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Abstract—Reinforcement learning is an unsupervised 
machine learning method in the field of Artificial 
Intelligence and offers high performance in simulating the 
thinking ability of a human. However, it requires a trial-
and-error process to achieve this goal. In the research field 
of game AIs, it is a good approach that can give the non-
player-characters (NPCs) in digital games more human-like 
qualities. In this paper, we try to build a Tank-battle 
computer game and use the methodology of reinforcement 
learning for the NPCs (the tanks). The goal of this paper is 
to make this game become more interesting due to the 
enhanced interactions with the more intelligent NPCs. 
 
Index Terms—artificial intelligence, reinforcement learning 

I.  INTRODUCTION 

Artificial Intelligence plays an important role in 
modern computer games, as a well-designed AI allows 
games to become more entertaining and challenging. 
Therefore, how to give Non-Player-Characters (NPCs) 
more human-like thinking and abilities and also give 
players more fun from the interaction with NPCs, are 
very important considerations in the area of game AI. 

 Currently, there are a range of different types of 
digital games (shown in TABLE 1[3] below).  

Although there are so many types of games, the 
moving path of NPCs is usually a critical factor. If we 
want the NPCs to behave like human beings, the first 
thing is that they should move to the meeting point. 
Therefore, it is of interest to find the best moving path 
and policy for NPCs. In this paper, the algorithm of 
reinforcement learning will be used as the main technique 
to solve the above problem. 

Reinforcement Learning is one of the unsupervised 
machine learning methods in the area of artificial 
intelligence. The methodology has been developed based 
on the concept of “trial-and-error”, and the result of each 
“trial-and-error” action will be saved as a “delay reward”. 
The ultimate goal of reinforcement learning is to give the 
machines human-like thinking and abilities. 

 

TABLE I. The categories of digital games 

Genre Examples 
Classic board Chess, Checkers 
Adventure Bonji’s Adventures in Calabria 
Team Sports RoboCup Soccer  
Real-time Individual Bilestoad ,Space Invaders 
Real-time God SimCity 
Discrete Strategy Freeciv 
Real-time Strategy Wargus  

 
Although the methodology of reinforcement learning 

can provide the AI agents with a good ability to act as 
human beings, there are few applications that have 
applied it in the computer game context. In this paper, we 
attempt to add reinforcement learning to the NPCs of a 
tank-battle game. The main design of the game AI is only 
a simple random selection meant to select all possible 
paths in the game space. Players can always hide in a 
corner, waiting for the passing of the NPCs. The players 
can then attack and defeat NPCs accordingly.  

Therefore, the purpose of this paper is to improve the 
wisdom of the NPCs when they are walking in the game. 
The NPCs will learn which places are dangerous and 
which may hide player characters through reinforcement 
learning. By doing this, the NPCs will not be easily 
defeated by silly maneuvers and the game can be a better 
experience. 

However, the major problem of reinforcement learning 
is it needs a lot of time for the AI learn the best solution. 
In order to deal with this problem, the concept of fuzzy 
logic will be used in this paper to improve the capability 
for reinforcement learning.  

The paper is organized as follows. In Section 2, the 
related works and literature regarding reinforcement 
learning and game AI will be reviewed. In Section 3, we 
will describe the research methodology and process of the 
paper with the experimental process and framework 
discussed in section 4. In Section 5, the results of the 
experiment and related analyses will be included. This 
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paper is concluded in section 6, and suggestions of future 
researches also provided. 

II.  RELATED WORKS 

Game AI is one of the most important AI issues, for 
the following two reasons: the first is that AI enhanced 
computer games are more entertaining for people than 
traditional games are and thus the players will be 
attracted to, and play the games, continuously; the second 
reason is that the solutions of the game AI are represented 
as functions or algorithms to resolve many AI problems 
and . therefore, if good answers can be discovered by 
game AI, they can help us to find good methods for 
solving questions in the real world [4]. 

