
Large-Scale Vector Data Visualization Using

High Performance Computing
Ahmed S. Ali, Ashraf S. Hussein and Mohamed F. Tolba

Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt

email :{ahmed.safwat@cis.asu.edu.eg, ashrafh@acm.org, fahmytolba@gmail.com}

Ahmed H. Yousef

Faculty of Engineering, Ain Shams University, Cairo, Egypt

email: ahmedh@eun.eg

Abstract —In computational flow visualization, integration

based geometric flow visualization is often used to explore

the flow field structure. A typical time-varying dataset from

a Computational Fluid Dynamics (CFD) simulation can

easily require hundreds of gigabytes to even terabytes of

storage space, which creates challenges for the consequent

data-analysis tasks. This paper presents new techniques for

visualization of extremely large time-varying vector data

using high performance computing. The high level require-

ments that guided the formulation of the new techniques are

(a) support for large dataset sizes, (b) support for temporal

coherence of the vector data, (c) support for distributed

memory high performance computing and (d) optimum

utilization of the computing nodes with multi-cores (multi-

core processors). The challenge is to design and implement

techniques that meet these complex requirements and bal-

ance the conflicts between them. The fundamental innova-

tion in this work is developing efficient distributed visualiza-

tion for large time-varying vector data. The maximum per-

formance was reached through the parallelization of mul-

tiple processes on the multiple cores of each computing

node. Accuracy of the proposed techniques was confirmed

compared to the benchmark results. In addition, the pro-

posed techniques exhibited acceptable scalability for differ-

ent data sizes with better scalability for the larger ones.

Finally, the utilization of the computing nodes was satisfac-

tory for the considered test cases.

I. INTRODUCTION

The massive progress in high performance computing

resources enabled the simulation of complex phenomena

in unprecedented details. Examples include data from the

study of weather forecasting, crash simulation, crack

propagation in a material, unsteady flow surrounding

flying vehicles, seismic signals from geological strata,

and the merging of galaxies. A typical time varying data-

set from a Computational Fluid Dynamics (CFD) simula-

tion can contain hundreds of time steps, and each time

step can have more than millions of data points. General-

ly, multiple values are stored at each data point. As a re-

sult, some datasets can easily require hundreds of giga-

bytes to even terabytes of storage space, which creates

challenges for the consequent data analysis tasks. When

scientists attempt to visualize and understand the data

generated from simulations, the huge size of the data is

one of the major challenges. To address these challenges,

a lot of research work has been pursued [1, 2, 3, 4] focus-

ing on large scale data visualization. However, most of

the techniques were developed for the visualization of

scalar data [4].

Visualization of vector data has also been an active

area of research [5, 6]. For large scale time-varying 3D

vector fields, fewer studies have been conducted [7, 8]

for several reasons. First, the size of the vector data sets

is three times or more that of the corresponding scalar

field. Therefore, traditional workstations generally do not

have the memory capacity or the processing power

needed to visualize such huge data sets. Second, when

directly applied to 3D vector data, most of the effective

2D vector field visualization methods face the “visual

clutter” problem. Finally, additional attention to temporal

coherence is required for visualizing time varying vector

data. Consequently, previous work [5, 9] for vector field

visualization focused primarily on 2D data sets, steady

flow fields, and the topological aspect of the vector fields

(such as, the associated seed/glyph placement problem).

In this paper, new techniques for visualizing large time

varying 3D vector fields are presented. The accuracy and

performance of the proposed techniques were compared

to other existing ones. Distributed memory architecture is

addressed therefore we have considered off the shelf sys-

tems like WINDOWS and LINUX clusters as well as

distributed memory high performance computers. Fur-

thermore, utilizing a cluster of workstations with multi-

core processors was also addressed, as the multi-core

processors are now main stream, with the number of

cores increasing, expecting to reach hundreds of proces-

sors per chip in the future [10].

II. BACKGROUND AND RELATEDWORK

A.Path-line visualization

The existing techniques for vector data visualization

can be classified into glyph and field line based methods

[5, 6], dense texture methods [7, 8, 9], clustering-based

methods [11, 12], and topology-based methods [13, 14].

