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Abstract— In ubiquitous computing environments, the soft-
ware component dynamic behavior and its compatibility
analysis are two important issues in middleware dynamic
adaptation. In this paper, we firstly present an adaptive mid-
dleware architecture called ScudWare for a smart vehicle
space. Then a semantic component model is given in detail.
Next, for ScudWare middleware, we propose a semantic
component dynamic behavior formalization and component
behavior compatibility verification based on the higher-order
π calculus. Next, a case study is given to evaluate our model
and methods. Finally, we draw a conclusion and give our
next work.

Index Terms— Ubiquitous Computing, Adaptive Middle-
ware, Component Dynamic Behavior

I. INTRODUCTION

A novel computing model called ubiquitous computing
[1] is coming into our daily life. In ubiquitous computing
environments, information and communication technol-
ogy are anywhere, for anyone, and at anytime. The phys-
ical world and information space will gradually be united
naturally and seamlessly. The smart space is considered
as an integral implementation of ubiquitous computing,
where the computing environment should continually
adjust itself to deal with the situation changing. By using
smart devices, users in this active computing environment
can interact with the physical space transparently and
seamlessly.

To realize the idea of ubiquitous computing, a lot of
information and communication technologies should be
developed and be integrated into our environments: from
toys, desktops to rooms, factories and whole city areas
with integrated processors, sensors, and actuators con-
nected via wireless high-speed networks and combined
with new output devices ranging from projections directly
into the eye to large panorama displays.

This paper is based on “ScudADL: An Architecture Description
Language for Adaptive Middleware in Ubiquitous Computing Environ-
ments,” by Qing Wu, and Ying Li, which appeared in the Proceedings
of the 2009 IITA International Conference on Communication Systems,
Networks and Applications (ICCSNA 2009), Sanya, China, August
2009. c© 2009 IEEE.

This work was supported by National Natural Science Foundation of
China under Grant No. 60703088.

In this new computing environments, users will natu-
rally and transparently interact with each other and with
entities in the space, and the space environment can
automatically and continuously self-adjust to provide the
better services for users. This attractive goal poses a large
number of new challenges for software architecture and
middleware technology. The traditional software infras-
tructure is no longer suitable for smart space [2]. As a
result, a novel software platform that supports component
dynamic adaptation is required.

Nowadays, the component technology has become one
of the key technologies in the software industry, and
it is a world trend to develop software products based
on this technology. It’s very active to research on the
model of dynamic interaction of components, as well
as the dynamic self-adaptive assembly and evolution of
components in the field of component-based software
development.

The remainder of the paper is organized as follows.
Section 2 describes the ScudWare middleware platform
including smart vehicle space, and the ScudWare mid-
dleware architecture. Then component dynamic behavior
based on higher-order π calculus is proposed in section 3.
Section 4 proposes the component behavior compatibility
verification. In section 5, we give a case study of our
methods. Next, some related work is stated in section 6.
Finally, we draw a conclusion in section 7.

II. SCUDWARE MIDDLEWARE PLATFORM

Conformed to the CCM (CORBA Component Model)
specification, we have built the ScudWare middleware
platform [3] for smart vehicle space naturally and adap-
tively. We use the ACE (Adaptive Communication Envi-
ronment) and the TAO (The ACE ORB). TAO is a real-
time ORB (Object Request Broker) developed by Wash-
ington University. According to the application domain
of smart vehicle space, we reduce the TAO selectively
and add some adaptive services such as adaptive resource
management service, context service, and notification
service. ScudCCM, a part of ScudWare, is responsible for
adaptive component management comprising component
package, assembly, allocation, addition, removal, replace-
ment, updating, and transfer. As following, we introduce
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Figure 1. Smart Vehicle Space

smart vehicle space, CCM specification and ScudWare
architecture briefly.

A. Smart Vehicle Space

In recent years, a lot of developers have applied
embedded, AI, and biology authentication technologies
to vehicles. The drive capability, dependability, comfort,
and convenience of the vehicle are improved greatly.
When people go into smart vehicle space, they find many
intelligent devices and equipments around them. They
communicate with these tools naturally and friendly. It
forms a harmonious vehicle space where people, devices,
and environments co-operate with each other adaptively.

