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Abstract—Differential Evolution is a competive method for 
continuous number optimization problems. A novel 
Structure-Encoding Differential Evolution (SEDE) 
algorithm was proposed for optimization problems with 
integer-parameter representation. In the SEDE Algorithm, 
each decision variable of every individual consists of two 
domains. One domain is float-encoding which is confined in 
a narrow range [0, 1]. The other domain is integer-encoding 
which is used to represent the problem space. A new 
operator, boundary-handling operator, was used to ensure 
each result generated by the mutation operator falling into 
the range [0, 1]. In addition, a new mapping operator was 
constructed to generate integer number from the real 
domain. The global convergence property of the SEDE was 
analyzed. The simulation results of several Benchmarks of 
integer programming show it is effective and efficient. 
Structure-encoding Differential Evolution algorithm is a 
new effective way for handling the integer programming 
problems.  
 
Index Terms—Integer Programming, Structure-encoding 
Differential Evolution, boundary-handling operator, 
mapping operator 

I.  INTRODUCTION 

Differential Evolution (DE), proposed by Storn and 
Price[1], is a simple yet powerful algorithm for global 
optimization over continuous spaces, which use the 
greedy criterion to make decision. Recently, the DE 
algorithm has become quite popular in the machine 
intelligence and cybernetics. It has been successfully 
been applied to diverse fields of science and engineering, 
such as mechanical engineering design [2], signal 
processing [3] and pattern recognition [4]. It has been 
proved to perform better than the Genetic Algorithm (GA) 
or the Particle Swarm Optimization (PSO) by numerical 

benchmarks experiments [5]. On the other hand, the DE 
structure has some limitations in the search logic, since it 
contains too narrow a set of exploration moves [6].There 
are many modifications to the original algorithm. Fan and 
Lampinen(2002) [7]proposed a trigonometric DE (TDE). 
In the TDE, a new mutation called trigonometric 
mutation replaced the traditional mutation with certain 
probability. The trigonometric mutation has the role of 
promoting the generation of the offspring along optimal 
directions. In this sense this special mutation can be 
considered as a speical local refining operation. Noman 
and Iba (2008) [8] proposed a memtic approach to 
accelerate the speed of DE. The main idea is that a proper 
balance of the exploration abilities of DE and the 
exploitation abilities of a local search can enhance the 
performance of DE. 

Although DE has been successful in numerical 
optimization, only a few works concern its usage for 
discrete optimization problems [9]. 

However, a remarkably wide variety of problems can 
be represented by discrete optimization models in effect.  
For instance, many applications in Operational Research 
such as goods distribution, production scheduling, and 
machine sequencing are encountered. In most of them, 
integer programming problems are met [10]. And recent 
years, the neural networks with integer weights have been 
promising since this kind of neural networks is better 
suited for hardware implementation. 

The Integer Programming problem can be presented as 

 ,),(min nZSxxf ⊆∈   (1) 

where Z  is the set of integers, and S  is a not 
necessarily bounded set. 

Evolutionary algorithms applied on real search space 
can be used on such problems and determine the optimum 
solution by rounding off the real optimum values to 
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the nearest integer. However, the rounding might result 
in a value of the objective function that is far removed 
from the optimum [12]. 

Despite the simplicity and successful application in 
many engineering fields and many improvements, its 
application on the solution of integer optimization 
problems with integer decision variables is still unusual. 
One of the possible reasons for this lack is that DE 
cannot keep the closure when the original DE operators 
are used in integer domain directly, for the operators 
designed in the original DE are designed only for 
continuous domain. A new structure-encoding DE was 
proposed in this paper to apply the DE algorithm in 
handling integer programming problem while keeping 
the simplicity and high efficiency in original DE 
algorithm. 

The rest of the paper is organized as follows. Section 
II gives a brief introduction of original DE. SEDE with 
the capability to solving the integer programming 
problems is given in section III. Several benchmarks of 
integer programming problems are used to evaluate this 
structure-encoding DE in section IV. Section V 
concludes this paper. 

