cluster of workstations consists of 16 workstations. 

Each one has a 2.5 GH Pentium Intel processor with dual 

cores. To confirm the accuracy of the proposed tech-

nique, the results of constructing 1000 path-lines using 

the proposed technique were compared to the results per-

formed using VTK (stand alone on a single workstation). 

The maximum percentage difference introduced with 

different numbers of computing nodes is shown in Fig. 8 

for both of the two modes (the distributed visualization 

only and the distributed visualization utilizing the multi-

cores of each computing node). As shown, the accuracy 

of the proposed technique is proved, since the difference 

is within 2- 6%.   

The results of constructing a stream surface with 1000 

seeding points using the proposed technique were com-

pared to the VTK results (stand alone on a single 

workstation). The maximum percentage difference intro-

duced with different numbers of computing nodes is 

shown in Fig. 9 for both of the two modes. As shown the 

accuracy of the proposed technique is proved as the dif-

ference is within 5- 10%. 

Figure 8. Accuracy of the path-lines visualization technique against the 

results of VTK 

Next, the scalability of the proposed techniques was 

evaluated for both of the two modes in path-lines and 

stream surface visualization. The processing time for 

constructing 1000 path-lines and a stream surface was 

measured as shown in Fig. 10.a and Fig. 10.b. The 

processing time is drastically decreased as the number of 

computing nodes increased with better improvement us-

ing the second mode (the distributed visualization utiliz-

ing the multi-cores of the computing nodes). The relative 

speedup for both of the two modes of the proposed tech-

niques is shown in Fig. 8.c. This figure indicates that 

better speedup can be achieved using the multi-core pro-

cessors. Both implementations (modes) proved to achieve 

a good load balancing results as show in Fig. 10.d and 

Fig. 10.e. All processors achieved good processing utili-

zation within an acceptable range between 85- 95% for 

path-lines and 80-90% for stream surfaces. 

 

 

Figure 9. Accuracy of the stream surface technique against the results of 

VTK 

VI. CONCLUSION AND FUTURE WORK 

A distributed path-line and stream surface based visua-

lization technique for large 3D time varying vector data is 

presented and clearly studied. The proposed techniques 

partition the data sets between the available computing 

nodes via domain partitioning, and employ a pipelining 

architecture to decrease the path-lines construction time. 

The pipeline was modified to fully utilize the computing 

nodes contains multi-core processors. In this manner, the 

proposed techniques introduced a hybrid architecture, in 

which the distributed memory architecture is combined 

with the shared memory parallelization. The techniques 

were also used for steam surface visualization. The accu-

racy of the proposed techniques was confirmed in com-

parison with the results of the VTK (stand alone on a 

single workstation) with maximum difference of about 

6% in path-lines visualization and 10% in stream surface 

visualization. Then, performance and scalability analyses 

were conducted for the proposed techniques using data 

sets with different sizes. The proposed techniques exhi-

bited acceptable scalability for different data sizes with 

better scalability for larger data sets. In addition, the sca-

lability improved drastically when utilizing the multi-

cores of each computing node. This improvement came 

close to almost 200% for 16 computing nodes with dual 

core processors. As a future work, the proposed tech-

nique can modified to consider more sophisticated visua-

lization methods like flow volumes. 
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a. The processing time (in seconds) for constructing 1000 path-

lines  

b. The processing time (in seconds) for constructing stream sur-

face  

 
  

 
 

c. The speedup for constructing 1000 path-lines  

 

d. The load balance for constructing 1000 path-lines  

 
 

e. The load balance for constructing stream surface  

 

Figure 10.  Performance and scalability analysis of the proposed technique 
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