In previous studies, most game AIs were designed to 
focus on board games (such as Checkers, Poker and 
Puzzles, etc.). However, the subject of applying game AI 
to different types of digital games has been discussed in 
more and more recent studies [3]. 

TABLE II presents some current related research 
covering digital games, although different types of 
machine learning methodology have been used in these 
studies. However, there are still some unresolved 
problems in these studies and we expected they could 
perhaps be solved by using the algorithm of 
reinforcement learning. 

 
TABLE II. Related game AI researches 

Method Research Author  

Case-Based 
Reasoning 

Learning to Win: Case-
Based Plan Selection in a 
Real-Time Strategy Game 

David W. Aha  
et al. 

Genetic 
Algorithm 

Improving Adaptive Game 
AI With Evolutionary 

Learning 

Marc Ponsen  
and Pieter 
Spronck 

Neural 
Network 

Evolving Game NPCs 
Based on Concurrent 

Evolutionary 
Neural Networks 

XiangHua Jin, et 
al. 

 
Reinforcement learning is a machine learning 

methodology typically formulated as Markov Decision 
Processes [9]. In the previous research three different 
types of approaches have been used in reinforcement 
learning: LMS (Least Mean Squares), ADP (Adaptive 
Dynamic Programming) and TD (Temporal Difference 
Learning) [8]. 

LMS is designed to calculate the distance between the 
final state and all states (or for some cases, compute the 
probability of achieving the final state). Then, it will 
refresh all values during every step. This method has 
some drawbacks, e.g. slow convergence, so it needs a 
large amount of time to find the best result [9][11]. 

ADP is a method that uses a dynamic programming 
based skill. It uses a policy iteration algorithm to 
calculate a value, and then an estimated model will be 

created to fit. Furthermore, since the model changes with 
each observation this method will converge faster than 
when using LMS; however it still has some shortcomings 
in applying it to a large state space [11]. 

TD, just like the name, is intended to find the 
difference between one state and a later state. It means 
that we will change the utility value to adapt to a later 
state’s expected value. By refreshing each of the values 
and results, it will then find the best policy to achieve the 
goal [9]. In reinforcement learning, the TD method would 
possibly be the best method so far. The TD method is 
based on the following formula: (*) Uπ means the utility 
of state under the policy . s means the current state, and 
s’ means the next state. α is a learning rate in the 
formulation [11].   

All we have talked about above though are cases in a 
known environment, so, they are not suitable methods for 
applying to an unknown environment. Because most real 
environments are unknown environments, Q-Learning [2] 
therefore would be a good solution to solve the problems 
faced in an unknown environment. For the ADP method, 
Q-Learning means to compute the Q-value (a value that 
varies according to the actions and states). The Q-value is 
determined by translating the original model to a new 
model through considering the expected best value in all 
actions space. The formula for the Q-learning based TD 
method is Eq. (1): 

 
) s)Q(a,-) s',γmaxQ(a'+α(R(s)+) sQ(a,←s)Q(a,   (1) 

       
The difference between Q-learning and the 

original formulation is in the use of th  o of Q-value and 
expecting maximum value from experience [8]. Related 
applications of applying Q-learning in game AI have 
been developed for a long period of time. However, the 
major type of the applications are board games [4], and 
there are few cases where it has been applied to complex 
computer games, such as real-time games [6][12][13]. 
Thus, our purpose in this paper is to use these methods as 
applied to a tank-battle like computer game, and make 
implementations to demonstrate the research results. 
      There is another popular algorithm of 
reinforcement learning known as the SARSA (State-
Action-Reward-State-Action) algorithm. The formula for 
the SARSA algorithm is Eq. (2) 
 

) s)Q(a,-) s',γQ(a'+α(R(s)+) sQ(a,←s)Q(a, .    (2) 
 

The major difference between the Q-Learning and 
SARSA algorithms is that the SARSA algorithm is a on-
policy algorithm, and the Q-Learning is a off-policy 
algorithm. Thus, the SARSA algorithm is unnecessary to 
calculate the maximum Q-value of the next state.  