II.  DIFFERENTIAL EVOLUTION ALGORITHM 

Like other Evolutionary Algorithms (EAS), DE is a 
population-based stochastic optimizer that starts to 
explore the search space by sampling at multiple, 
randomly chosen initial points.  

It is a kind of float point encoding evolutionary 
optimization algorithm. AT present, there have been 
several variants of DE [1]. One of the most promising 
schemes, DE/rand/1/bin (DE/best/1/bin) scheme of Storn 
& Price, is presented in great detail. The pseudo code of 
DE is given as follows. 

Initial Population Generation  
REPEAT 
Mutation Operator 
Crossover Operator 
Selection Operator 
UNTIL (termination criteria are met) 

A.  Generation of  Initial Population 
The DE Algorithm starts with the initializing target 

population nmijxX ×= )(  with the population size  m  and 
the dimension n , which is generated by the following 
way. 

 

 ))(1,0()0( l
j

u
j

l
jji xxrandxx −+=  (2) 

where mi ,,2,1 "= , nj ,,2,1 "= , u
jx  denotes the upper 

constraints, and l
jx  denotes the lower constraints. 

B.  Mutation Operator 
For the scheme DE/rand/1/bin, each target 

vector ),,2,1( mixi "= , a mutant vector is produced by 
formula (3a). 

 )()1( 321 rrri xxFxth −+=+  
 (3a) 

where },,2,1{,, 21 mrri …∈  are randomly chosen and 
must be different from each other. And F  is the scaling 
factor which has an effect on the difference between the 
individual 1rx  and 2rx . 

Basically, scheme DE/best/1/bin works the same way 
as DE/rand/1/bin except that it generates the vector 

( 1)ih t +  according to formula (3b): 

 )()1( 32 rrbesti xxFxth −+=+  
 (3b) 

where bestx  is the best solution in the current 
generation. 

C.  Crossover Operator 
DE employs the crossover operator to add the 

diversity of the population. The approach is given below. 
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where mi ,,2,1 "= , nj ,,2,1 "= , ]1,0[∈CR  is crossover 
constant and ),2,1()( nirand "∈  is the randomly selected 
index. In other words, the trial individual is made up 
with some of some components of the mutant individual, 
or at least one of the parameters randomly selected, and 
some of other parameters of the target individual. 

D.  Selection Operator 

To decide whether the trial individual )1( +tui  should 
be a member of the next generation, it is compared to the 
corresponding )(txi . The selection is based on the 
survival of the fitness among the trial individual and the 
corresponding one such that: 

( 1), ( ( 1)) ( ( ))
( 1)

( ),
i i i

i
i

u t if f u t f x t
x t

x t otherwise
+ + <⎧

+ = ⎨
⎩

 (5) 

III.  STRUCTURE-ENCODING DE 

The mutation operator by formula (3a) and formula 
(3b) show that the original DE cannot keep the closure 
when it is directly applied in solving integer 
programming problems. For the mutation operator in DE 
is designed only for the problems in the continuous 
domain. In order to overcome this shortcoming of the DE, 
a structure code was proposed. Each decision variable 
has two field, one is float-encoding which is confined in 
a narrow interval [0,1]. The other field is integer-
encoding which is used to represent the decision variable. 
A new DE using structure code is called structure-
encoding DE. The SEDE is described as fellows. 
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function intery=submap(x01) 
%  
M=100; 
y=-M:M; 
M2Mplus1=2*M+1; 
M2M=1/M2Mplus1; 
% y=-10:10; 
x=0:M2M:1; 
if x01<M2M 
    intery=-M; 
    else  
   
    for i=1:M2Mplus1 
        if x01>x(i) & x01<=x(i+1) 
        intery=y(i); 
        break; 
        end 
    end 
end 

 
Figure 1 Source code of  the code mapping operator 

A.  Boundary constraints handling operator 
In SEDE, even the results of mutation and crossover 

operator on the float field may violate the boundary 
constraints. That is to say the result may falls outside the 
range ]1,0[ after being mutated. How to keep the results of 
mutation and crossover closure should be considered. A 
new boundary constraint handling operator was defined 
to replace mutation result which violates the boundary 
constraints. The boundary constraints handling operator 
can be defined as (6). 