298 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.2.298-305

mailto:third.author%7d@hostname2.org

In field-line based methods, Lane [5] developed a particle

tracing system to generate particle traces in unsteady

flow fields. The system was used to visualize several 3D

unsteady flow fields from real world problems. The per-

formance of the system was mainly influenced by the

computational mesh, the number of time steps and the

number of seed points. The disadvantage was that the

particle traces were performed sequentially. Later in [15],

Kenwright and Lane presented an efficient algorithm to

compute particle paths, streak lines and time lines in un-

steady flows with moving curvilinear grids. The time

integration, the velocity interpolation, and the step size

control were all manipulated in the physical space, which

avoided the need to transform the velocity field to the

computational space. The problem of the point location

and the interpolation in the physical space was simplified

by decomposing hexahedral cells into tetrahedral ones.

In the cases where the data sets are larger than the

memory size of the used workstation, many research

groups focused on parallel I/O operations to overcome

this problem. Ueng et al. [16] presented an out-of-core

approach for interactive streamline construction for large

unstructured tetrahedral meshes containing millions of

elements. The out-of-core algorithms use an OctTree to

partition and restructure the raw data into sub-sets stored

in disk files for fast data retrieval.

The rapid growth of the data set sizes raised the need

for efficient visualization techniques. In this manner, the

use of High Performance Computing (HPC) became a

rich field of research to visualize large scale steady and

time-varying scalar fields [4]. Research examples for

steady flow include; Ahrens et al. [17] where a parallel

data streaming architectural approach was presented to

handle the large scale visualization problems on a cluster

of workstations. For vector field visualization, Bruck-

schen et al. [18] presented a method for real-time visuali-

zation of arbitrarily large time-varying vector fields.

They proposed an out-of-core scheme in which two dis-

tinct preprocessing and rendering components to enable

real-time data streaming and visualization. This approach

yielded low latency application start-up times and small

memory footprints.

Afterwards, Ellsworth et al. [19] proposed methods to

produce an interactive visualization for CFD data sets

using particle tracing and streak-lines. They also pre-

sented an algorithm for the computations of particle trac-

ing using a cluster of workstations. This algorithm can be

adapted to work with multi-block curvilinear meshes. In

addition, they discussed how scalars can be extracted and

used to color the particles. This research proved that the

out-of-core visualization can be scaled to more than 300

billion particles while still achieving an interactive per-

formance on PC computing platform.

Researchers like Bachthaler et al. [3] adopted a texture

based technique for vector field visualization on curved

surfaces using parallel computation via GPU cluster

computers. By using parallelization, both the visualiza-

tion speedup and the maximum data set size were scaled

with the number of computing nodes. Many issues per-

taining to the parallel GPU-based vector field visualiza-

tion were addressed in [3]. These issues include the re-

duced locality of memory accesses caused by particle

tracing, the dynamic load balancing for changing camera

parameters, as well as the combination of image space

and object space decomposition in a hybrid approach.

Hongfeng Yu et al. [20] presented a parallel path line

construction method to visualize large time-varying 3D

vector fields. A 4D representation of the vector field was

introduced to make a time accurate depiction of the flow

field. The constructed hierarchical representation of the

4D vector field enabled the interactive visualization of

the flow field at different levels of abstraction.

A.Stream surface visualization

Stream surfaces, surfaces everywhere tangent to the

flow, are a viable solution for the visualization of 3D

vector fields. Firstly they do not suffer from the visual

complexity the same way seeding many streamlines can.

Secondly, depth cues can be easily added using shading.

Hultquist [27] proposed a technique for steam surface

construction from stream-lines. The technique approx-

imated the stream surface by triangular tilling of adjacent

pairs of integrated stream-lines. This algorithm accessed

the sampled field data more efficiently and provided bet-

ter control over the sampling density across the width of

the evolving surface representation. But, the algorithm

failed in flow fields which have divergence, convergence,

or curvature. In [28], V. Gelder et al. described a method

for generating stream surfaces, given a three dimensional

vector field defined on a curvilinear grid. The method can

be characterized as semi-global; that is, it tried to find a

surface that satisfied constraints over a region, expressed

as integrals (actually sums, due to discreteness), rather

than locally propagating the solution of a differential eq-

uation. Gelder presented a method for generating stream

surfaces that simultaneously solves constraints over a

large region of space, rather than working in one local

region at a time. Yet, there was an element of down-

stream propagation. The efficiency was based on the fast

procedure for solving tri-diagonal linear systems. The

implementation so far had limited flexibility. Garth et al

[29] presented an explicit algorithm for the integration of

stream surfaces that was based upon Hultquist’s original

idea [27] of advancing a front of connected stream-lines

through the flow field and adaptively inserting and delet-

ing streamlines where the flow diverges or converges.