The process of reinforcement learning is shown in Fig. 
1. At first, the agent will explore the environment and 
then carry out a rational action. After the action, every 
action will affect the environment, and related reward 
will be generated to judge this action. This process forms 
a reinforcement learning circle. After performing many 
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reinforcement learning circles, the agent will learn the 
best policy in handling the unknown environment. 

 

 
      Figure 1.  Reinforcement learning 

The disadvantage of reinforcement learning is that the 
algorithm needs to try many times to get enough rewards 
for deciding suitable policy. Currently, some researchers 
have devoted themselves to dealing with this problem, 
such as by means of hierarchical reinforcement learning 
(HRL) [7]. In this paper, we will try to apply fuzzy logic 
in reinforcement learning to solve this problem. Fuzzy 
logic emerged as a consequence of 1965’s fuzzy set 
theory by Zadeh, L.[5]. It has being applied to many 
fields of research, such as computer science, financial 
engineering, management, control, etc. 

III.  RESEARCH METHODOLOGY 

The pilot study of this paper is shown in Fig. 2. In this 
paper, we firstly need to build a game as the experimental 
environment. Therefore, a game editor engine will be 
used as a base to make a tank-battle game. Then, the 
game AI that uses reinforcement learning algorithm will 
be applied to the original NPCs (tanks) in the game. In 
the paper, two experiments will be carried out based on 
different experimental methods; one where the NPC tank 
moves from point to point, and another where the NPC 
tank moves in different ways. After the experiments, the 
results will be recorded and discussed. In the end, we 
have some conclusions about the experiments and the 
reinforcement learning method.  

Fig. 3 shows the research methodology of this paper 
and the meaning of each component of the figure in 
explained below. 
 
(1) Tank game: we use a game engine to build a tank 

game. 
(2) Reinforcement learning: Applying the algorithm of 

reinforcement learning to NPC tanks.  
(3) Fuzzy Logic: The concepts of fuzzy logic and fuzzy 

sets will be used to improve the performance of 
reinforcement learning. 

(4) Experiment and Analysis: According to the results 
found, we can then adjust the value of the 
parameters to find the best fuzzy function. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 .pilot study  

                Figure 2. Pilot study   
 
 

 
 

Figure 3. The Research methodology 

IV.  EXPERIMENT DESIGN 

In order to implement the reinforcement learning 
algorithm based game AI, the world editor of Warcraft III 
[1] has been selected to create a game to simulate a tank-
battle game (see Fig. 4). At first, the whole map will be 
divided into areas from left to right. The NPC tank will 
move randomly towards the left or right side of the map.  
 

 
Figure 4. The game screenshot 

Game Editor 
Engine 

Tank Battle 
Game 

Add Reinforcement Learning in 
our game 

Tank moves from 
point to point 

Tank moves in 
different ways 

Experiment  
and obtain results to analyze 
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In the game, the player will fire at several fixed areas 
(see Fig. 5). Once the tank is hit by the player in a 
particular area, the probability of moving to the area will 
be reduced next time. The formula is Eq. (4). 

f(x)=(10-A)B                  (4)  
Where f(x) is the probability of moving, A is the 

number of times the tank died, and B is a random value. 
The tank will not move to an area, if it has been killed 
more than 10 times there. However, this experiment only 
deals with the linear situation, and it should be a two-
dimensional space in a true game map. Moreover, it is not 
true reinforcement learning as it only considers previous 
experiences and has not gone on to make an 
”Exploration” process. 

 

 
Figure 5. The attacking screenshot of the player 
 

Therefore, we will make some revisions to the game, 
by dividing the map into a two-dimensional 5x3 space 
(see Fig. 6). In this map, the tank will start from a 
beginning point and move to the ending point (see Fig. 
7). When the tank has been attacked, the result will be 
saved as a negative reward. The probability of moving to 
this area is updated by using the TD method. The formula 
for this is Eq. (3): 

 
f(xi)=f(xi)+0.2(R(xi)+f(xj)-f(xi))                 (3) 
 
In this formula, f(xi) is the probability to move 

previously and f(xj) is the probability to move now. R(x) 
is the reward, and the parameter 0.2 is our learning 
parameter. After approximately 15 rounds, this tank will 
not move to the area where it will be attacked. 