 
⎩
⎨
⎧ ∈++

=+
otherwiserand

tuiftu
tu ii

i ),1,0(
]1,0[)1(),1(

)1(    (6) 

where )1,0(rand  is a new one randomly generated by 
the SEDE. 

B.  Code mapping operator 
A new mapping operator was defined to connect the 

float field and the integer field. Firstly, the range ]1,0[  
was partitioned into n equal sub ranges, such 
as ]1,/)1[(),/2,/1[),/1,0[ nnnnn −… . Then a one to one 
mapping can be constructed between the sub ranges and 
the integers. Hence, it is very easy to determine the only 
integer number by the inverse image x  which is in the 
range ]1,0[ . The code mapping operator can be defined as 
a mapping function f , which can be defined as (7). 

  
⎪
⎩

⎪
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The Matlab source code of the code mapping operator 
for the following function F1 with initial interval 
[ ]100,100−  is presented in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C.  Structure-encoding population 
In the SEDE, each individual includes two equal 

vectors. The first vector is a float-pointed vector X , the 
other one is a integer vector I . The sub vector X  is the 
vector used in original DE, and the sub integer vector I  
is the image of the vector X  mapped by Code mapping 
operator. The Structure-encoding of each individual can 
be denoted by formula (8). 

( , )Y X I=  (8) 

where ( )I f X= . And Y which is made up of a float-
point vector and a integer vector is called Structure-
encoding population. 

An example of 10 individuals of the following 
example F1, with D=5, initial interval [ ]100,100− , is 
shown in table I. For the limited space, only the first 
three decision variables are given. 

D.  Alternative Mutation 
In order to make good use of the exploration 

advantage of scheme DE/rand/1/bin, and the exploitation 
advantage of the scheme DE/best/1/bin. A new mutation 
mechanism called alternative mutation is adopted in the 
SEDE.  

Given probability λ , the alternative mutation is as 
formula (9) 

⎩
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32

321 λ
 (9) 

where λ  is controlled by formula (10). 

 ))2log(max*/(2 iteritere−=λ              (10) 

where iter is the current generation, and  maxiter is 
the maximum iterations predefined. The probabilities for 
the two mutation mechanism vary with generation are 
given in Fig. 2. 
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Figure 2 Probabilities vary with Generations 
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Figure 3.  Flowchart of  the structure-encoding DE 

It is very easy to understand that the probability for 
DE/rand/bin/1 decreases when the generation grows. 
And the probability for the mechanism DE/best/bin/1 
increases when the generation grows. In this way, at the 
beginning of the evolution, exploration the space has the 
higher probability. At the last stage of evolution, 
exploitation the space has the higher probability. With 
this new mutation scheme, the performance of the SEDE 
was improved by the new scheme of balancing the 
exploration and exploitation. 

E.  Steps of SEDE 
Steps of the SEDE are as fellows. 
Step1: Generation of intial population. In the population,  
one field is float-encoding which is confined in [0,1] and 
the other field is integer-encoding which is generated by 
the code mapping operator. 
Step2: Evalutation of the fitness function. 
Step3: If the termination condition is true, then SEDE 
terminates. Otherwise,  go to step4. 
Step4: Alternative Mutation 
Step5: Crossover operator 
Step6: code mapping operator 
Step7: selection operator 
Step8: go to step3 

The flowchart of the SEDE is illustrated as Fig. 3. 

