
H Function based Tamper-proofing Software
Watermarking Scheme

Jianqi Zhu1,2, Yanheng Liu1,2, Aimin Wang1,2*

1. College of Computer Science and technology
2. Key Laboratory of Computation and Knowledge Engineering, Ministry of Education

Jilin University, Changchun, China
Emails: {zhujq, liuyh, wangam @jlu.edu.cn}

Kexin Yin3

3. College of computer and science and engineering
ChangChun University of Technology, Changchun, China

Email: yinkexin@126.com

Abstract—A novel constant tamper-proofing software
watermark technique based on H encryption function is
presented. First we split the watermark into smaller pieces
before encoding them using CLOC scheme. With the
watermark pieces, a many-to-one function (H function) as
the decoding function is constructed in order to avoid the
pattern-matching or reverse engineering attack. The results
of the function are encoded into constants as the
parameters of opaque predicates or appended to the
condition branches of the program to make the pieces
relevant. The feature of interaction among the pieces
improves the tamper-proofing ability because there being
one piece destroyed, the program will not work correctly.
The simulation shows that the performance of the proposed
scheme is good and can resist many kinds of attacks.

Index Terms— constant tamper-proofing, CLOC encoding,
opaque predicate, H function

I. INTRODUCTION

Since the unauthorized use and modification of
software are pervasive around the world, software piracy
becomes an important issue [1]. Recent studies show that
35% of the software programs used today are pirated [2].
 Software watermarking is an efficient technology for
software protection [3] by inserting secret messages into
the programs. In addition to applying watermarking
techniques to protect the copyrights of software codes,
combined with other techniques, software watermarking
can also be used in database protection and information
security problems.

Watermarks can be classified into two categories:
static watermarks and dynamic watermarks [4]. A static
watermark is stored inside program code in a certain
format, and it does not change during the program
execution. Static watermarking techniques are more
fragile as they can be easily attacked by code optimizers
or obfuscators. A dynamic watermark is inserted in the

 This work is supported by the National Natural Science Foundation of
China (No. 60973136) and Projects of International Cooperation and
Exchanges of Ministry of Science and Technology of China (No.
2008DFA12140).

execution state of a software object. More precisely, in
dynamic software watermarking, what has been
embedded is not the watermark itself but some codes
which cause the watermark to be expressed, or extracted,
when the software is run. One of the most effective
watermarking techniques proposed to date is the dynamic
graph watermarking (DGW) scheme of Collberg et al [5]
[6] [7]. The algorithm starts by mapping the watermark
to a special data structure called Planted Plane Cubic
Tree (PPCT), and when the program is executed the
PPCT will be constructed.

The biggest advantage of DGW over static
watermarking is that a dynamic watermark graph
structure contains many pointers, and it is hard to
analyze pointers at runtime. Also, because a DGW
watermark is constructed dynamically, runtime
information must be gathered to analyze the watermark
structure. Hackers need more effort to analyze stack and
heap dumps than to analyze plain language code. All of
these features ensure that a DGW watermark gains a
certain degree of protection simply by its method of
construction. But, there is a weak point in DGW
algorithm, the functionality of the candidate program (a
software program that needs to be watermarked) does not
depend on the watermark code. Moreover, so far, the
technology of protecting DGW watermark in software
has not received much academic attention.

Tamper-proofing technique has been suggested to
protect DGW watermark. It can detect if a program has
been altered, and if so, then the program will fail to
function properly. In this paper, we present a new tamper-
proofing technique based on PPCT and constant encoding
by creating dependencies from a candidate program to
constant. This algorithm can be an additional step in
DGW watermarking system to protect watermarks against
malicious attacks. The proposed scheme uses the
watermark pieces to construct a many-to-one function
and insert the results of the function into constants which
would be distributed into the program in the form of
parameters of opaque predicate. To a certain extent, this
scheme resolves the problem that the decoding function
is too simple that is easily be analyzed and attacked

148 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.1.148-155

maliciously. The proposed technique has the following
desirable features.
1. We split the watermark number into small pieces to

ensure the stealth of DGW watermark.
2. Construct a many-to-one function with the

watermark pieces, which increases the tamper-
proofing of watermark.