From the technical view, the smart vehicle space has
four parts and is defined as

SVS = (CA, CR, AC, CP)
CA: the context acquisition system. It aims at sensing

status changes of people, devices and environments in
the vehicle, including cameras, sound receivers, and other
sensors.

CR: the context repository reasoning system.
CR=(context, ontology, domain, inference) uses the
correlative contexts and application domain ontologies to
make manipulating strategy for purpose of adaptation.

AC: the auto controlling system. It consists of the
steering, communication, entertainment, navigation and
security subsystem.

CP is the centralized processing system. It is the kernel
of the smart vehicle space, which makes CA, CR, AC
collaborate effectively.

B. ScudWare Middleware Architecture

As figure 2 shows, ScudWare architecture consists of
five parts defined as SCUDW = (SOSEK, ACE, ETAO,
SCUDCCM, SVA). SOSEK denots SMART OSEK, an
operating system of vehicle conformed to OSEK spec-
ification developed by us. ACE denotes the adaptive
communication environment, providing high-performance

J1939 CAN-Open TCP/IP Wireless

ConcurrencyPersistence Lifecycle Security

NotificationEventNaming Property

Figure 2. ScudWare Middleware Architecture

and real-time communications. ACE uses inter-process
communication, event demultiplexing, explicit dynamic
linking, and concurrency. In addition, ACE automates
system configuration and reconfiguration by dynamically
linking services into applications at run-time and execut-
ing these services in one or more processes or threads.
ETAO extends ACE ORB and is designed using the
best software practices and patterns on ACE in order
to automate the delivery of high-performance and real-
time QoS to distributed applications. ETAO includes
a set of services such as the persistence service and
transaction service. In addition, we have developed an
adaptive resource management service, a context service
and a notification service. Specially, the context service is
based on semantic information. SCUDCCM is conformed
to CCM specification and consists of adaptive compo-
nent package, assembly, deployment, and allocation at
design-time. Besides, it comprises component migration,
replacement, updating, and variation at run-time based on
component dynamic behavior formalizations. In addition,
the top layer is SVA that denotes semantic virtual agent
[4]. SVA aims at dealing with application tasks. Each sva
presents one service composition comprising a number
of meta objects. During the co-operations of SVA, the
SIP(Semantic Interface Protocol) [4] set is used including
sva discovery, join, lease, and self-updating protocols.
Due to the limited space, we don’t detail SVA in this
paper.

III. COMPONENT DYNAMIC BEHAVIORS

In this section, we give a formalization of component
dynamic behaviors. First, the overview of higher-order
typed π calculus is given. Then we introduce the compo-
nent dynamic behaviors modeling based on π calculus.
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A. Overview of higher-order typed π calculus

The π calculus is one of formal methods to model and
reason about concurrency and mobility. It extends CCS
[5] with the ability to create and remove communication
links between processes. One extension of the π calculus
is higher-order typed π calculus by D.Sangiorgi [6], where
the objects transmitted can also be processes. Process,
name and abstraction are three parts of the higher-order
typed π calculus. Process is a working unit of current
running entity, and uses name to define channels and
objects transmitted on the channel. Each process interacts
with other process via a shared channel. We use P, Q,
R, ... to range over processes. Name is a reference of
one object. We use a, b, X, Y, ... to range over value
names and object(process) names. Abstraction is a non-
concrete process with some parameters. Thus, the class
of processes is given by the following grammar.

P ::= 0|α(X).P |α(Y ).P |P + Q|P |Q|(vX)P |[X =
Y ]P |A(K̃)

(1) 0 is an empty process, which cannot perform any
actions.

(2) α(X).P is an input prefix process. It means one
name Z is received along one channel α, and X is a
placeholder for the receive name. After this input, it will
continue as process P and X will be replaced by the newly
received name Z, which is described as P [Z/X].

(3) α(Y ).P is a output prefix process. It means the
name Y is sent along the channel α, and thereafter the
process continues as P.