F. Convergence analysis of SEDE 
In this section, a new way proposed in [12] was used 

to analyze the convergence of the proposed SEDE. 
Let ),,1(),,,,( max,,2,1 GGxxxX GmGGG …… == be the 

random population of size m  at step 
,0≥G and { }mixfF GiG ,,1:)(min , …== be the best 

fitness value within the population at step ,0≥G  When 
the random GF variable contains the value of the global 
optimum, *f , it is confirmed that one individual in the 
population representing the global solution of the 

minimization problem. Ideally, this condition should be 
met after a finite number of iterations with probability 
one regardless the initialization population of the SEDE. 

Property 1. In the SEDE, it is well known that the 

best solutions found in the current generation will be 
carried over to the next generation. This property ensures 
that the optimum will be located in finite time and never 
be lost once it is found. Thus, the property above shows 
that the random sequence )0,( ≥GFG  converges to the 
optimum, *f .  

TABLE I.   
EXAMPLE OF STRUCTURE-ENCODING POPULATION 

Y1 Y2 Y3 

X1 I1 X2 I2 X3 I3 

0.4091 -18 0.0754 -85 0.4750 -5 

0.5355 7 0.7961 60 0.4469 -11 

0.2461 -51 0.8292 66 0.6554 31 

0.6577 32 0.5454 9 0.1352 -73 

0.9118 83 0.8955 79 0.7100 42 

0.0747 -85 0.3384 -32 0.9463 90 

0.8341 67 0.5627 13 0.2392 -52 

0.0390 -93 0.6884 38 0.6743 35 

0.6096 22 0.5271 5 0.8653 73 

0.5573 12 0.8947 79 0.2171 -57 
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Let n
m Xxxx ∈),,,( 21 … denote the current 

population of parents. An offspring is generated as 
fellows. Firstly, m  numbers of parents are chosen to 
serve as elder individuals to generate a candidate 
individual. This operator is presented as follows. 

 mjwhereXXeld jm ≤≤→ 3:         (11) 

These individuals are then used to generate the 
candidate individual by the alternative mutation operator, 
which can be abstracted as following. 

 .: XXam j →  (12) 

Secondly, crossover with the base individuals, a trial 
individual is produced by the following process 

 .: XXcor →   (13) 

Finally, the selection operator will determine which 
ones will remain as the new parents in the next 
generation. The selection operator is also abstracted as  

 .: XXsel →  (14) 

In a word, a single generation of the structure 
encoding DE can be presented as follows. 

 
{ }

))),,(((
:,,1

1 mi xxeldamcorv
mi

…
…

=
∈∀

  (15) 

 { } { }),(:,,1 iii vxselxmi =∈∀ …   (16) 

After the abstract description of the SEDE, some 
assumptions about the above operators are defined. 

Assumption 1. Each individual may be chosen to be a 
parent individual and can be changed to an arbitrary 
other individual by a finite number of successive 
alternative mutation, i.e., for each Xx∈  there exists a 
finite path such that  

 { } [ ]mjiandjixamx ji ,1,,1)(Pr ∈≠==   (17) 

Assumption 2. Each candidate individual is changed 
by the crossover operator with the minimum 
probability 0;crp . 

 
{ }
{ } 0))),,(((Pr

:,,1

1 ;…
…

crmi pxxeldamcorv
mi

≥==
∈∀

(18) 

Assumption 3. Each trial individual competes for the 
next generation with a minimum probability 0.5. 

 { } { } 5.0),(Pr:,,1 =∈∀ ii vxselmi …  (19) 

Theorem 1.  If the Assumption 1-3 are valid, then the 
SEDE visits the global optimum after a finite number of 
generations with probability one regardless of the 
initialization. 