The algorithm eliminated this shortcoming by employing

streamline integration based on arc length rather than

parameter length, which proved to be a more intuitive

and accurate approach for the creation of a graphical re-

presentation. Schafhitzel et al [30] introduced a point-

based algorithm for computing and rendering of stream

surfaces in 3D flows. Surface points were generated by

particle tracing, and an even distribution of those par-

ticles on the surfaces was achieved by selective particle

removal and creation. Texture-based surface flow visua-

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 299

© 2011 ACADEMY PUBLISHER

lization was added to show inner flow structure on those

surfaces. The visualization method was designed for

steady and unsteady flow alike: both the path surface

component and the texture-based flow representation

were capable of processing time-dependent data. In addi-

tion Schafhitzel et al. presented a real-time method for

creating and rendering stream surfaces and path surfaces

that enabled the user to manipulate seed curves interac-

tively, even for unsteady flows. The streamlines and

path-lines were generated by a GPU-based particle trac-

ing algorithm. They dealt with local flow divergence by

inserting and removing particles according to the particle-

density criterion. Based on the particle traces, the corres-

ponding surfaces were created and displayed by point set

surfaces.

Garth et al. [31] presented a novel approach for the di-

rect computation of integral surfaces. The approach was

based on a separation of the integral surface computation

into two stages: surface approximation and generation of

a graphical representation. The proposed method was

based on the adaptively-refined advancing front para-

digm, and was applicable to visualize both stationary and

time-varying vector fields. Treatment of the latter was

achieved in a streaming fashion, thus allowing the me-

thod to work even on extremely large datasets with thou-

sands of time steps.

McLoughlin et al. [32] introduced an algorithm for the

construction of stream and path surfaces that was fast,

simple and didn’t rely on any complicated data structures

or surface parameterization, thus making it suitable for

inclusion into any visualization application. This algo-

rithm will be the base-line of our new technique for

stream surfaces visualizing.

 In this paper, we address the problem of visualizing

time varying vector data using both path-lines and stream

surfaces techniques on vector data visualization. In this

manner, new techniques for visualizing huge datasets are

introduced. The proposed techniques best utilize a cluster

of workstations with multi-core processors. Hybrid ar-

chitecture is introduced, in which the distributed memory

architecture is combined with the shared memory paral-

lelism.

The rest of the paper is organized as follows: Section

III describes the main system architecture and the prepro-

cessing phase which is applied on the data before visuali-

zation, while section IV describes the proposed visualiza-

tion pipelining techniques. In section V, the results of the

techniques applied to multiple data-set sizes are presented

and discussed. Finally, section VI contains the conclu-

sions and the future work.

III. ARCHITECTURE AND DATA PREPROCESSING

In this paper, we mainly adopted distributed memory

architecture for the proposed technique. As shown in Fig.

1, the proposed visualization system consists of central

rendering, I/O management, user interface and a data root

for communicating with HPC facilities.

Figure 1 Visualization system components

The proposed visualization system is based on the Vi-

sualization Tool Kit (VTK) [21], as an application builder

for the implementation of several visualization algo-

rithms. The core toolkit should be an object oriented

cross-platform software package and have an easy inter-

face for the classes that perform visualization algorithms,

rendering and interaction techniques.

The first challenge is the huge size of the data sets un-

der consideration, which cannot be loaded in the main

memory of a single workstation. When using distributed

memory based visualization, a preprocessing step should

be performed to partition the data sets. This step is per-

formed by the master computing node in order to facili-

tate loading data by the working computing nodes. In this

manner, the input to the preprocessing step is several

files. Each one contains the datasets of a specific time

step. Domain partitioning is considered as one of the

most eminent techniques of the out-of-core visualization

researches [2].