(4) P +Q is a sum process, which represents a process
that can either P or Q.

(5) P |Q is a parallel composition process, which rep-
resents the combined behavior of P and Q executing in
parallel. P and Q can act independently, and may also
communicate if one performs an output and the other an
input along the shared channel.

(6) (vX)P is a restriction process. The process behaves
as P, but cannot use the name X to communicate with
other processes since X is a local name in P.

(7) [X = Y ]P is a match process. If X and Y are
the same name, the process will behave as P, otherwise it
dose nothing.

(8) A(K̃) is an abstraction with concrete parameters
process. A is an abstraction, defined as X̃A. X̃ is a set
of process formal parameters, and K̃ is a set of process
actual parameters. So A[(K̃)/(X̃)] is conducted.

In addition, process reduction and transition rules are
defined in π calculus with particular semantics. The re-
duction rules consists of R−COM , R−PAR, R−RES,
and R− STRUCT .

B. ScudADL Framework

ScudADL [9] extends D-ADL [7] and π-ADL [8],
which can describe structure and behavior characters
of adaptive middleware. Different with other ADLs, in
ScudADL, component inner and outer adaptive behav-
iors are separated from component functional behavior
in an explicit way. In addition, ScudADL can provide

component resources interfaces describing computing re-
sources requirement, consume, and available information,
which is separated from component port. The component
resources interfaces are attached via resource connecters.
As following, we introduce its functional modules in turn.

In ScudWare architecture, components are essential
software entities. The common components implement
some application logic and can execute special functions
when they are instantiated. The structure properties, func-
tion behaviors, and inner adaptive behaviors are three
important parts of the common components. Specially,
the component inner adaptive behaviors can change com-
ponent resources consumption states to get satisfying
execution effect required from other components in the
ScudWare middleware system. The system components
can provide runtime environments infrastructure such as
context-aware information and adaptive behaviors man-
agements for common components. As a result, the com-
mon and system components are executors of functional
and non-functional behaviors of ScudWare middleware.

Ports are connection points of components communi-
cation. When component A want to send value message
to component B, one port of A and one port of B will
be used to build a communication link called a channel.
Connector is a special component and responsible for
channel management. Therefore, channels are dynamic
built by the connector and conduct components routing
actions. In addition, component A can send adaptive logic
process to component B based on the process passing in
higher-order typed π calculus.

Resource interface can communicate with computing
environments component, show and operate its com-
ponent computing resource. After connecting resource
interfaces, it build a resource channel administered by
resource connector, which is a special channel to deal
with component resource requirement and consumption.
In terms of different component resource consumption,
the component will provide different execution quality for
other components. At one period of time, the computing
resources for one component are variable. So the inter-
actions of components will show different effects such
as satisfying or unsatisfying effects. Once the computing
resources cannot satisfy the component minimal resource
requirement, the interactions between this component and
other component will be halted. It brings a bad executing
effect for the middleware system. Via resource channel,
one component transmit a execution model with one
special quality required from another component.

We use higher-order typed π calculus as a foundation,
extending D-ADL and π-ADL, to build a ScudADL
describing dynamic behavior semantics for adaptive mid-
dleware system in ubiquitous computing environments.
In ScudADL, there are two kinds of types those are base
type and constructed type. The base type consists of any,
natural, integer, real, boolean, string, and action type.
The action type consists of condition, choose, compose,
decompose, replicate, and send or receive object action.
The constructed types consists of channel type, resource
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channel type, behavior type, component type, connector
type, resource connector type. Here, behavior type is a se-
quence of the action type, including component functional
behavior, connector routing behavior, and inner or outer
adaptive behavior type. Behavior type corresponds to
process of higher-order typed π calculus. The component
type and connector type correspond to abstraction of
higher-order typed π calculus.

C. Semantic Component Formalization

Here, we use ScudADL to describe the semantic com-
ponent model.

An semantic component AC ::= Name|Ontology| <
C̃ap > | < P̃ort > | < R̃I > | < ˜ExeModel >

| < ˜FuncBeha > | < ˜AdapBeha >, ˜AdapBeha ::=<
˜IAdapBeha > | < ˜OAdapBeha >

1) Ontology is a repository of components. Component
ontology provides common and sharing conceptual under-
standing of specific domain for functions and behavior of
components.