Proof. Let random variable { }*:0 fFGT G =≥=  
denote the first hitting time of the global solution. An 
evolutionary algorithm is said to visit the global 

optimum in finite time with probability one if 
{ } 1Pr =∞≺T  regardless of the initialization. 
Let { }*)(,* fxfXxX =∈= be the set of globally 

optimal solutions. According to Assumption 1, there 
exists a finite path from an arbitrary *Xx∉ to some 

** Xx ∈  that can be traversed by successive alternative 
mutation. Let Lx  be the length of the path between 

*Xx∉  and the set ** Xx ∈ . 
Considered an arbitrary individual x  of some 

population is chosen as the parent individual. 
Assumption 1 ensures that this parent passes the 
alternative mutation process with every change with 
probability one. The probability that the candidate 
individual transits to the next point of the path towards 

** Xx ∈  by crossover is ensured to be at least 0;crp  
by assumption2. 

With Assumption 3, the offspring will remain in the 
next generation with probability 0.5. Thus, the 
probability that parent *Xx∉  transits to a parent 
representing the next point on the path to ** Xx ∈  is at 
least 05.0 ;crp . Consequently the probability that a 
global optimal solution has not been found is )5.01( crp− . 

After wG generations, the SEDE has not found the 

optimal solution is at most wG
crp )5.01( − . 

 For the SEDE,  

 { } 1))5.01(1(limPr =−−=∞
∞→

w

w

G
crG

pT ≺  (20) 

Thus, a global optimum will be found for the first time 
after a finite number of iterations with probability one. 

IV.  EXPERIMENTS 

In this section, results regarding the performance of 
the SEDE on the class of problems known as integer 
programming are reported. Seven integer programming 
problems used in literature [11] which was used to verify 
the performance of PSO were selected to investigate the 
performance of the SEDE method. And the comparison 
between the performances of the SEDE with that of PSO 
is also reported. 

A.  Test Problems 
The test problems are defined immediately below: 
Test Problem 1 (Rudolph,1994) [13], 

 DxxxxF …+== 111 )(  (21) 

where D  is the corresponding dimension. The olution 
is Dixi ,,1,0* …==  with 0*)(1 =xF . 

Test Problem 2 (Rudolph,1994) [13], 

 xxxF T=)(2  (22) 

where D  is the corresponding dimension. The solution is 
Dixi ,,1,0* …==  with 0*)(1 =xF . 
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Test Problem 3 (Glankwahmdee et al., 1979) [14],  

xxT

xxF
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⎥
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
⎢
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−−−
−−−
−−−−

−−−
−−−

+−=

3120103210
203863132
10611610

323164020
1032102035

)1218362715()(3

 (23) 

with best known solution Tx )6,16,22,11,0(* = and 
Tx )6,17,23,12,0(* = , with 737)(3 −=xF . 

Test Problem 4 (Glankwahmdee et al., 1979) [14],  

 ,)7()11()( 22
21

2
2

2
14 −++−+= xxxxxF   (24) 

with solution Tx )2,3(* = and 0*)(4 =xF . 
Test Problem 5 (Glankwahmdee et al., 1979) [14],  

            ,)743()1129()( 22
21

22
2

2
15 −++−+= xxxxxF (25) 

with solution Tx )1,1(* =  and 0)(5 =xF . 
Test Problem 6 (Glankwahmdee et al., 1979) [14], 

 ,)1()(100)( 2
1

22
126 xxxxF −+−=   (26) 

with solution Tx )1,1(* = and 0)(6 =xF . 

Test Problem 7 (Glankwahmdee et al., 1979) [14],  

 
4

41
4

32

43
2

217

)(10)2(

)(5)10()(

xxxx

xxxxxF

=+−

+−++=
  (27) 

with solution Tx )0,0,0,0(* = and  0)(7 =xF . 

B.  Parameters Set 
The SEDE parameters used for all experiments were 

5.0=F and 3.0=CR . 
For the test functions  1F  and 2F , several experiments 

were performed for different dimension. For all 
experiments the initial was taken uniformly distributed 
inside D]100,100[− , where D  is the corresponding 
dimension. The population size as well as the maximum 
number of iterations, for each dimension, for the first two 
test functions, is given in table II. For fair comparison, 
the parameters are just same as the PSO [13] used. 