Each of the input files is parsed and restructured in an

OctTree, which has leaves at its end; these leaves

represent new smaller files, which will be the input for

the computing nodes. Each node in the OctTree consists

of a containing cube representing a subset of the main

dataset. Starting with the first file that represents the first

time step, from time steps, a containing cube is gener-

ated to contain all the dataset. The vertices of this cube

are inserted into the parent node of the OctTree as an

object. Then, the containing cube is decomposed into

smaller sub-cubes using three cutting planes perpendicu-

lar to the , and axes. Each sub-cube is inserted in the

OctTree as a child node for the parent cube. Next, each

sub-cube is examined against the stopping condition. If it

doesn’t meet the condition, it will be decomposed again

into smaller sub-cubes using the same method. These

new sub-cubes are also inserted as children for the parent

cube in the OctTree. The cubes are to be divided into

smaller cubes in a breadth first manner. This process con-

tinues until all leafs containing cubes of the OctTree sa-

tisfy the stopping condition. A cube is considered satisfy-

ing the stopping condition, when it represents a segment

of the dataset smaller than a predefined threshold. The

threshold is defined by the size of the maximum dataset

that computing nodes can process independently. Fig. 2

shows a 2D representation of the OctTree for a 2D data

set.

Rendering and Time

Management

Multimodal

User Interface
Parallelization

Root

HPC Facility

Proposed Visualization System

Rendering and I/O

Management

Multimodal

User Interface
Parallelization

Root

HPC Facilities

Proposed Visualization Framework

Rendering and Time

Management

Multimodal

User Interface
Parallelization

Root

HPC Facility

Proposed Visualization System

Rendering and I/O

Management

User Interface
Parallelization

Root

HPC Facilities

Proposed Visualization Framework

Rendering and Time

Management

Multimodal

User Interface
Parallelization

Root

HPC Facility

Proposed Visualization System

Rendering and I/O

Management

Multimodal

User Interface
Parallelization

Root

HPC Facilities

Proposed Visualization Framework

Rendering and Time

Management

Multimodal

User Interface
Parallelization

Root

HPC Facility

Proposed Visualization System

Rendering and I/O

Management

User Interface
Parallelization

Root

HPC Facilities

Proposed Visualization Framework

300 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

Figure 2. Representation of the OctTree for a 2D data grid

IV. PROPOSED VISUALIZATION TECHNIQUES

The proposed technique uses domain partitioning be-

tween the computing nodes along with pipelining archi-

tecture to distribute computations between the computing

nodes and utilize them efficiently. In this manner, the

proposed technique combines the use of distributed

memory architecture with the shared memory parallelism

to improve performance and scalability

A. Path-Line visualization

To achieve the best performance and scalability, the

proposed technique tries to keep all computing nodes

fully utilized all the time. The system architecture for this

technique consists of one master node responsible for

data preprocessing and handling of tasks, one node work-

ing as data storage, one rendering node and computing

nodes as shown in Fig. 3. Message Passing Interface

(MPI) is used as the main communication backbone be-

tween nodes [22]. After the preprocessing phase, each

data file representing a time step is divided into smaller

ones. These files are shared between computing nodes.

Information about all the computing nodes is stored in a

hash table in the master computing node. The key ele-

ment of the hash table is the computing node number.

The value of each key is an object containing the time

step and the file number that is currently loaded in the

computing node memory as shown in Fig. 4. For the

path-lines to be visualized, a stack of seeding points is

constructed on the master computing node and shared

between all the other computing nodes.

Figure 3. The proposed Pipeline

Figure 4. Hash table of the computing nodes

The pipeline starts by constructing an OctTree on the

master node, while the data set is divided into small ones

and transferred to the data storage (as explained before in

the preprocessing phase). Each computing node requests

a seeding point to process, from the master node, and the

master finds the most appropriate one to be sent. To find

the mesh cell that contains this seeding point, the corres-

ponding computing node searches the OctTree to find the

containing sub domain. Next, the computing node applies

the Fan Cell Searching algorithm [23] to know which

mesh cell contains this seeding point. Then, the compu-

ting node interpolates the velocity components and ap-

plies the numerical integration method [24] to advance

the path-line. The advancement of the path-line is re-

turned to the master computing node to be inserted in the

queue. Information (like time-step, file number where the

seeding point is located, and the cell number that contains

the most recent point on the path-line,..) is saved with the

seeding point to help the master node in identifying the

best computing node for further advancement as shown

in Fig. 5.