3. H function realizes many-to-one mapping that
effectively resists the pattern matching attack.

This paper is organized as follows. In section II,
related works are explained. Section III describes the
principle of DGW watermark. Section VI discusses our
design considerations. Section V evaluates the proposed
tamper-proofing technique with respect to resilience
against attacks. Section VI concludes and discusses
future work.

II. RELATED WORK

Tamper-proofing technique is widely used in data
integrity and data confidentiality. Unfortunately, most of
the work in this field are trade secrets and are not
published. In 1999 Collberg and Thomborson [8]
developed a watermark tamper-proofing technique using
the Java reflection mechanism by checking the type
consistency of the graphic nodes at runtime. This method
verifies the intactness of the Java classes representing the

watermark at run time. The authors pointed out that, this
solution has a fairly obvious disadvantage in its lack of
stealth.

Palsberg introduced an approach to protect dynamic
watermarks, by using opaque predicates to guard the
watermark representation [9]. Ideally, if the watermark
representations are altered, the opaque predicates will
switch the program flow into an error-making branch.

In 2002, Yong He [10] proposed a constant coding
scheme to strengthen the resistance of the CT watermark.
He presented a prototype design of the algorithm and
successfully developed a codec which converts integers
into PPCT structures. However, the decoding function is
too simple to resist the pattern-matching attack.
Moreover, the algorithm does not create dependencies
between the watermark and the constants. Once the
attacker figures out the location of the watermark
building code, this tamper-proofed application will be no
saver than untamper-proofed application.

III. DGW WATERMARKING

The CT algorithm is the most representative in DGW
proposed by Collberg and Thomborson. The idea is to
embed the watermark into the topology of graph
structure dynamically that is constructed at runtime. The
process [11] is as follows:

Figture1. Overview of the CT algorithm

A. Embedding:
Step1:W is embedded in the topology of graph G, G

can be RPG（Reducible Permutation Graph）, Radix-k
encoding linked list, parent-pointer tree, PPCT（Planted
Plane Cubic Tree）or IPPCT（Intensify Planted Plane
Cubic Tree）, etc;

Step2: Graph G is split into several components G1,
G2,...;

Step3: Each Gi is converted into Java bytecode and
embedded into the candidate program along the
execution path.

B. Extracting:
During extraction the candidate program is run with

the same key K as input, the watermark graph gets built
on the heap, the graph is extracted and the watermark
number is recovered.

By now, there are three main encoding schemes in DG
W: CLOC (Catalan Leaf-Oriented Conversion), BOC (Bit

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 149

© 2011 ACADEMY PUBLISHER

-Oriented Conversion), CUIC (Catalan Unique Indexed C
onversion）. In this paper, we use CLOC based on PPCT.
 It was proposed by Palsberg, and then improved by Yong
 He.

IV. DESIGN CONSIDERATIONS

As we discussed, a dynamic graph watermark is built
at runtime in the program-controlled memory, and it is
difficult to analyze or attack such watermarks. However,
the DGW watermark does not relate closely to the
functions of its candidate program. Thus, the DGW
watermark still can be attacked by intensive analysis and

modification to the watermarked program. In this section,
we discuss a new tamper-proofing technique of DGW
watermark. The process is described in Fig.2. PPCT has
strong resistance against malicious attack, but its
encoding range is small. If the watermark number is too
big, the graph structure is also big and will be located
easily. Different from the strategy of splitting PPCT into
sub-trees [12], instead, we split the watermark number W
into pieces),...,2,1(kiwi = before encoding it. iw is so
smaller that the number of node in PPCT structure is
smaller, then the watermark has good stealth.

Figture2. Tamper-proofing process

A. Watermark splitting
A watermark may take different forms, e.g., number,

string or graph. Without loss of generality, we assume
that a watermark (denoted as W) is a numerical value that
the software owner selects. The aim of splitting the
watermark is to ensure that the size of watermark piece is
moderate, so it has good stealth and high efficiency.
Attackers cannot get W from watermark pieces when they
don’t know the key. Secondly, it is difficult for attackers
to resume W from these pieces so that it improves the
security. The algorithm is as follows [13]:

(1) Compute the minimum exponent l so that W can be
represented using k-1 digits of base 2l;

(2) Split W into w1,w2, … ,wk-1 pieces so that
l

j

k

j
j

jl wwW 20,2
2

0
<≤= ∑

−

=

;

(3) We get the following set,
 110110 ,1},,...,,{ −−− +=−= iiik wsslssssS , where k, l

works as part of secret keys to extract the watermark.

