

Structure-Encoding Differential Evolution for
Integer Programming

Changshou Deng
Institute of Computer Network System, Hefei University of Technology, Hefei City, China

Email: csdeng@jju.edu.cn

Changyong Liang
School of Management, Hefei University of Technology, Hefei City, China

Email: cyliang@163.com

Bingyan Zhao
School of Business, Jiujiang University, Jiujiang City,Chian

Email: petramm@163.com

Yanlin Yang and Anyuan Deng
School of Information Science and Technology, Jiujiang University, Jiujiang City, China

Email: {yangyl, dengay}@jju.edu.cn

Abstract—Differential Evolution is a competive method for
continuous number optimization problems. A novel
Structure-Encoding Differential Evolution (SEDE)
algorithm was proposed for optimization problems with
integer-parameter representation. In the SEDE Algorithm,
each decision variable of every individual consists of two
domains. One domain is float-encoding which is confined in
a narrow range [0, 1]. The other domain is integer-encoding
which is used to represent the problem space. A new
operator, boundary-handling operator, was used to ensure
each result generated by the mutation operator falling into
the range [0, 1]. In addition, a new mapping operator was
constructed to generate integer number from the real
domain. The global convergence property of the SEDE was
analyzed. The simulation results of several Benchmarks of
integer programming show it is effective and efficient.
Structure-encoding Differential Evolution algorithm is a
new effective way for handling the integer programming
problems.

Index Terms—Integer Programming, Structure-encoding
Differential Evolution, boundary-handling operator,
mapping operator

I. INTRODUCTION

Differential Evolution (DE), proposed by Storn and
Price[1], is a simple yet powerful algorithm for global
optimization over continuous spaces, which use the
greedy criterion to make decision. Recently, the DE
algorithm has become quite popular in the machine
intelligence and cybernetics. It has been successfully
been applied to diverse fields of science and engineering,
such as mechanical engineering design [2], signal
processing [3] and pattern recognition [4]. It has been
proved to perform better than the Genetic Algorithm (GA)
or the Particle Swarm Optimization (PSO) by numerical

benchmarks experiments [5]. On the other hand, the DE
structure has some limitations in the search logic, since it
contains too narrow a set of exploration moves [6].There
are many modifications to the original algorithm. Fan and
Lampinen(2002) [7]proposed a trigonometric DE (TDE).
In the TDE, a new mutation called trigonometric
mutation replaced the traditional mutation with certain
probability. The trigonometric mutation has the role of
promoting the generation of the offspring along optimal
directions. In this sense this special mutation can be
considered as a speical local refining operation. Noman
and Iba (2008) [8] proposed a memtic approach to
accelerate the speed of DE. The main idea is that a proper
balance of the exploration abilities of DE and the
exploitation abilities of a local search can enhance the
performance of DE.

Although DE has been successful in numerical
optimization, only a few works concern its usage for
discrete optimization problems [9].

However, a remarkably wide variety of problems can
be represented by discrete optimization models in effect.
For instance, many applications in Operational Research
such as goods distribution, production scheduling, and
machine sequencing are encountered. In most of them,
integer programming problems are met [10]. And recent
years, the neural networks with integer weights have been
promising since this kind of neural networks is better
suited for hardware implementation.

The Integer Programming problem can be presented as

 ,),(min nZSxxf ⊆∈ (1)

where Z is the set of integers, and S is a not
necessarily bounded set.

Evolutionary algorithms applied on real search space
can be used on such problems and determine the optimum
solution by rounding off the real optimum values to

Corresponding author: Changshou Deng (csdeng@jju.edu.cn)

140 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.1.140-147

the nearest integer. However, the rounding might result
in a value of the objective function that is far removed
from the optimum [12].

Despite the simplicity and successful application in
many engineering fields and many improvements, its
application on the solution of integer optimization
problems with integer decision variables is still unusual.
One of the possible reasons for this lack is that DE
cannot keep the closure when the original DE operators
are used in integer domain directly, for the operators
designed in the original DE are designed only for
continuous domain. A new structure-encoding DE was
proposed in this paper to apply the DE algorithm in
handling integer programming problem while keeping
the simplicity and high efficiency in original DE
algorithm.

The rest of the paper is organized as follows. Section
II gives a brief introduction of original DE. SEDE with
the capability to solving the integer programming
problems is given in section III. Several benchmarks of
integer programming problems are used to evaluate this
structure-encoding DE in section IV. Section V
concludes this paper.