C2

C4

C1

C3

C10

C12

C9

C11

C22C21

C23 C24
C14

C15 C16

C0

C1 C2 C3 C4

C9 C10 C11 C12 C13 C14 C15 C16

C21 C22 C23 C24

1

2

3

4

n

N Slave Nodes

Master Node

Render

Node

Data
Storage

File 1

File 2

File 3

Thread 1

Thread 2

Thread 3

Thread 4

Shared

Memory

N Threads in

Master

Thread N

Node 1

Node 2

Node 3

Node 4

Node N

71

221

102

52

121

File NoTime Step Hash Table

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 301

© 2011 ACADEMY PUBLISHER

Figure 5. Seeding points queue

When computing node requests another seeding point,

from the master computing node, the master node identi-

fies the file that is already in its memory. Therefore, it

sends the most appropriate seeding point to this compu-

ting node. This process is performed through searching

the queue, for a seeding point, using the time step and the

file number. If none is found, the master searches for a

seeding point within the same time step only. If there is

no seeding point in the same time step, or the file num-

ber, the master node sends any seeding point in the next

time step to the computing node. This reduces the time

needed to load the data file to the computing node’s

memory and decreases the number of fetch processes.

During the idle time of the master node, it parses the

OctTree for each seeding point in the queue to identify its

containing sub-cube (file number).

In this fashion, the master computing node starts a sin-

gle thread for each computing node. Each thread is re-

sponsible for all the communication between the master

node and the computing nodes. All these threads share

the main memory of the master node, which contains the

OctTree. The data storage machine uses memory caching

module to reduce the reading time.

B. Computing nodes with multicore processors

The same pipelining architecture is modified to make

use of computing nodes with multiple core presences

employing OPENMP [25]. In this manner, each compu-

ting node will serve with multiple cores running in paral-

lel and sharing the same memory. Using multi-core adds

some constrains to the technique in order to optimize the

usage of the shared memory of the multi-core processor.

If we deal with each core as a separate node, each process

will load different file in the memory. As the memory

capacity of the computing node can load only one data

file, the maximum file size in the preprocessing step will

be divided by the number of cores per processor. To

achieve better utilization for the memory of each compu-

ting node, the hash table, that keeps the information about

the computing nodes, has to be changed to contain infor-

mation about the different cores of each node as shown in

Fig. 6. The master node will try to optimize the assign-

ment of the seeding points using the information in the

modified hash table. This optimization comes through the

assignment of the seeding points located in a single data

file to the cores of a single computing node if possible.

Figure 6. Snapshot for the computing nodes hash table for multi-core

implementation

C. Stream surface visualization

The implementation of the proposed technique for

stream surface visualization is based on the easy integral

stream surface algorithm introduced by McLoughlin [23].

This algorithm proposed a special handling for the diver-

gence, convergence and rotation.

Figure 7. Convergence and divergence in the flow

The integral surface is constructed from quad primi-

tives. The technique is based on two important distances

to consider when constructing a new quad: the dis-

tance between neighboring flow line points that corres-

pond to the same integration time t and the advance-

ment distance. To obtain a smooth and accurate surfaces,

the appropriate lengths of and is determined so

that we maintain an appropriate sampling rate of the un-

derlying vector field. The sampling rate is guided by the

Nyquist Limit, namely, the sampling frequency must be

(at least) twice that of the underlying data frequency for

accurate reconstruction. Thus we choose an initial :

 < ½ .