B. H function based constant tamper-proofing technique
Now, the most mature tamper-proofing method is to

pick up some appropriate variables from the candidate
program by decoding the PPCT instead of directly from
the constant pool [14]. In this way, we can associate

watermarks with constants, and if watermarks are
attacked, the program cannot execute correctly. In order
to avoid the pattern-matching attack, the decoding
function should be many-to-one to prevent any reverse
engineering attack. The many-to-one property is realized
in our scheme.based on an encrypting algorithm [15] as
following, where H is an encrypting function,

),...,2,1(niM i = is plaintexts and),...,2,1(niKi = is secret
key. It satisties:

(1)),...2,1)(,(niKMH ii = are equal to each other;
(2) Given some (less than n) iM and

iK , the plaintext
information that is corresponding to the unknown secret
keys cannot be calculated.

Proof: Choose an encryption function E (D is the
decryption function), a random integer S and random
values),...,2,1(niri = , it satisfies the following conditions:

E is the output function with fixed length, and the
length is |S|.

| | | | (1, 2,...,)ir S i n= =

Providing that

Input watermark W

Split W into wi(i=1,2,...,k)

Encode wi to PPCT

Compute function H
corresponding to wi

Find C=H(),C is constant in
the program

C is replaced by H(wi), and H() is added into the opaque predicate for
“mutual effect”

150 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

1
(,) , (,)

n

i i i i ii
T E M r S u T E M r

=
=⊕ ⊕ = ⊕

(, ,) (,)F x y z E x z y= ⊕
(, ,) (,)G x y z D x y z= ⊕

Apparently, for every),...,2,1(nii = , it has the
following results:

(, ,) (,)
 (,) (,)

i i i i i i

i i i i

F M u r E M r u
E M r T E M r
T

= ⊕

= ⊕ ⊕

=
(, ,) (,)

((,))
((,),)

i i i i

i i

i i i

i

O T u r D T u r
D T T E M r
D E M r r
M

= ⊕
= ⊕ ⊕

=

=

　　　　　

　　　　　

　　　　　
Apparently F and G form an encryption/decryption

function pair. Where, x is the plaintext, (y, z) is the secret
key. Function F satisfies the demands expressed above.
For secret key),(ii ru and plaintexts),...,2,1(niM i = , we
can get the same value using F to encrypt.

According to the calculation of O, we know that the
security of F bases on the security of function E only if E
satisfies condition (2), and O can satisfy condition (2).
Q.E.D.

Choose),...,2,1(niari == and calculate each secret key

iu for each plaintext,),,(),(auMFaMH iii = , each

),(aMH i
 are equal. Select),(aMH to be a many-to-one

function for tamper-proofing, a is a random constant.
The piece ,(1, 2,...)i kw i = is the parameter iM of

function H, we calculate),(aMH as the encoding
constant. At the program is running, calculate

(int(),)(1)iH T a i k≤ ≤ as the constant decoding function. In
this case,

iT is a random watermark structure tree, the
form of)(int(),H avoids the problem of easy exposure
of int() and realizes the many-to-one property.
Moreover, based on (2), attackers cannot calculate the left
watermark information even they have found k-1
watermark pieces. The embedding process is as Fig. 3.

(a) tamper-proofing code is not added (b) tamper-proofing code is added

Figure 3. Example of proposed temper-proofing technique

In this case, iw , jw are the watermark pieces,

iT ,
jT are the root nodes of PPCT. In Fig. 3(b),

constant c is replaced by the watermark decoding
function with two different parameters.

The watermark pieces are added into the
parameters of opaque predicate in the form

of ((int()) (int()))i jH T H T− , or appended to the
branches of the program. Once there being one iT
attacked, the parameters of opaque predicate will
change so that the program will not execute correctly
as shown in Fig. 4.