II. DIFFERENTIAL EVOLUTION ALGORITHM

Like other Evolutionary Algorithms (EAS), DE is a
population-based stochastic optimizer that starts to
explore the search space by sampling at multiple,
randomly chosen initial points.

It is a kind of float point encoding evolutionary
optimization algorithm. AT present, there have been
several variants of DE [1]. One of the most promising
schemes, DE/rand/1/bin (DE/best/1/bin) scheme of Storn
& Price, is presented in great detail. The pseudo code of
DE is given as follows.

Initial Population Generation
REPEAT
Mutation Operator
Crossover Operator
Selection Operator
UNTIL (termination criteria are met)

A. Generation of Initial Population
The DE Algorithm starts with the initializing target

population nmijxX ×=)(with the population size m and
the dimension n , which is generated by the following
way.

))(1,0()0(l
j

u
j

l
jji xxrandxx −+= (2)

where mi ,,2,1 "= , nj ,,2,1 "= , u
jx denotes the upper

constraints, and l
jx denotes the lower constraints.

B. Mutation Operator
For the scheme DE/rand/1/bin, each target

vector),,2,1(mixi "= , a mutant vector is produced by
formula (3a).

)()1(321 rrri xxFxth −+=+
 (3a)

where },,2,1{,, 21 mrri …∈ are randomly chosen and
must be different from each other. And F is the scaling
factor which has an effect on the difference between the
individual 1rx and 2rx .

Basically, scheme DE/best/1/bin works the same way
as DE/rand/1/bin except that it generates the vector

(1)ih t + according to formula (3b):

)()1(32 rrbesti xxFxth −+=+
 (3b)

where bestx is the best solution in the current
generation.

C. Crossover Operator
DE employs the crossover operator to add the

diversity of the population. The approach is given below.

⎪
⎩

⎪
⎨

⎧
=

≤+
=+

otherwisetx
irandj

orCRrandifth
tu

i

i

i

),(
)(

),1(
)1((4)

where mi ,,2,1 "= , nj ,,2,1 "= ,]1,0[∈CR is crossover
constant and),2,1()(nirand "∈ is the randomly selected
index. In other words, the trial individual is made up
with some of some components of the mutant individual,
or at least one of the parameters randomly selected, and
some of other parameters of the target individual.

D. Selection Operator

To decide whether the trial individual)1(+tui should
be a member of the next generation, it is compared to the
corresponding)(txi . The selection is based on the
survival of the fitness among the trial individual and the
corresponding one such that:

(1), ((1)) (())
(1)

(),
i i i

i
i

u t if f u t f x t
x t

x t otherwise
+ + <⎧

+ = ⎨
⎩

 (5)

III. STRUCTURE-ENCODING DE

The mutation operator by formula (3a) and formula
(3b) show that the original DE cannot keep the closure
when it is directly applied in solving integer
programming problems. For the mutation operator in DE
is designed only for the problems in the continuous
domain. In order to overcome this shortcoming of the DE,
a structure code was proposed. Each decision variable
has two field, one is float-encoding which is confined in
a narrow interval [0,1]. The other field is integer-
encoding which is used to represent the decision variable.
A new DE using structure code is called structure-
encoding DE. The SEDE is described as fellows.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 141

© 2011 ACADEMY PUBLISHER

function intery=submap(x01)
%
M=100;
y=-M:M;
M2Mplus1=2*M+1;
M2M=1/M2Mplus1;
% y=-10:10;
x=0:M2M:1;
if x01<M2M
 intery=-M;
 else

 for i=1:M2Mplus1
 if x01>x(i) & x01<=x(i+1)
 intery=y(i);
 break;
 end
 end
end

Figure 1 Source code of the code mapping operator

A. Boundary constraints handling operator
In SEDE, even the results of mutation and crossover

operator on the float field may violate the boundary
constraints. That is to say the result may falls outside the
range]1,0[after being mutated. How to keep the results of
mutation and crossover closure should be considered. A
new boundary constraint handling operator was defined
to replace mutation result which violates the boundary
constraints. The boundary constraints handling operator
can be defined as (6).

⎩
⎨
⎧ ∈++

=+
otherwiserand

tuiftu
tu ii

i),1,0(
]1,0[)1(),1(

)1((6)

where)1,0(rand is a new one randomly generated by
the SEDE.