Divergence and convergence is tested while advancing

in the flow field. As soon as any quad reach > 1/2

Seeding Point

Queue

Point 1 --1(x,y,z)

Point2 200171(x,y,z)

Point3 3271712(x,y,z)

Point4 32747(x,y,z)

Point M 3271217(x,y,z)

Cell NoFile NoTime StepPoint Data

Node 1

Node 2

Node 3

Node 4

Node N

8917

221

102

52

8917

File NoTime Step Hash Table

8917

8917

502

1315

78200

File NoTime Step

Process 1 Process 2

1/2dsep

βα

S
i
n+1

S
i
1

d
i
sep

α βS
i+1

d
i+1

sep

S
i+1

n+1

S
i
n S

i+1
n S

i
 S

i+2

302 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

 and and we simply divide the

quad. When
 +

 <

 and and

 It is handled by terminating the middle flow

line. Two quad primitives are merged into a single quad

as shown in Fig.7.

V. RESULTS AND DISCUSSION

The proposed technique for path-line visualization was

tested and evaluated using a 8 GB dataset of the unsteady

flow in Driven Cavity [26]. The technique was tested on

a cluster of workstations consists of 16 workstations.

Each one has a 2.5 GH Pentium Intel processor with dual

cores. To confirm the accuracy of the proposed tech-

nique, the results of constructing 1000 path-lines using

the proposed technique were compared to the results per-

formed using VTK (stand alone on a single workstation).

The maximum percentage difference introduced with

different numbers of computing nodes is shown in Fig. 8

for both of the two modes (the distributed visualization

only and the distributed visualization utilizing the multi-

cores of each computing node). As shown, the accuracy

of the proposed technique is proved, since the difference

is within 2- 6%.

The results of constructing a stream surface with 1000

seeding points using the proposed technique were com-

pared to the VTK results (stand alone on a single

workstation). The maximum percentage difference intro-

duced with different numbers of computing nodes is

shown in Fig. 9 for both of the two modes. As shown the

accuracy of the proposed technique is proved as the dif-

ference is within 5- 10%.

Figure 8. Accuracy of the path-lines visualization technique against the

results of VTK

Next, the scalability of the proposed techniques was

evaluated for both of the two modes in path-lines and

stream surface visualization. The processing time for

constructing 1000 path-lines and a stream surface was

measured as shown in Fig. 10.a and Fig. 10.b. The

processing time is drastically decreased as the number of

computing nodes increased with better improvement us-

ing the second mode (the distributed visualization utiliz-

ing the multi-cores of the computing nodes). The relative

speedup for both of the two modes of the proposed tech-

niques is shown in Fig. 8.c. This figure indicates that

better speedup can be achieved using the multi-core pro-

cessors. Both implementations (modes) proved to achieve

a good load balancing results as show in Fig. 10.d and

Fig. 10.e. All processors achieved good processing utili-

zation within an acceptable range between 85- 95% for

path-lines and 80-90% for stream surfaces.

Figure 9. Accuracy of the stream surface technique against the results of

VTK

VI. CONCLUSION AND FUTURE WORK

A distributed path-line and stream surface based visua-

lization technique for large 3D time varying vector data is

presented and clearly studied. The proposed techniques

partition the data sets between the available computing

nodes via domain partitioning, and employ a pipelining

architecture to decrease the path-lines construction time.

The pipeline was modified to fully utilize the computing

nodes contains multi-core processors. In this manner, the

proposed techniques introduced a hybrid architecture, in

which the distributed memory architecture is combined

with the shared memory parallelization. The techniques

were also used for steam surface visualization. The accu-

racy of the proposed techniques was confirmed in com-

parison with the results of the VTK (stand alone on a

single workstation) with maximum difference of about

6% in path-lines visualization and 10% in stream surface

visualization. Then, performance and scalability analyses

were conducted for the proposed techniques using data

sets with different sizes. The proposed techniques exhi-

bited acceptable scalability for different data sizes with

better scalability for larger data sets. In addition, the sca-

lability improved drastically when utilizing the multi-

cores of each computing node. This improvement came

close to almost 200% for 16 computing nodes with dual

core processors. As a future work, the proposed tech-

nique can modified to consider more sophisticated visua-

lization methods like flow volumes.