(a) no opaque predicate (b) add opaque predicate

Figure 4. Watermark interaction

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 151

© 2011 ACADEMY PUBLISHER

Once iT or
jT is attacked and cause the watermark

not to be recognized, codes 1 does not execute but
code 2 does, in this way, the program does not
produce the “dead codes”, instead, it will enter into an
incorrect execution state, and produces unexpected
result. We call this effect as the “watermark pieces
mutual effect”. Once the watermark is attacked, we
can felt it under the circumstance that the number of
opaque predicates increases to 2

kc .
Refer to literature [16] that each watermark piece

can interact with the two pieces before and behind it.
So, the number of opaque predicate can be reduced to
k, which can reduce the impact on the program
performance. The interaction feature among pieces
constructs a “cycle” that can be used to check and
recover the tampered watermark. Obviously, this
feature improves the tamper-proofing of watermark.

V. SECURITY ANALYSES

The watermark scheme in this paper is realized
with Java language JDK1.6.0 in WindowsXP system
and it is assessed in SandMark [17] [18] that is a
standard watermark platform. The Benchmark
applications in this experiment are TTT, calculator
and mine-sweeping as shown in Table I.

TALBE I.

BENCHMARK APPLICATIONS

Program The number of
class

The number of
method size

TTT 12 51 11
Calculator 2 6 4

Mine-sweeping 8 38 42

A. Capacity of Information Hiding
The PPCT structure in this paper has a good

performance of anti-attacks, but it is lower ability in
coding capacity. In order to improve its stealth, the
idea of watermark pieces is used. However, each
piece resumes to the original watermark through
exponential linear cumulation, so this scheme still gets
a good amount of information hiding capacity. Table
II shows the least number of leaf nodes N needed in
coding watermark W with different piece number k.

TABLE II.

CODING ABILITY

Piece number K
5

Watermark W
100

Leaf nodes N
5

5 1000 6
10 100 4
10 1000 5

 Table III lists the coding capacity contrast among a
variety of commonly used software watermarking
graph structures and IPPCT [19]. It shows that IPPCT
with a higher data rate can be used to improve the
capacity of information hiding. Table III lists
encoding capability contrast conditions of some
common used software watermark graph structure as
well as IPPCT and PIPPCT (Planar IPPCT). PIPPCT
is a dynamic graph structure proposed by the writer of
this article which has relatively good data rate. Its
structure is as Fig. 5(c), and Fig. 6 shows its node
structure.

B．Stealth
Statistic analysis has been carried out on the byte

code distribution of function (int(),)iH T a in system
zl. Table IV shows the static code statistics: the
number of instructions and types are 958 and 65
respectively, in which the proportion of instruction
types more than 1% is 20, between 0.5% and 1% is 20
and others are have the proportion below 0.5%. Table
V is the statistic window 2: the number of instructions
and types are 933 and 269 respectively, in which the
proportions of instruction types more than 1% is14,
between 0.5% and 1% is 39 and others are have the
proportion below 0.5%. In the statistic window 3: the
number of instructions and types are 910 and 458
respectively, in which the proportion of instruction
types more than 1% is 5, between 0.5% and 1% is 33
and others are have the proportion below 0.5%. In the
statistic window 4: the number of instructions and
types are 889 and 599 respectively, in which the
proportion of instruction types more than 1% is 3,
between 0.5% and 1% is 16 and others are have the
proportion below 0.5%. In the statistic window 5: the
number of instructions and types are 866 and 669
respectively, in which the proportion of instruction
types more than 1% is 0, between 0.5% and 1% is 10
and others are have the proportion below 0.5%.

TABLE III.

COMPARISON OF THE ENCODING ABILITIES

Watermark W Radix-K PPCT Permutation RPG IPPCT
897 6 18 8 12 10
9331 7 20 8 13 12
16631 7 20 9 15 12

169037 8 26 10 19 14
3524768 9 32 11 21 16

152 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

TABLE IV.