B. Code mapping operator
A new mapping operator was defined to connect the

float field and the integer field. Firstly, the range]1,0[
was partitioned into n equal sub ranges, such
as]1,/)1[(),/2,/1[),/1,0[nnnnn −… . Then a one to one
mapping can be constructed between the sub ranges and
the integers. Hence, it is very easy to determine the only
integer number by the inverse image x which is in the
range]1,0[. The code mapping operator can be defined as
a mapping function f , which can be defined as (7).

⎪
⎩

⎪
⎨

⎧

−∈

∈
=

]1,/)1[(,
,

)/1,0[,1
)(

nnxn

nx
xf …… (7)

The Matlab source code of the code mapping operator
for the following function F1 with initial interval
[]100,100− is presented in Fig. 1.

C. Structure-encoding population
In the SEDE, each individual includes two equal

vectors. The first vector is a float-pointed vector X , the
other one is a integer vector I . The sub vector X is the
vector used in original DE, and the sub integer vector I
is the image of the vector X mapped by Code mapping
operator. The Structure-encoding of each individual can
be denoted by formula (8).

(,)Y X I= (8)

where ()I f X= . And Y which is made up of a float-
point vector and a integer vector is called Structure-
encoding population.

An example of 10 individuals of the following
example F1, with D=5, initial interval []100,100− , is
shown in table I. For the limited space, only the first
three decision variables are given.

D. Alternative Mutation
In order to make good use of the exploration

advantage of scheme DE/rand/1/bin, and the exploitation
advantage of the scheme DE/best/1/bin. A new mutation
mechanism called alternative mutation is adopted in the
SEDE.

Given probability λ , the alternative mutation is as
formula (9)

⎩
⎨
⎧

−+
<−+

=+
otherwisexxFx

randifxxFx
th

rrbest

rrr
i),(

)(),(
)1(

32

321 λ
 (9)

where λ is controlled by formula (10).

))2log(max*/(2 iteritere−=λ (10)

where iter is the current generation, and maxiter is
the maximum iterations predefined. The probabilities for
the two mutation mechanism vary with generation are
given in Fig. 2.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

ba
bi

lit
ie

s

DE/rand/bin/1
DE/best/bin/1

Figure 2 Probabilities vary with Generations

142 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Figure 3. Flowchart of the structure-encoding DE

It is very easy to understand that the probability for
DE/rand/bin/1 decreases when the generation grows.
And the probability for the mechanism DE/best/bin/1
increases when the generation grows. In this way, at the
beginning of the evolution, exploration the space has the
higher probability. At the last stage of evolution,
exploitation the space has the higher probability. With
this new mutation scheme, the performance of the SEDE
was improved by the new scheme of balancing the
exploration and exploitation.

E. Steps of SEDE
Steps of the SEDE are as fellows.
Step1: Generation of intial population. In the population,
one field is float-encoding which is confined in [0,1] and
the other field is integer-encoding which is generated by
the code mapping operator.
Step2: Evalutation of the fitness function.
Step3: If the termination condition is true, then SEDE
terminates. Otherwise, go to step4.
Step4: Alternative Mutation
Step5: Crossover operator
Step6: code mapping operator
Step7: selection operator
Step8: go to step3

The flowchart of the SEDE is illustrated as Fig. 3.

F. Convergence analysis of SEDE
In this section, a new way proposed in [12] was used

to analyze the convergence of the proposed SEDE.
Let),,1(),,,,(max,,2,1 GGxxxX GmGGG …… == be the

random population of size m at step
,0≥G and { }mixfF GiG ,,1:)(min , …== be the best

fitness value within the population at step ,0≥G When
the random GF variable contains the value of the global
optimum, *f , it is confirmed that one individual in the
population representing the global solution of the

minimization problem. Ideally, this condition should be
met after a finite number of iterations with probability
one regardless the initialization population of the SEDE.

Property 1. In the SEDE, it is well known that the

best solutions found in the current generation will be
carried over to the next generation. This property ensures
that the optimum will be located in finite time and never
be lost once it is found. Thus, the property above shows
that the random sequence)0,(≥GFG converges to the
optimum, *f .