2) < C̃ap > denotes a semantic description of
component’s capabilities, including a set of computation
functions.

3) < P̃ort > denotes a set of input interfaces provided
by other components, and a set of interfaces exporting for
other components use.

4) < R̃I > is component resource interface, denoting
a set of required resources consumptions value (e.g.
computation platform type, CPU computation, network
communication bandwidth, and memory size).

a) CPU Computation Consumption: RCcc : ∀c ∈ Ac ·
∃v ∈ Q+ · (RCcc → v) defines the CPU computation
resource consumption by component c. Q+ is a set of
non-negative real numbers.

b) Communication Consumption: RCcm : ∀c ∈ Ac ·
∃v ∈ Q+ · (

∑
RCcm → v) defines communication

resource consumption by component c.
c) Memory Consumption: RCmm : ∀c ∈ Ac · ∃v ∈

Q+ ·(RCmm → v) defines memory resource consumption
by component c.

5) < ˜ExeModel >::== (< R̃es, ˜ExeQua >
). On the condition of different component resource
consumption, it will provide different execution ef-
fect in the whole middleware system. For example,
((RCi

cc, RCj
cm, RCk

mm), EQω
ac) denotes that if one com-

ponent consume RCi
cc cpu computation resource, RCj

cm

communication resource, and RCk
mm memory resource,

it will provide EQω
ac execution quality.

6) < ˜FuncBeha >::==< ĨO >< ˜FuncBeha >
| < ˜Condition >< ˜FuncBeha > | < ˜Choose ><

˜FuncBeha > |unobservable|inaction. The component
function behaviors include a) input and output operations
via channel and resource channel, b) condition operation
(if ... then ...), corresponding to [X = Y ]P in higher-order
typed π calculus, c) choose operation, corresponding to
P |Q, d) unobservable operation, corresponding to τ , e)
inaction operation, corresponding to 0.

7) IAdapBeha ::=< ˜ChangeExeModel >
.IAdapBeha. Inner adaptive behavior is to change
the component execution model in terms of vari-
able computing environment or application require-
ments. It can change the component resources con-
sumption and get a new execution quality. The execu-
tion model is from ((RCi

cc, RCj
cm, RCk

mm), EQω
ac) to

((RCp
cc, RCq

cm, RCr
mm), EQµ

ac).
8) OAdapBeha ::= AddAc.OAdapBeha |

RemoveAc.OAdapBeha | UpdateAc. OAd apBeha |
ReplaceAc.OAdapBeha | inaction. In outer adaptive
behaviors, a) AddAc behavior denotes add a new
component into the system dynamically for a new
functionality, b) RemoveAc behavior denotes remove
a old component from the system, which is not
necessary, c) UpdateAc behavior denotes updating
component functionality to a new version, d) ReplaceAc
behavior denotes replacing one component with another
component, continuing to conduct the next operations
between other components.

D. Component Dynamic Behaviors Modeling

The component behaviors have dynamic and concurrent
characters. In addition, the component interacts with
others through its service request ports and service supply
ports, whose interaction is mainly embodied in messages
transfer. Similarly, the processes of π calculus transfer
messages with others through its channels. Thus we can
map the component ports to the π calculus process chan-
nels. And the transceivers of messages by components
correspond to the transceivers of messages by π calculus
process.

According to the different transfer forms of message,
the component atomic behaviors can be divided into three
kinds. The first is send only(S). The second is receive
only(R). And the third are send before receive(SR) and
receive before send(RS).

The set of all communication ports is defined as GT .
gti is one communication port. GT = {gt1, gt2, ..., gtn}

The set of all input messages is defined as Min. iu is
one input message. Min = {i1, i2, ..., iu}

The set of all output messages is defined as Mout. ov

is one output message. Mout = {o1, o2, ..., ov}
gtn?(iu) denotes one component receiving message iu

through port gtn, while gtn!(ov) denotes the component
sending message ov through port gtn. The component
atomic behaviors of S, R, and SRandRS through ports
are defined as follows.