 

 
Figure 6. A 5x3 map and the attack point 

 

 
Figure 7. The ending points 

 
However, the result still does not fulfill the “Expand” 

characteristic of reinforcement learning. A reinforcement 
learning based AI should unceasingly attempt the 
exploration of different areas, even if an area had been 
attacked, as a player will not only attack the same areas, 
they may also change their attack target to other areas. In 
this situation, the previous dangerous area will become a 
safe one. Thus, we need the ”positive” reward to 
reconsider the previous dangerous area to improve the 
game AI.  

In the next experiment, we expect to create a game like 
Fig. 8. The players can shoot NPC tanks and NPC tanks 
try to move to some goal points. Furthermore, there are 
some walls that can the NPC can use to defend itself from 
attack by the players. 

In this experiment, the NPC only moves from one area 
to another. In fact, the moving path of a tank should be 
considered as one path, but not only from one area to 
another. It is therefore necessary to create a table to 
record all possible paths for a map. When a tank has been 
shooting down in this path, the path will be given a 
negative reward. Simultaneously, other paths will be 
given a positive reward. TABLE III shows an example of  
how 6 possible paths on a 3x3 map are recorded, and how 
the detailed steps of each path are recorded as well. 

 

 
Figure 8. The concept graph of the tank game 
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TABLE III. The possible ways 

 Step 1 Step 2 Step 3 Step 4 
policy a left left down  down 
policy b left down Left down 
policy c left down  down left 
policy d down left Left down 
policy e down left down left 
policy f down down Left left 

 

 
Figure 9.  screenshot of experiment 3 
 
In Fig. 9, the flash technique is used to create a 

game for tank-battle game simulation. The game is 
designed as a 3*3 map (see Fig. 9). There is a starting 
point in the upper right and ending point in the lower left 
of the map. In this game, the tank can only move left or 
down. So there are six policies for reinforcement learning 
in this game (see table III). In this game, some bombs 
will be located in the map and will try to attack the tank. 
If a tank is hit by any one of the bombs, the tank will be 
destroyed and it is the end of this turn of the experiment.  

The reward function of this experiment is shown in 
TABLE IV. The values of reward function are set by our 
previous work: try-error to find those appropriate values.     

TABLE IV. The reward function of the reinforcement 
learning algorithm 

State s R(s) 

Tank hits bomb，this policy: -10 

Tank hits bomb，another policy: +5 

Tank successful moves to end point 
this policy: 

+20 

Tank successful moves to end point 
another policy: 

-10 

 
 
The experiment can be divided into two different 

parts. The first one is fixed reward, and the other is fuzzy 
reward. In the second part of the experiment, we use 
fuzzy reward “x*R(s)” to substitute for the original 
reward “R(s)”. The variable x stands for the degree of 
danger. It is calculated by the fuzzy function M (s) (see 
Fig. 10 and Eq. (5).).   

       (5) 
 

 
Figure 10. The fuzzy function 

 We use a fuzzy function to represent the degree of 
hazard in a ‘danger value’ of Xi. This value of Xi begins 
from 0. When NPC tank hits a bomb, the danger variable 
of the policy is defined as Xi=Xi+1. If tanks hits a bomb 
twice in a row, then the variable will be set as Xi=Xi+2. 
Furthermore, if the tank hits a bomb three times in a row, 
then the variable is Xi=Xi+3 and the maximum value is 
+3. The meaning of this function is that if the tank hits 
the bomb under the same policy, it indicates that this 
policy is very dangerous and the danger variable 
accumulation speed is higher. On the other hand, the 
other j (j≠i) policy the danger variables are Xj=Xj-1 
which have an equal accumulation effect, and the 
maximum value is -3. 