TABLE I.
EXAMPLE OF STRUCTURE-ENCODING POPULATION

Y1 Y2 Y3

X1 I1 X2 I2 X3 I3

0.4091 -18 0.0754 -85 0.4750 -5

0.5355 7 0.7961 60 0.4469 -11

0.2461 -51 0.8292 66 0.6554 31

0.6577 32 0.5454 9 0.1352 -73

0.9118 83 0.8955 79 0.7100 42

0.0747 -85 0.3384 -32 0.9463 90

0.8341 67 0.5627 13 0.2392 -52

0.0390 -93 0.6884 38 0.6743 35

0.6096 22 0.5271 5 0.8653 73

0.5573 12 0.8947 79 0.2171 -57

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 143

© 2011 ACADEMY PUBLISHER

Let n
m Xxxx ∈),,,(21 … denote the current

population of parents. An offspring is generated as
fellows. Firstly, m numbers of parents are chosen to
serve as elder individuals to generate a candidate
individual. This operator is presented as follows.

 mjwhereXXeld jm ≤≤→ 3: (11)

These individuals are then used to generate the
candidate individual by the alternative mutation operator,
which can be abstracted as following.

 .: XXam j → (12)

Secondly, crossover with the base individuals, a trial
individual is produced by the following process

 .: XXcor → (13)

Finally, the selection operator will determine which
ones will remain as the new parents in the next
generation. The selection operator is also abstracted as

 .: XXsel → (14)

In a word, a single generation of the structure
encoding DE can be presented as follows.

{ }

))),,(((
:,,1

1 mi xxeldamcorv
mi

…
…

=
∈∀

 (15)

 { } { }),(:,,1 iii vxselxmi =∈∀ … (16)

After the abstract description of the SEDE, some
assumptions about the above operators are defined.

Assumption 1. Each individual may be chosen to be a
parent individual and can be changed to an arbitrary
other individual by a finite number of successive
alternative mutation, i.e., for each Xx∈ there exists a
finite path such that

 { } []mjiandjixamx ji ,1,,1)(Pr ∈≠== (17)

Assumption 2. Each candidate individual is changed
by the crossover operator with the minimum
probability 0;crp .

{ }
{ } 0))),,(((Pr

:,,1

1 ;…
…

crmi pxxeldamcorv
mi

≥==
∈∀

(18)

Assumption 3. Each trial individual competes for the
next generation with a minimum probability 0.5.

 { } { } 5.0),(Pr:,,1 =∈∀ ii vxselmi … (19)

Theorem 1. If the Assumption 1-3 are valid, then the
SEDE visits the global optimum after a finite number of
generations with probability one regardless of the
initialization.

Proof. Let random variable { }*:0 fFGT G =≥=
denote the first hitting time of the global solution. An
evolutionary algorithm is said to visit the global

optimum in finite time with probability one if
{ } 1Pr =∞≺T regardless of the initialization.
Let { }*)(,* fxfXxX =∈= be the set of globally

optimal solutions. According to Assumption 1, there
exists a finite path from an arbitrary *Xx∉ to some

** Xx ∈ that can be traversed by successive alternative
mutation. Let Lx be the length of the path between

*Xx∉ and the set ** Xx ∈ .
Considered an arbitrary individual x of some

population is chosen as the parent individual.
Assumption 1 ensures that this parent passes the
alternative mutation process with every change with
probability one. The probability that the candidate
individual transits to the next point of the path towards

** Xx ∈ by crossover is ensured to be at least 0;crp
by assumption2.

With Assumption 3, the offspring will remain in the
next generation with probability 0.5. Thus, the
probability that parent *Xx∉ transits to a parent
representing the next point on the path to ** Xx ∈ is at
least 05.0 ;crp . Consequently the probability that a
global optimal solution has not been found is)5.01(crp− .

After wG generations, the SEDE has not found the

optimal solution is at most wG
crp)5.01(− .

 For the SEDE,

 { } 1))5.01(1(limPr =−−=∞
∞→

w

w

G
crG

pT ≺ (20)

Thus, a global optimum will be found for the first time
after a finite number of iterations with probability one.

IV. EXPERIMENTS

In this section, results regarding the performance of
the SEDE on the class of problems known as integer
programming are reported. Seven integer programming
problems used in literature [11] which was used to verify
the performance of PSO were selected to investigate the
performance of the SEDE method. And the comparison
between the performances of the SEDE with that of PSO
is also reported.

A. Test Problems
The test problems are defined immediately below:
Test Problem 1 (Rudolph,1994) [13],

 DxxxxF …+== 111)((21)

where D is the corresponding dimension. The olution
is Dixi ,,1,0* …== with 0*)(1 =xF .