Psend = gtm!(oj , oj+1, ..., ok−1, ok) · 0
Preceive = gtm?(ij , ij+1, ..., ik−1, ik) · 0
Psend,receive = gtm!(oj , ..., ok) · gtm?(ij , ..., ik) · 0
Preceive,send = gtm?(ij , ..., ik) · gtm!(oj , ..., ok) · 0
For example, one network-based commodities trad-

ing system in ubiquitous computing environments have
two essential components those are seller component
and purchaser component. We firstly describe the seller
component, which has three input channels: 1) contact
channel for contacting with purchaser, 2) order channel
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Figure 3. The seller component behavior view

for receiving order, and 3) preorder channel for receiving
preorder. In addition, this component has four output
channels: 1) sufficient channel for using when inventory
meets demands, 2) insufficient channel for using when
inventory can’t meet demands, 3) prepare channel for
allocating goods, and 4) cancel channel for canceling al-
locating goods. The seller component dynamic behaviors
are illustrated in figure 3.

Then we give the definitions of every input and out-
put channel. Input channels including Contact(CNT ),
Order(OD), Preorder(POD) are one by one defined
as GT1, GT2, and GT3. In addition, output channels
including Sufficient(SUF ), Insufficient(ISUF ),
Prepare(PP ), and Cancel(CC) are one by one defined
as GT4, GT5, GT6, and GT7.

According to the basic grammar of π calculus,
the behavior of inputting CNT can be described as
GT1?(CNT ). Similarly, the behavior of inputting OD,
POD4, SUF , ISUF , PP , and CC can be in turn
described as GT2?(OD), GT3?(P OD), GT4?(SUF ),
GT5?(ISUF ), GT6?(PP ) and GT7?(CC).

We give the definition of this seller component be-
haviors as PSC. When the inventory meets demands, it
will execute process PSUF , otherwise it will execute
process PISUF . In terms of above definitions, the seller
component behaviors can be described as follows.

PSC = GT1?(CNT ) · (PSUF + PISUF )
PSUF = GT4!(SUF ) · GT2?(OD) · (PPREPARE +

PCANCEL)
PPREPARE = GT6!(PP ) · 0
PCANCEL = GT7!(CC) · 0
PISUF = GT5!(ISUF ) ·GT3?(POD) · 0

IV. COMPONENT BEHAVIOR COMPATIBILITY
ANALYSIS

In this section, we will give some definitions of compo-
nent behavior compatibility and introduce its verification.

A. Component Dynamic Behavior Compatibility

In a component-based ubiquitous computing system,
the component behavior compatibility plays an important
role. This compatibility will reflect whether the compo-
nents’ interactive behaviors can be normally completed or
affect the executing stability and feasibility of the whole
system. In the following, we give some definitions of
component behavior compatibility.

Definition 1: Feasible interactive path(FIP). Assume
that component CA and component CB have interactive
behaviors: CA sends message msg1 to CB through
channel gta1, then CB receives msg1 from CA through
channel gtb1 and sends feedback msg2 to CA through
channel gtb2. At last, CA receives msg2 from CB
through channel gta2. If this interactive behavior can
be successfully completed by inputting and outputting
messages, then the sequence of msg1 and msg2 is called
a feasible interactive path. Otherwise, this sequence of
msg1 and msg2 is called an infeasible interactive path.

FIP
msgsequence−→ Finish(interactive · behavior) =

Succ
Definition 2: Absolutely compatible(AbComp). In

component CA and component CB, if each interactive
path(IPath) is a feasible interactive path, then CA and
CB are absolutely compatible.

AbComp(CA, CB) −→ ∀IPath ∈ (CA
⋂

CB) ·
IPath = FIP

Definition 3: Relatively compatible(ReComp). Compo-
nent CA and component CB is not absolutely compatible.
And they have at least one feasible interactive path. Then
CA and CB are relatively compatible.