For the test functions 73 FF − , the population size was 
fixed. The population size, the maximum number of 
iterations for each of these test functions are exhibited in 
Table III. 

C. Experimental Results 
For each dimension and for each function, 100 

experiments were performed for the test functions 1F  
and 2F . The success rate, the mean number of structure-
encoding iterations as well as the mean number of 

function evaluations for each dimension of 1F  and 

2F are reported in table IV and table V respectively. 
For the test functions 73 FF − , the success rate, the 

mean number of iterations and the mean number of 
function evaluations for each of the interval [ ]D100,100− , 

[ ]D50,50− , [ ]D25,25− , where D  is the corresponding 
dimension of the functions, are reported in Tables VI-
VIII. 

It can be easily seen from table IV and table V  that 
the SEDE can reach the optimum every time in 100 
independent runs for the different dimensions. It takes 
only nearly one fifth in number of function evaluation 
compared with the PSO. For the function 1F  with 
dimension 30 and the function 2F with dimension 30, the 
success rate of the SEDE is higher than that of the PSO. 
For both 1F  and 2F  with dimension 5, the convergence 
speed of the SEDE is almost as ten times as that of the 
PSO. 

Table VI shows us that for 3F  and 7F with 

interval [ ]D100,100− , the success rates of the SEDE 
100%, while the success rate of the PSO for 3F  and 7F  
are 80% and 92 respectively. The success rates of the 
other three functions of the SEDE and the PSO are the 
same. For each function, the convergence speed of the 
SEDE is higher than that of the PSO both in mean 
number of iterations and mean number of function 
evaluations 

Table VII and Table VIII  tell us that for function 

3F  with interval [ ]D50,50− and function 3F  with interval 

[ ]D25,25−  ), the success rate of the SEDE is higher than 
that of the PSO. For the other functions, the SEDE and 
the PSO have the same success rate. However, the SEDE 
has higher speed to reach the optimum for all the 
functions concerned.  

In a word, the experimental results indicate the 
proposed SEDE is an efficient method and should be 
considered as a good alternative to handle Integer 
Programming problems. The behavior of the SEDE 
seems to be robust even for high dimensional cases, 
exhibiting very high success rates of even with modest 
population size. 

V．  CONCLUSION 

DE is a recently developed evolutionary algorithm that 
has empirically proven to be very robust for global 
optimization over continuous spaces. A novel SEDE was 
proposed to enable DE to operate within integer spaces. 
And an alternative mutation operator was used to balance 
the exploration and exploitation ability of the SEDE. The 
SEDE was proven to reach the global optimum with 
probability one. 

The experiments results on several benchmark integer 
programming problems show that the performance of the 
SEDE was very favorable. It is robust and has fast 
convergence speed. Compared with PSO, it is nearly five 
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times faster than that of PSO in terms of Mean of 
function evaluation for most of the cases. 

The main benefit is that the SEDE can operate in the 

integer spaces while keeping the advantage of the 
traditional DE. The method proposed in this paper can 

also be applied to other float-encoding EA for the Integer 
Programming problems. 
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TABLE II 
POPULATION SIZE AND MAXIMUM NUMBER OF ITERATIONS FOR 

DIFFERENT DIMENSION’S VALUES, FOR FUNCTION F1AND F2. 

D POPLATION 
SIZE Max. It. 

5 20 1000 

10 50 1000 

15 100 1000 

20 200 1000 

25 250 1000 

30 300 2000 

 

TABLE III  
DIMENSIONS, POPULATION SIZE AND MAXIMUM NUMBER OF 

ITERATIONS, FOR FUNCTIONS F3-F7 
Function D POPLATION SIZE Max. It. 

F3 5 50 1000 

F4 2 20 1000 

F5 2 20 1000 

F6 2 20 1000 

F7 4 40 1000 

 

TABLE VI 
SUCCESS RATES, MEAN NUMBER OF ITERATIONS AND MEAN 

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL 
INTERVAL [-100,100]D. 