Test Problem 2 (Rudolph,1994) [13],

 xxxF T=)(2 (22)

where D is the corresponding dimension. The solution is
Dixi ,,1,0* …== with 0*)(1 =xF .

144 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Test Problem 3 (Glankwahmdee et al., 1979) [14],

xxT

xxF

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−−

−−−
−−−

+−=

3120103210
203863132
10611610

323164020
1032102035

)1218362715()(3

 (23)

with best known solution Tx)6,16,22,11,0(* = and
Tx)6,17,23,12,0(* = , with 737)(3 −=xF .

Test Problem 4 (Glankwahmdee et al., 1979) [14],

 ,)7()11()(22
21

2
2

2
14 −++−+= xxxxxF (24)

with solution Tx)2,3(* = and 0*)(4 =xF .
Test Problem 5 (Glankwahmdee et al., 1979) [14],

 ,)743()1129()(22
21

22
2

2
15 −++−+= xxxxxF (25)

with solution Tx)1,1(* = and 0)(5 =xF .
Test Problem 6 (Glankwahmdee et al., 1979) [14],

 ,)1()(100)(2
1

22
126 xxxxF −+−= (26)

with solution Tx)1,1(* = and 0)(6 =xF .

Test Problem 7 (Glankwahmdee et al., 1979) [14],

4

41
4

32

43
2

217

)(10)2(

)(5)10()(

xxxx

xxxxxF

=+−

+−++=
 (27)

with solution Tx)0,0,0,0(* = and 0)(7 =xF .

B. Parameters Set
The SEDE parameters used for all experiments were

5.0=F and 3.0=CR .
For the test functions 1F and 2F , several experiments

were performed for different dimension. For all
experiments the initial was taken uniformly distributed
inside D]100,100[− , where D is the corresponding
dimension. The population size as well as the maximum
number of iterations, for each dimension, for the first two
test functions, is given in table II. For fair comparison,
the parameters are just same as the PSO [13] used.

For the test functions 73 FF − , the population size was
fixed. The population size, the maximum number of
iterations for each of these test functions are exhibited in
Table III.

C. Experimental Results
For each dimension and for each function, 100

experiments were performed for the test functions 1F
and 2F . The success rate, the mean number of structure-
encoding iterations as well as the mean number of

function evaluations for each dimension of 1F and

2F are reported in table IV and table V respectively.
For the test functions 73 FF − , the success rate, the

mean number of iterations and the mean number of
function evaluations for each of the interval []D100,100− ,

[]D50,50− , []D25,25− , where D is the corresponding
dimension of the functions, are reported in Tables VI-
VIII.

It can be easily seen from table IV and table V that
the SEDE can reach the optimum every time in 100
independent runs for the different dimensions. It takes
only nearly one fifth in number of function evaluation
compared with the PSO. For the function 1F with
dimension 30 and the function 2F with dimension 30, the
success rate of the SEDE is higher than that of the PSO.
For both 1F and 2F with dimension 5, the convergence
speed of the SEDE is almost as ten times as that of the
PSO.

Table VI shows us that for 3F and 7F with

interval []D100,100− , the success rates of the SEDE
100%, while the success rate of the PSO for 3F and 7F
are 80% and 92 respectively. The success rates of the
other three functions of the SEDE and the PSO are the
same. For each function, the convergence speed of the
SEDE is higher than that of the PSO both in mean
number of iterations and mean number of function
evaluations

Table VII and Table VIII tell us that for function

3F with interval []D50,50− and function 3F with interval

[]D25,25−), the success rate of the SEDE is higher than
that of the PSO. For the other functions, the SEDE and
the PSO have the same success rate. However, the SEDE
has higher speed to reach the optimum for all the
functions concerned.

In a word, the experimental results indicate the
proposed SEDE is an efficient method and should be
considered as a good alternative to handle Integer
Programming problems. The behavior of the SEDE
seems to be robust even for high dimensional cases,
exhibiting very high success rates of even with modest
population size.

V． CONCLUSION

DE is a recently developed evolutionary algorithm that
has empirically proven to be very robust for global
optimization over continuous spaces. A novel SEDE was
proposed to enable DE to operate within integer spaces.
And an alternative mutation operator was used to balance
the exploration and exploitation ability of the SEDE. The
SEDE was proven to reach the global optimum with
probability one.