ReComp(CA, CB) −→ (AbComp(CA, CB) =
false) ∧ (∃IPath ∈ (CA

⋂
CB) · IPath = FIP )

Definition 4: Compatibility degree(CoDeg). As for in-
teractive behaviors of component CA and CB, if the
count of feasible interactive paths is m, and the count
of all interactive paths is n, then the component compat-
ibility degree of CA and CB is m/n.

We can evaluate the compatibility of component inter-
active behaviors according to above definitions. In gen-
eral, the compatibility of components can be absolutely
compatible or relatively compatible. However systems in
ubiquitous computing environments, those having high
requirement of stability, correctness and the behavioral
compatibility of components, always need high compat-
ibility of different components or exactly need to be
absolutely compatible.

B. Component Compatibility Analysis

It always relates to behavioral interaction of multiple
components when verifying their behavioral compatibil-
ity. Now we explain the general regulars by considering
two components. The general regular for compatibility
verification of more than two components can be made
by giving an analogy.

According to the different transfer forms of messages,
the atomic interactive behaviors of two components can
be divided into three kinds: 1) all send only, 2) all receive
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only, and 3) one send one receive. The behaviors of
two components are described as P1 and P2, and the
transferred messages are described as m1 and m2. The
interactive behaviors can be described by concurrent pro-
cesses. The atomic interactive behaviors of components
can be described as follows:

(1) P1||P2 = gt1!(m1)·0‖gt2!(m2)·0. Two components
send messages only but these messages will never be
received and dealt with. At last the interaction can’t com-
plete normally, so these components aren’t compatible.

(2) P1||P2 = gt1?(m1) · 0‖gt2?(m2) · 0. Two com-
ponents receive messages only but no messages can be
obtained. Because no feasible interactive path can be
found, they aren’t compatible either;

(3) P1||P2 = gt1!(m1) · 0‖gt2?(m2) · 0.
(4) P1||P2 = gt1?(m1) · 0‖gt2!(m2) · 0.
As for (3) and (4), one component send message, while

another receive. If the message sent by P1 is the same as
the message received by P2, the interactive behavior of
these two components can make a further evolution:

P1‖P2
m1∨m2−→ 0‖0 = 0

It is obvious that each component will complete its
action after the message is transferred, thus they are
behavior compatible. The feasible interactive path is a
message sequence of m1 and m2. However, if m1 is not
equal to m2, each component will not complete its action
successfully and at last they will not be compatible.

Specially, the above three kinds of atomic interactive
behaviors can be extended to various complex interaction
of components.

V. CASE STUDY

In a network-based commodities trading system in
ubiquitous computing environments, according to the
seller component mentioned above, we can create a pur-
chaser component. Then we combine them into an entirety
and verify the compatibility of their interactive behaviors.

The purchaser component has seven channels, includ-
ing three output channels and four input channels. The
three output channels are Contact (a channel for con-
tacting with seller), Order (a channel for sending order)
and Preorder (a channel for sending preorder). The four
input channels are Sufficient (inventory meet demand),
Insufficient (inventory can’t meet demand), Prepare (allo-
cate goods) and Cancel (cancel allocate goods). Similarly,
every input and output channel are named. The behavior
view of purchaser component is concretely described in
figure 4.

If PPC1 represents the behavior of purchaser compo-
nent, then it can be described as follows:

PPC1 = GT1!(CNT ) · (PSUF1 + PISUF1)
PSUF1 = GT4?(SUF ) ·GT2!(OD) · (PPREPARE1 +

PCANCEL1)
PPREPARE1 = GT6?(PP ) · 0
PCANCEL1 = GT7?(CC) · 0
PISUF1 = GT5?(ISUF ) ·GT3!(POD) · 0
After that, the seller component and purchaser com-

ponent can be integrated into an entirety, as is shown in
figure 5.

CNT

SUF ISUF

OD POD

PP

CC

Purchaser Component

GT1

GT4

GT5

GT2

GT3

GT6

GT7

Figure 4. The purchaser component behavior view

The dynamic interaction between components can be
seen as a concurrent system, and it also can be described
by the concurrent processes. The concurrent interactive
behaviors of seller component and purchaser component
can be described by π calculus as follows.