Function 
(D) Method Suc.Rate Mean 

Iter 
Mean 

F.Eval. 

F3 
PSO 80% 499.4 75060 

SEDE 100% 517.29 25865 

F4 
PSO 100% 402.32 8066.4 

SEDE 100% 97.71 1954.2 

F5 
PSO 100% 415.08 8321.6 

SEDE 100% 13.97 279.4 

F6 
PSO 100% 418.4 8388 

SEDE 100% 199 3980 

F7 
PSO 92% 460.92 18476.8 

SEDE 100% 137.65 2753 

 

TABLE IV 
 SUCCESS RATE, MEAN NUMBER FO ITERATIONS AND MEAN 

NUMBER OF FUNCTION EVALUATIONS FOR DIFFERENT 
DIMENSIONS OF THE FUNCTION F1. 

Function 
(D) Method Suc.Rate Mean Iter Mean 

F.Eval. 

F1(5） 
PSO 100% 440.72 8834.3 

SEDE 100% 47.45 949 

F1(10) 
PSO 100% 453.48 22724.0 

SEDE 100% 86.86 4343 

F1(15) 
PSO 100% 459.44 46044.0 

SEDE 100% 112.5 12250 

F1(20) 
PSO 100% 465.24 93248.0 

SEDE 100% 156.93 31386 

F1(25) 
PSO 100% 683.44 171110 

SEDE 100% 198.51 49628 

F1(30) 
PSO 80% 914.64 274692 

SEDE 100% 235.83 47166 

TABLE V 
 SUCCESS RATE, MEAN NUMBER FO ITERATIONS AND MEAN 

NUMBER OF FUNCTION EVALUATIONS FOR DIFFERENT 
DIMENSIONS OF THE FUNCTION F2. 

Function 
(D) Method Suc.Rate Mean Iter Mean 

F.Eval. 

F2(5) 
PSO 100% 440.92 8838.4 

SEDE 100% 49.11 982.2 

F2(10) 
PSO 100% 454.88 22794 

SEDE 100% 94.74 4737 

F2(15) 
PSO 100% 462.88 46388 

SEDE 100% 136.65 13665 

F2(20) 
PSO 100% 467.08 93616 

SEDE 100% 174.62 34924 

F2(25) 
PSO 100% 685.44 171610 

SEDE 100% 214.64 42928 

F2(30) 
PSO 84% 914.4 274692 

SEDE 100% 256.9 51380 

 

146 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER



 

  

REFERENCES 
[1] R. Storn and K. Price, “Differential Evolution-A Simple 

and Efficient Heuristic for Global Optimization over 
Continuous Spaces,” Journal Global Optimization, Vol. 
11, pp.241-354, 1997. 

[2] Rogalsky, Derksen, and Kocabiyik, “ Differential 
evolution in aerodynamic optimization”, Proc. of  46th 
Annual Conf. of Canadian Aeronautics and Space 
Institute, pp. 29-36,1999. 

[3] S. Das and A. Konar, “Design of tow dimensional IIR 
filters with modern search heuristics: a comparative study”, 
International Journal of Computational Intelligence and 
Applications, World Scientific Press, Vol.6 No.3, pp.176-
185.,2006. 

[4] S. Das, A. Abraham and A. Konar, “Adaptive clustering 
using improved differential evolution algorithm”, IEEE 
Transaction on Systems, Man and Cybernetics-Part A, 
IEEE Press, USA, vol.38, issue 1:pp. 218-237, 2008. 

[5] J. Versterstrom, R. Thomsen “ A comparative study of 
differential evolution, particle swarm optimization, and 
evolutionary algorithm on numerical benchmark 
problems” Evolutionary Computation, CEC2004.Portland 
OR: IEEE press, 2: 1980-1987,2004. 

[6] N. Ferrante, V. Tirronen, “Recent advances in differential 
evoltuion,” Artif Intell Rev., Vol. 10, pp.:1-46, October 
2009. 