The experiments results on several benchmark integer
programming problems show that the performance of the
SEDE was very favorable. It is robust and has fast
convergence speed. Compared with PSO, it is nearly five

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 145

© 2011 ACADEMY PUBLISHER

times faster than that of PSO in terms of Mean of
function evaluation for most of the cases.

The main benefit is that the SEDE can operate in the

integer spaces while keeping the advantage of the
traditional DE. The method proposed in this paper can

also be applied to other float-encoding EA for the Integer
Programming problems.

Acknowledgment

This work was supported in part by Natural Science
Foundation of China with grant no.70771037 and the
Science and Technology Project of Jiangxi Province,
China with grant no.GJJ10616.

TABLE II
POPULATION SIZE AND MAXIMUM NUMBER OF ITERATIONS FOR

DIFFERENT DIMENSION’S VALUES, FOR FUNCTION F1AND F2.

D POPLATION
SIZE Max. It.

5 20 1000

10 50 1000

15 100 1000

20 200 1000

25 250 1000

30 300 2000

TABLE III
DIMENSIONS, POPULATION SIZE AND MAXIMUM NUMBER OF

ITERATIONS, FOR FUNCTIONS F3-F7
Function D POPLATION SIZE Max. It.

F3 5 50 1000

F4 2 20 1000

F5 2 20 1000

F6 2 20 1000

F7 4 40 1000

TABLE VI
SUCCESS RATES, MEAN NUMBER OF ITERATIONS AND MEAN

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL
INTERVAL [-100,100]D.

Function
(D) Method Suc.Rate Mean

Iter
Mean

F.Eval.

F3
PSO 80% 499.4 75060

SEDE 100% 517.29 25865

F4
PSO 100% 402.32 8066.4

SEDE 100% 97.71 1954.2

F5
PSO 100% 415.08 8321.6

SEDE 100% 13.97 279.4

F6
PSO 100% 418.4 8388

SEDE 100% 199 3980

F7
PSO 92% 460.92 18476.8

SEDE 100% 137.65 2753

TABLE IV
 SUCCESS RATE, MEAN NUMBER FO ITERATIONS AND MEAN

NUMBER OF FUNCTION EVALUATIONS FOR DIFFERENT
DIMENSIONS OF THE FUNCTION F1.

Function
(D) Method Suc.Rate Mean Iter Mean

F.Eval.

F1(5）
PSO 100% 440.72 8834.3

SEDE 100% 47.45 949

F1(10)
PSO 100% 453.48 22724.0

SEDE 100% 86.86 4343

F1(15)
PSO 100% 459.44 46044.0

SEDE 100% 112.5 12250

F1(20)
PSO 100% 465.24 93248.0

SEDE 100% 156.93 31386

F1(25)
PSO 100% 683.44 171110

SEDE 100% 198.51 49628

F1(30)
PSO 80% 914.64 274692

SEDE 100% 235.83 47166

TABLE V
 SUCCESS RATE, MEAN NUMBER FO ITERATIONS AND MEAN

NUMBER OF FUNCTION EVALUATIONS FOR DIFFERENT
DIMENSIONS OF THE FUNCTION F2.

Function
(D) Method Suc.Rate Mean Iter Mean

F.Eval.

F2(5)
PSO 100% 440.92 8838.4

SEDE 100% 49.11 982.2

F2(10)
PSO 100% 454.88 22794

SEDE 100% 94.74 4737

F2(15)
PSO 100% 462.88 46388

SEDE 100% 136.65 13665

F2(20)
PSO 100% 467.08 93616

SEDE 100% 174.62 34924

F2(25)
PSO 100% 685.44 171610

SEDE 100% 214.64 42928

F2(30)
PSO 84% 914.4 274692

SEDE 100% 256.9 51380

146 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

REFERENCES
[1] R. Storn and K. Price, “Differential Evolution-A Simple

and Efficient Heuristic for Global Optimization over
Continuous Spaces,” Journal Global Optimization, Vol.
11, pp.241-354, 1997.

[2] Rogalsky, Derksen, and Kocabiyik, “ Differential
evolution in aerodynamic optimization”, Proc. of 46th
Annual Conf. of Canadian Aeronautics and Space
Institute, pp. 29-36,1999.

[3] S. Das and A. Konar, “Design of tow dimensional IIR
filters with modern search heuristics: a comparative study”,
International Journal of Computational Intelligence and
Applications, World Scientific Press, Vol.6 No.3, pp.176-
185.,2006.