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16
Er

ro
r

P
e

rc
e

n
ta

ge

Processors Numbers

Single Core Multi-Core

0

1

2

3

4

5

6

7

2 4 6 8 10 12 14 16

Er
ro

r
P

e
rc

e
n

ta
ge

Processors Numbers

Single Core Multi-Core

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 303

© 2011 ACADEMY PUBLISHER

a. The processing time (in seconds) for constructing 1000 path-

lines

b. The processing time (in seconds) for constructing stream sur-

face

c. The speedup for constructing 1000 path-lines

d. The load balance for constructing 1000 path-lines

e. The load balance for constructing stream surface

Figure 10. Performance and scalability analysis of the proposed technique

REFERENCES

 [1] Jinzhu Gao, Chaoli Wang,Liya Li ,Han-Wei Shen “A

parallel multiresolution volume rendering algorithm

for large data visualization.” Parallel Computing. 31,

2 Feb. 2005.

 [2] Claudio Silva, Jihad El-sana , Peter Lindstrom Law-

rence Livermore “Out-of-Core Algorithms for Scien-

tific Visualization and Computer Graphics”. IEEE Vi-

sualization, 2002.

 [3] S. Bachthaler, M. Strengert,D. Weiskopf,T. Ertl. "Pa-

rallel Texture-Based Vector Field Visualization on

Curved Surfaces Using GPU Cluster Computers."

Proc. Eurographics PGV Sym, 2006. 75–82.

 [4] Ashraf. Hussein, Hesham. El-Shishiny. "A Framework

for Visualization of Large Time-Varying Volume Data

for High Performance Computing." Proc. the Center

for Advanced Studies on Collaborative research. To-

ronto: ACM New York, NY, USA, 2006.

 [5] David Lane "A Particle Tracer for Time-Dependent

Flow Fields." Washinton, D.C.: Proc Visualization,

1994. 257 - 264.

 [6] Abdelkrim Mebarki, Pierre Alliez, Olivier Devillers.

"Farthest Point Seeding for Efficient Placement of

Streamlines." Proc. IEEE Visualization, 2005. 479–

486.

 [7] Wijk, Jarke van. "Image Based Flow Visualization."

San Antonio, Texas: Proc. Computer graphics and in-

0

50

100

150

200

250

300

350

1 2 4 8 16

P
ro

ce
ss

in
g

Ti
m

e
 in

 S
e

co
n

d
s

Processors Number

Single-Core Multi-Core

0

100

200

300

400

500

600

700

800

900

1 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

Ti
m

e
 in

 S
e

co
n

d
s

Processors Number

Single-Core Multi-Core

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
e

e
d

u
p

Processors Number

Single-Core Multi-Core

80

82

84

86

88

90

92

94

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
ti

liz
at

io
n

 P
e

rc
e

n
ta

ge
(%

)

Processor Id

Single Core Multi-Core

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

U
ti

liz
at

io
n

 P
e

rc
e

n
ta

ge
(%

)

Processor Id

Single Core Multi-Core

304 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER

teractive techniques, 2002. 745 - 754.

 [8] Wijk, Jarke van. "Image Based Flow Visualization for

Curved Surfaces." Proc. 14th IEEE Visualization

2003.

 [9] Han-Wei Shen, David Kao "A New Line Integral

Convolution Algorithm for Visualizing Time-Varying

Flow Fields." IEEE Transactions on Visualization and

Computer Graphics, 4, 2 , 1998.

 [10] J. Held, J. Bautista,S. Koehl. "Overview, From a Few

Cores to Many:A Tera-scale Computing Research." In-

tel. 2006.

ftp://download.intel.com/research/platform/terascale/te

rascale_overview_paper.pdf.

 [11] Bjoern Heckel, Gunther Weber, Bernd Hamann, Ken-

neth I. Joy. "Construction of Vector Field Hierar-

chies." San Francisco: Proc Visualization, 1999. 19 -

25.

 [12] M. Griebel, T. Preusser ,M. Rumpf ,M. A. Schweitzer

,A. Telea. "Flow Field Clustering via Algebraic Multi-

grid." Proc Visualization, 2004. 35 - 42.

 [13] Gerik Scheuermann, Alyn Rockwood, Heinz Krüger,

Martin Menzel. "Visualizing Nonlinear Vector Field

Topology." IEEE Transactions on Visualization and

Computer Graphics, 4, 2, 1998.

 [14] James L. Helman, Lambertus Hesselink. "Visualizing

Vector Field Topology in Fluid Flows." IEEE Com-

puter Graphics and Applications 11. 3, 1991.