INSTRUCTION FREQUENCIES

Byte code Proportion Byte code Proportion Byte code Proportion Byte code Proportion

aload 23.07% return 1.15% iconst_1 0.63% ifge 0.1%

invokevirtual 7.1% getstatic 1.04% aload_3 0.63% astore_1 0.1%

getfield 6.37% athrow 1.04% iload_1 0.63% iload_3 0.1%

astore 6.05% iload_2 0.94% iastore 0.63% imul 0.1%
invokeinterface 4.91% if_icmpne 0.94% ixor 0.52% istore_3 0.1%
invokespecial 4.28% Areturn 0.94% ireturn 0.52% if_acmpeq 0.1%

dup 3.76% iinc 0.94% ifeq 0.42% f2i 0.1%

iconst 3.34% ifne 0.94% istore_2 0.42% bastore 0.1%

new 3.24% checkcast 0.84% arraylength 0.42% ifnull 0.1%

goto 3.03% istore 0.73% ldc 0.42% fmul 0.1%

invokestatic 2.4% iconst_0 0.73% isub 0.42% if_acmpne 0.1%

aload_0 2.4% iaload 0.73% iconst_2 0.31% iconst_3 0.1%

putfield 1.67% if_icmplt 0.73% iconst_4 0.31% iconst_5 0.1%

iload 1.57% bipush 0.73% newarray 0.31% Putstatic 0.1%

pop 1.25% aload_1 0.73% istore_1 0.31%

ifnonnull 1.15% aconst 0.73% astore_3 0.31%
ldc_w 1.15% if_icmpeq 0.73% iadd 0.31%

TABLE V.

MOST COMMON 2-GRAMS

Byte code Proportion Byte code Proportion Byte code proportion
aload,aload 6.22% …… … invokespecial,new 0.11%

aload,getfield 4.72% astore,getstatic 0.21% bipush,istore_2 0.11%
aload,invokevirtual 4.07% ifne,new 0.21% iinc,iload_2 0.11%

astore,aload 3.43% iconst_1,goto 0.21% aload_0,iload_1 0.11%
new,dup 3.32% aload,iconst 0.21% dup,aload_1 0.11%

aload,invokeinterface 3.22% invokespecial,aload_0 0.21% if_acmpeq,aload 0.11%
goto,aload 2.57% aload,aconst 0.21% iload,iaload 0.11%

aload,invokestatic 1.39% ifnonnull,pop 0.21% ifeq,aload 0.11%
invokeinterface,astore 1.39% if_icmpeq,aload 0.21% ifnull,aload 0.11%
invokespecial,astore 1.39% iconst_1,invokevirtual 0.21% pop,iinc 0.11%

astore,goto 1.29% getstatic,new 0.21% iload_2,iload_1 0.11%
aload_0,getfield 1.29% aload,ifnonnull 0.21% iinc,iload_1 0.11%

invokespecial,athrow 1.07% iconst,aload 0.21% getfield,if_acmpeq 0.11%
invokevirtual,iconst 1.07% …… … aload_3,bipush 0.11%

Collberg had done statistic analysis on the 1132

static java byte code programs, and pointed out that
the byte codes such as aload 0, invokevirtual, getfield,
dup and invokespecial should have higher appearance
rate, and others are below 1%, especially jsr w and
goto w that are almost rarely been used. Based on the
results in literature [20], the byte codes of our
algorithm are frequently used, and most frequency
distributions conform to the characteristics of the
general applications, so it has good stealth.

C. Resistance
Table VI and VII are the experiment results of

optimizer and obfuscator imposed on system zl that
are provided by Sandmark. It shows that the algorithm
in this paper can effectively fight against semantics-
preserving transformation on Sandmark platform, and
also can be immune of all obfuscators except split
classes. And when it is attacked by split classes, the
program will go into an incorrect execution condition.

TABLE VI.

THE EFFECTS OF OPTIMIZERS ON ZL

Optimizer TTT Calculator Mine-sweeping
BLOAT + + +

Dynamic Inliner + + +
Inliner + + +

Variable Reassigner + + +
Subtractive attacks: if the watermark is located,

attackers can try to remove it without changing the
semantics. Essentially, the scheme in this paper is one
kind of dynamic data structure watermark, and can

completely resist this attack theoretically. The
watermark is embedded in a tree structure that is
generated dynamically and spread in the entire
program, so attackers cannot locate the watermark.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 153

© 2011 ACADEMY PUBLISHER

Pattern-matching attacks: when attackers cannot
know the program’s behaviors, they will use debugger
or other tools to trace every function’s return values in
the program, and replace the function whose return
value is constant with the corresponding constant. The
scheme cannot completely resist the pattern-matching
attack, but the watermark is made up of pieces, so this
attack needs high expense. And even finding all the

pieces, the attacker cannot recover the original
watermark without knowing the secret keys.