TABLE V shows an example of the fuzzy based 
reinforcement learning function. In the example, the tank 
hits the bomb in 1, 2, 3, 6, 8, 9 rounds. 
 
 

TABLE V. An example of the fuzzy based reinforcement 
learning function 

Round 1 2 3 4 5 6 7 8 9 
Result + + + - - + - + + 

Change 
value 

1 2 3 2 0 1 0 1 2 

Total X 1 3 6 4 4 5 5 6 8 
 

V. EXPERIMENT RESULT 

The first experiment results for this paper are shown in 
figure 11. The y-axis of the table is number of steps that 
the tank moved, and the x-axis is the number of 
simulation times. For example, in the first simulation, the 
NPC tank was attacked after four steps moving but in the 
second the tank was attacked after only one step moving. 

In the figure, when the learning factor becomes 0 
(about 10 times), the tank will learn how to survive and it 
is difficult to beat. The result indicates that the tank 
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already has some learning ability. However, in the 
experiment, the tank is only moving by one path from the 
right or left side of the map, it is therefore necessary to 
consider the second experiment in this paper. 

 

 
Figure 11.  The result of experiment 1 

The result of the second experiment is shown in 
figure 12. In this experiment, the tank was moving from a 
fixed starting point, and would then move randomly left, 
down or up until it was attacked or reached the ending 
point. In this experiment, we ran the simulation about 
twenty times. The blue points in the figure mean that the 
tank has been attacked before achieving the ending point. 
The red points mean that the tank achieved the ending 
point and survived. The results show that more times the 
simulation is run, the higher probability that the tank can 
move to the ending point. Furthermore, the more times 
the simulation is run, the more steps the tank can move 
before it is attacked or achieved the ending point.  

 

 
Figure 12. The result of experiment 2 

 

The results of the two parts of experiment 3 are 
shown in TABLE VI. There are ten different times of the 
experiment (ID1~10). E1 is the experiment with a fixed 
reward, and E2 is the experiment with a fuzzy reward. 
The value in the table is total turns when there is only one 
policy. In figure 13, the y-axis is the number of turns 
when there is only one policy, and the x-axis is the total 
number of simulation times. It is shown that the fuzzy 
reward can reduce the execution time and the 
performance of the reinforcement learning with fuzzy 
reward can be clearly improved. 
 

 

TABLE VI. The performance evaluation 

ID E1 E2 

1 58 29 
2 52 28 

3 54 24 

4 59 25 

5 55 26 

6 52 32 

7 56 27 
8 54 28 
9 47 30 
10 59 23 
mean 54.6 25.6667 

success rate 0.56 0.67 

 

 
Figure 13. The result of experiment 3 

 

VI. CONCLUSIONS & FUTURE RESEARCH 

In this paper, the reinforcement learning method has 
been applied with the NPCs in order to improve a game 
AI. This method will allow the NPCs to become more 
human, and players can have more fun through playing 
the game. The experiment was divided into two parts: in 
the first part the tank was moving from point to point; but 
the tank can move by different ways in the second part. 

In game AI, the reinforcement learning method doesn’t 
show better performance than other machine learning 
methods. However, it indicates a good ability in acting 
like a real human. In other words, the reinforcement 
learning isn’t intended to produce a perfect AI that makes 
no any mistakes, but instead tries to be a reasonable AI 
which can act like a human. Under this principle, 
reinforcement learning presents a great performance in 
the area of game AI. 

We had successfully used fuzzy logic in the 
reinforcement learning by changing fixed reward to fuzzy 
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reward. The performance evaluation of the paper shows 
that the execution time can be reduced and the 
performance of reinforcement learning can be improved. 

 In the future, we expect to find some better ways to 
deal with this problem. Furthermore, there are some 
research issues we will focus in the future. For example, 
reinforcement learning for multi-agents (NPCs) games or 
real-time games which are also big challenges for game 
AI. 
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