 [15] David Kenwright, David Lane. "Interactive Time-

Dependent Particle Tracing Using Tetrahedral De-

composition." IEEE Transactions on Visualization and

Computer Graphics. 1996. 120–129.

 [16] Shyh-Kuang Ueng, Christopher Sikorski,Kwan-Liu

Ma. "Out-of-Core Streamline Visualization on Large

Unstructured Meshes." IEEE Transactions on Visuali-

zation and Computer Graphics. 1997. 370 - 380.

 [17] James Ahrens, Kristi Brislawn,Ken Martin,Berk Ge-

veci,C. Charles Law,Michael Papka. "Large-Scale Da-

ta Visualization Using Parallel Data Streaming." IEEE

Computer Graphics and Applications 21, 4 2001, 34

- 41.

 [18] Ralph Bruckschen, Falko Kuester, Bernd Hamann,

Kenneth Joy. "Real-time Out-of-Core Visualization of

Particle Traces." San Diego, California: Proc IEEE

symposium on parallel and large-data visualization

and graphics, 2001. 45 - 50.

 [19] David Ellsworth, Bryan Green, Patrick Moran. "Inter-

active Terascale Particle Visualization." Washington,

DC: Proc Visualization, 2004. 353 - 360.

 [20] Hongfeng Yu, Chaoli Wang, Kwan-Liu Ma. "Parallel

Hierarchical Visualization of Large Time-Varying 3D

Vector Fields." Proc.ACM/IEEE conference on Super-

computing, 2007.

 [21] William Schroeder, Kenneth Martin, William Loren-

sen. "The Design and Implementation of an Object-

Oriented Toolkit for 3D Graphics and Visualization."

San Francisco, California, United States: Proc. 7th

conference on Visualization, 1996.

 [22] National, University of Chicago-Argonne. MPICH

home page. 2005.

http://www.mcs.anl.gov/research/projects/mpi/mpich2/

.

 [23] William Schroeder, Kenneth Martin, William Loren-

sen. Visualization Toolkit: An Object-Oriented Ap-

proach to 3D Graphics, 4th Edition. Kitware, 2006.

 [24] Philip. Davis, Philip Rabinowitz. “Methods of Nu-

merical Integration”,Second Edition. Dover Publica-

tions, 2007.

 [25] M. S. Müller, B. R. Supinski,B. M. Chapman. "Evolv-

ing OpenMP in an Age of Extreme Parallelism." Dres-

den,Germany: Proc.5th International Workshop on

OpenMP, 2009.

 [26] S. Albensoeder, H. C. Kuhlmann. "Accurate Three-

Dimensional Lid-Driven Cavity Flow." Journal of

Computational Physics 206, 2, 2005, 536 - 558.

 [27] J. Hultquist. "Constructing stream surfaces in steady

3D vector fields." Proc. Visualization. Bos-

ton,Massachusetts: IEEE Computer Society Press,

1992. 171 – 178

 [28] Gelder, Allen Van. "Stream surface generation for flu-

id flow solutions on curvilinear grids." Data Visualiza-

tion . Proc. VisSym 01. 2001

 [29] Christoph Garth, Xavier Tricoche, Tobias Salzbrunn,

Tom Bobach, Gerik Scheuermann. "Surface Tech-

niques for Vortex Visualization." IEEE TCVG Sym-

posium on Visualization. 2004

 [30] Tobias Schafhitzel, Eduardo Tejada,Daniel

Weiskopf,Thomas Ertl. "Point-based Stream Surfaces

and Path Surfaces." Proc. Graphics Interface. 2007.

289 - 296.

 [31] Christoph Garth, Han Krishnan,Xavier Tricoche,Tom

Tricoche,Kenneth I. Joy. "Generation of Accurate

Integral Surfaces in Time-Dependent Vector Fields."

IEEE Transactions on Visualization and Computer

Graphics. 14 , 6, 2008, 1404-1411.

 [32] Tony McLoughlin, Robert S. Laramee, and Eugene

Zhang. "Easy integral surfaces: a fast, quad-based

stream and path surface algorithm." Computer Graph-

ics International. New York, 2009. 73-82 .

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 305

© 2011 ACADEMY PUBLISHER