Distortive attacks: The attacker may find some
pieces, and then distort them. However, the distorted
watermark can hardly maintain the program semantics
to a large extent, and the”mutual effect” cycle can
locate the distorted watermarks and recover them in a
certain extent.

TABLE VII.

THE EFFECTS OF OBFUSCATIONS ON ZL

Obfuscator TTT Calculator Mine-sweeping
Array Folder + + +
Array Splitter + + +

BLOAT + + +
Block Marker + + +

Bludgeon Signatures + + +
Boolean Splitter + + +
Branch Inverter + + +

Buggy Code + + +
Class Encrypter + + +

Class Splitter + + +
ConstantPoolReorderer + + +

Duplicate Registers + + +
Dynamic Inliner + + +
False Refactor + + +

Field Assignment + + +
Inliner + + +

InsertOpaquePredicates + + +
Integer Array Splitter + + +
Interleave Methods + + +

Irreducibility + + +
Merge Local Integer + + +

Method Merger + + +
Objectify + + +

Opaque Branch Insertion + + +
Overlode Names + + +

ParamAlias + + +
PromotePrimitive Registers + + +

Promote Primitive Types + + +
Publicize Fields + + +

Random Dead Code + + +
Rename Registers + + +

Reorder instructions + + +
Reorder Parameters + + +

Simple Opaque Predicates -- -- --
Split Classes + + +

Static Method Bodies + + +
String Encoder + + +

TransparentBranchInsertion + + +
VariableReassigner + + +

VI. CONCLUSION AND FUTURE WORK

Software watermark is an efficient technology for
copyright protection, but the theory has yet to be
mature. Because of the determinacy of software’s
behaviors itself, the software is easily attacked, and
how to improve the robustness of software is one of
key points, moreover, how to improve the ability of
watermark’s tamper-proofing is always a popular
research problem. The constant tamper-proofing
technology proposed in this paper based on H
function, the watermark pieces are constructed into
the constants and embed to the program’s branches
and conditions to form the “mutual effect” cycle to
protect the program. In expanding the capability of
encoding, this scheme also efficiently improves the
watermark’s robustness and tamper-proofing.

Experiment analysis shows that this novel scheme has
a strong ability to protect the program and has good
performance.

Currently, some part of system zl still needs to be
manual processes. How to realize the totally
automatic model and to do accurate measurement
evaluations on more samples, and even how to
balance the relationships among stealth, data rate, and
robustness are our future works.

ACKNOWLEDGMENT
This work is supported by both the National Nature

Science Foundation of China (No.60573128) and
Projects of International Cooperation and Exchanges
of Ministry of Science and Technology of China (No.
2008DFA12140).

154 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

REFERENCES

[1] Zhu Jian-qi, Liu Yan-heng, Yin Ke-xin, “A Novel
Dynamic Graph Software Watermark Scheme” [C].
Proceedings of the ECS2009, 7-8 March, 2009,
Wuhan, China. pp. 775-780.

[2] Industrial Design and Construction (IDC) and
Business Software Alliance (BSA), “Piracy study,”
July 2004. http://www.bsaa.com.au/downloads/
piracyStudy070704.pdf

[3] Zhang Li-he, Yang Yi-xian,et al, “A survey on
software watermarking ” [J], Journal of Software,
14(2): 268-277, 2003.

[4] Christian Collberg, Clark Thomborson, “Software
watermarking: models and dynamic embeddings” [C],
Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
p.311-324, January 20-22, 1999, San Antonio, Texas,
United States.

[5] Zhu Jian-qi, Yin Ke-xin, Liu Yan-heng, “A Novel
DGW Scheme Based on 2D_PPCT and Permutation”
[C]. The International Conference on Multimedia
Information Networking and Security, Nov 18-20,
2009, Wuhan, China. pp.109-113.

[6] William Zhu, Clark Thomborson, “Extraction in
Software Watermarking” [A]. In ACM Multimedia
and Security Workshop [C], 26-27, September,
Geneva, Switzerland, pp. 175-181, 2006.