[4] S. Das, A. Abraham and A. Konar, “Adaptive clustering
using improved differential evolution algorithm”, IEEE
Transaction on Systems, Man and Cybernetics-Part A,
IEEE Press, USA, vol.38, issue 1:pp. 218-237, 2008.

[5] J. Versterstrom, R. Thomsen “ A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithm on numerical benchmark
problems” Evolutionary Computation, CEC2004.Portland
OR: IEEE press, 2: 1980-1987,2004.

[6] N. Ferrante, V. Tirronen, “Recent advances in differential
evoltuion,” Artif Intell Rev., Vol. 10, pp.:1-46, October
2009.

[7] H.Y. Fan, J.Lampinen, “A trigonometric mutation
approach to differential evolution,” Evolutionary methods
for design, optimization and control. CIMNE, Barcelona,
pp 65–70,2002.

[8] N.Noman , H.Iba, “Accelerating differential evolution
using an adaptive local search,”. IEEE Trans Evol Comput
Vol. No.1:107–125, 2008.

[9] T. Gong, L. T. Andrew, “Differential Evolution for Binary
Encoding,” Soft Computing in Industrial Applications,
ASC 39, pp.251-262, 2007.

[10] G.L.Nemhauser , Rinooy Kan AHG and Todd MJ,
Handbooks in OR & MS, Vol.1: Optimization. Elsevier,
1989.

[11] SS Rao, Engineering optimization-theory and practice,
Wiley, 1996.

[12] B. Subudhi, J. Debashisha, “An improved differential
evolution trained neural network scheme for nonlinear
system identification”, International Journal of
Automation and Computing, Vol.6, No.2, pp. 137-144,
2009.

[13] Parsopoulos K.E. ,Vrahatis M.N. “Recent approaches to
global optimization problems through Particle Swarm
optimization”, Natural Computing, 2002,1:235-306.

[14] G. Rudolph, “An evolutionary algorithm for integer
programming,” In: Davidor Y, Schwefel H-P, Männer R
(eds),. Parallel Problem Solving from Nature, pp. 139–
148, 1994

[15] A.Glankwahmdee , J.S. Liebman JS and Hogg GL , “
Unconstrained discrete nonlinear programming,”
Engineering Optimization , Vol.4: pp. 95–107, 1979

Changshou Deng, born in Anhui
Province, China. InAugust, 1972. In
1995, 2001 he got the bachelor degree
(Computer Engineering) and master
degree (Computer Engineering)
respectively from Yanshan University,
China. He earned the doctor degree from
Tianjin University, China, majoring in
Management Science and Engineering
in 2007. He is now in the postdoctoral

program in Hefei University of Technology.
He is an associate professor in Jiujiang University, China.

He has written more than ten articles about DE algorithm. He is
a member of CCF(China Computer Foundation),China. His
main research field is about Evolutionary Algorithm and Data
Mining.

TABLE VII
SUCCESS RATES,MEAN NUMBER OF ITERATIONS AND MEAN

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL
INTERVAL [-50,50]D.

Function
(D) Method Suc.Rate Mean

Iter
Mean

F.Eval.

F3
PSO 92% 447.72 67308

SEDE 100% 415.7 20785

F4
PSO 100% 324.48 6589.6

SEDE 100% 84.03 1680.6

F5
PSO 100% 357.12 7162.4

SEDE 100% 10.22 204.4

F6
PSO 100% 324.64 6872.8

SEDE 100% 47.06 941.2

F7
PSO 100% 440.8 17672

SEDE 100% 103.2 2060.4

TABLE VIII
SUCCESS RATES,MEAN NUMBER OF ITERATIONS AND MEAN

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL
INTERVAL [-25,25]D.

Function
(D) Method Suc.Rate Mean

Iter
Mean

F.Eval.

F3
PSO 96% 420.28 63192

SEDE 100% 308.64 15432

F4
PSO 100% 402.32 8066.4

SEDE 100% 20.79 415.8

F5
PSO 100% 228.28 4585.6

SEDE 100% 7.46 149.2

F6
PSO 100% 332.08 6661.6

SEDE 100% 18.72 374.4

F7
PSO 100% 429.32 17212.8

SEDE 100% 71.26 1425.2

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 147

© 2011 ACADEMY PUBLISHER