[7] H.Y. Fan, J.Lampinen, “A trigonometric mutation 
approach to differential evolution,” Evolutionary methods 
for design, optimization and control. CIMNE, Barcelona, 
pp 65–70,2002. 

[8] N.Noman , H.Iba, “Accelerating differential evolution 
using an adaptive local search,”. IEEE Trans Evol Comput 
Vol. No.1:107–125, 2008. 

[9] T. Gong, L. T. Andrew, “Differential Evolution for Binary 
Encoding,” Soft Computing in Industrial Applications, 
ASC 39, pp.251-262, 2007. 

[10] G.L.Nemhauser , Rinooy Kan AHG and Todd MJ, 
Handbooks in OR & MS, Vol.1: Optimization. Elsevier, 
1989. 

[11] SS Rao, Engineering optimization-theory and practice, 
Wiley, 1996. 

[12] B. Subudhi, J. Debashisha, “An improved differential 
evolution trained neural network scheme for nonlinear 
system identification”, International Journal of 
Automation and Computing, Vol.6, No.2, pp. 137-144, 
2009. 

[13] Parsopoulos K.E.  ,Vrahatis M.N. “Recent approaches to 
global optimization problems through Particle Swarm  
optimization”, Natural Computing, 2002,1:235-306. 

[14] G. Rudolph, “An evolutionary algorithm for integer 
programming,” In: Davidor Y, Schwefel H-P, Männer R 
(eds),. Parallel Problem Solving from Nature, pp. 139–
148, 1994 

[15] A.Glankwahmdee , J.S. Liebman JS and Hogg GL , “ 
Unconstrained discrete nonlinear programming,” 
Engineering Optimization , Vol.4: pp. 95–107, 1979 

 
 
 

 
Changshou Deng, born in Anhui 
Province, China. InAugust, 1972. In 
1995, 2001 he got the bachelor degree 
(Computer Engineering) and master 
degree (Computer Engineering) 
respectively from Yanshan University, 
China. He earned the doctor degree from 
Tianjin University, China, majoring in 
Management Science and Engineering 
in 2007. He is now in the postdoctoral 

program in Hefei University of Technology. 
He is an associate professor in Jiujiang University, China. 

He has written more than ten articles about DE algorithm. He is 
a member of CCF(China Computer Foundation),China. His 
main research field is about Evolutionary Algorithm and Data 
Mining. 

 

 

TABLE VII 
SUCCESS RATES,MEAN NUMBER OF ITERATIONS AND MEAN 

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL 
INTERVAL [-50,50]D. 

Function 
(D) Method Suc.Rate Mean 

Iter 
Mean 

F.Eval. 

F3 
PSO 92% 447.72 67308 

SEDE 100% 415.7 20785 

F4 
PSO 100% 324.48 6589.6 

SEDE 100% 84.03 1680.6 

F5 
PSO 100% 357.12 7162.4 

SEDE 100% 10.22 204.4 

F6 
PSO 100% 324.64 6872.8 

SEDE 100% 47.06 941.2 

F7 
PSO 100% 440.8 17672 

SEDE 100% 103.2 2060.4 

 

TABLE VIII 
SUCCESS RATES,MEAN NUMBER OF ITERATIONS AND MEAN 

NUMBER OF FUNCTION EVALUATIONS FOR F3-F7 WITH INITIAL 
INTERVAL [-25,25]D. 

Function 
(D) Method Suc.Rate Mean 

Iter 
Mean 

F.Eval. 

F3 
PSO 96% 420.28 63192 

SEDE 100% 308.64 15432 

F4 
PSO 100% 402.32 8066.4 

SEDE 100% 20.79 415.8 

F5 
PSO 100% 228.28 4585.6 

SEDE 100% 7.46 149.2 

F6 
PSO 100% 332.08 6661.6 

SEDE 100% 18.72 374.4 

F7 
PSO 100% 429.32 17212.8 

SEDE 100% 71.26 1425.2 
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