[7] William Zhu, Clark Thomborson, “Recognition in
Software Watermarking” [A]. In 1st ACM Workshop
on Multimedia , Content Protection and Security, in
conjunction with ACM Multimedia 2006 [C], October
27th,Santa Barbara, CA, USA, pp. 29-3, 2006.

[8] Christian Collberg and Clark Thomborson, “Software
watermarking:Models and Dynamic Embeddings” [A].
In:Aiken A, et al., eds.Proceedings of the 26th Annual
SIGPLAN-AIGACT Symposium on Principles of
Programming Languages (POPL’99) [C].Association
for Computing Machinery Press, pp. 311-324,1999.

[9] Jen Palsberg,Sowmya Krishnaswamy,et al,
“Experience with Software Watermarking” [A]. In:
Epstein J,et al., eds. Proceedings of the 16th Annual
Computer Security Applications Conference (ACSAC
2000) [C]. New Orleans: IEEE Computer Society
Press, pp. 308-316, 2000.

[10] Yong He, “Tamperproofing a Software Watermark by
Encoding Constants” [D]. Master’s
thesis,Comp.Sci.Dept..Univ. of Auckland 2002.

[11] Collberg CS, Thomborson C, Townsend GM,
“Dynamic graph-based software watermarking”.
Technical report TP04-08, April 28, 2004 [R].

[12] Christian Collberg, Clark Thomborson, and Gregg
Townsend, “Dynamic graph-based software
fingerprinting” [A]. ACM Trans.Program.Lang.Syst
[C]. 29,6,Article 35 (October 2007),67 pages.

[13] Christian Collberg, Andrew Huntwork, et al, “Graph
Theoretic Software Watermarks: Implementation,
Analysis and Attacks”, Technical Report TR04-06
2004 [R].

[14] Clark Thomborson, Jasvir Nagra, et al, “Tamper-
proofing Software Watermarks” [A]. In: Proc.Second
Australasian Information Security Workshop. ed. P.
Montague and C.Steketee. ACS. CRPIT 2004 [C].

[15] Zhu Zheng-ping, Zhong cheng, and Cheng Dong-yong,
“Software Watermarking Algorithm Based on Hiding
Execution Path of Watermark-functions” [J],

Application Research of Computers, (12): 118-121,
2006.

[16] Liu Quan, Jiang Xue-mei, “Hierarchical semi-fragile
digital watermarking algorithm for image tamper
localization and recovery ” [J]. Journal on
Communications, 28(7): 105-110, 2007.

[17] Christian Collberg. Sandmark homepage [EB/QL].
http://www.cs.arizona.edu/sandmark.

[18] Christian Collberg, Ginger Myles, and Andrew
Huntwork, “SandMark — A Tool for Software
Protection Research” [J], Journal of IEEE Magazine
of Security and Privacy, (1): 40-49, July-August 2003.

[19] Wang Yong, Yang Yi-xian, “A software watermark
library scheme based on PPCT ” [A]. China
information hiding workshop 2002 [C], The
information security center (ISC), Beijing Univ. of
Posts & Telecom, 2002.

[20] Christian Collberg, Ginger Myles, and Michael Stepp,
“An empirical study of Java bytecode programs” [J].
Published online 24 October 2006 in Wiley
InterScience. Softw. Pract. Exper. (37): 581-641, 2007.

ZHU Jian-qi was born in Zhenjiang,
China, in 1976. He received the
Ph.D. degree from Jilin University.
His interests include software
protection, obfuscation, software
watermarking, and so on.

LIU Yan-heng was born in Jilin,
China, in 1958. He received the
Ph.D degree in mobile
communication from Jilin University.
His primary research fields includes:
Network communication and
protocol design, QoS mechanism in
Mobile IP network, Policy-based
network management and network

intrusion detection system, and so on.

WANG Ai-min was born in Hebei
province, China. He received the
Ph.D degree in mobile
communication from Jilin
University. He research fields lies in
network security, Ad Hoc and
multimedia transmission.

YIN Ke-xin was born in Jilin, China
in 1975. She received the Ph.D.
degree from CUST. Her research
interests lie in the information
security and digital watermarking
and so on.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 155

© 2011 ACADEMY PUBLISHER