P(SC,PC1) = PSC‖PPC1 =
PSC‖PPC1 = (GT1?(CNT ) · (PSUF +

PISUF )‖(GT1!(CNT ) · (PSUF1 + PISUF1))
The component evolution is shown as follows.
P(SC,PC1) = PSC‖PPC1 =
(GT1?(CNT ) · (PSUF + PISUF )‖(GT1!(CNT ) ·

(PSUF1 + PISUF1))
CNT−→ (GT4!(SUF ) · GT2(OD) · (PPREPARE +

PCANCEL) + PISUF )‖(GT4?(SUF ) ·
GT2!(OD).(PPREPARE1 + PCANCEL1) + PISUF1)

SUF−→ (GT2?(OD) · (PPREPARE +
PCANCEL))‖(GT2!(OD)·(PPREPARE1+PCANCEL1))

OD−→ (GT6!(PP ) · 0 + GT7!(CC) · 0)
As we can see, the concurrent processes become a

null process at last. Thus the sequence of CNT , SUF ,
OD and PP is a feasible interactive path. Likewise, the
sequence of CNT , SUF , OD, and CC, and the sequence
of CNT , ISUF , POD are also feasible interactive paths.
Besides the above three interactive paths, there is no other
interactive path. So all the interactive paths are feasible
interactive paths and the interactive behavior of the two
components is absolutely compatible.

In figure 5, the purchaser component will send POD
to the seller component when it has received ISUF from
the seller component. If we remove this action, and the
purchaser component will not receive PP from the seller
component. Then the interactive behavior view of seller
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Figure 5. The interactive behavior view of seller and purchaser
components

CNT

SUF ISUF

OD
POD

PP
CC

Seller Component

CNT

SUF

ISUF

OD

CC

New Purchaser

Component

GT1

GT4

GT5

GT2

GT3

GT6

GT7

GT1

GT4

GT5

GT2

GT3

GT6

GT7

Figure 6. The interactive behavior view of seller component and new
purchaser component

component and new purchaser component is concretely
described in figure 6.

If PPC2 represents the behavior of new purchaser
component, then it can be described as follows.

PPC2 = GT1!(CNT ) · (PSUF2 + PISUF2)
PSUF2 = GT4?(SUF ) ·GT2!(OD) · PCANCEL2

PCANCEL2 = GT7?(CC) · 0
PISUF2 = GT5?(ISUF ) · 0
The concurrent interactive behavior of seller component

and new purchaser component can be described by π
calculus as follows.

P(SC,PC2) = PSC‖PPC2

PSC‖PPC2 = (GT1?(CNT ) · (PSUF +
PISUF )‖(GT1!(CNT ) · (PSUF2 + PISUF2))

The component evolution is shown as follows.
P(SC,PC2) = PSC‖PPC2

= (GT1?(CNT ) · (PSUF + PISUF )‖(GT1!(CNT ) ·
(PSUF2 + PISUF2))

CNT−→ (PSUF + GT5!(ISUF ) · GT3?(POD) ·
0)‖(PSUF2 + GT5?(ISUF ) · 0))

ISUF−→ (GT3?(POD) · 0‖0)
In terms of above description, the component evolution

shows that after the seller component sends ISUF to
the new purchaser component, it will never receive POD
from the new purchaser component, and the interaction
will not successfully complete at last. However, a feasible
interactive path of CNT , SUF , OD, CC exists. Thus
the interactive behavior of two components is relatively
compatible. After that, let us calculate the compatibility
degree of the seller component and the new purchaser
component. There are three interactive paths between
them, which are 1) CNT , SUF , OD, PP , 2) CNT ,
SUF , OD, CC, 3) CNT , ISUF , POD. Only one
feasible interactive path exists, which is CNT , SUF ,
OD, CC. As a result, the compatibility degree is 1/3.

VI. RELATED WORK

In recent years, many efforts have be made to design
the new middleware architecture capable of supporting
smart spaces in ubiquitous computing.

The Stanford Interactive Workspaces project [10] aims
at exploring new possibilities for people to work to-
gether in technology-rich spaces with computing and
interaction devices on many different scales. This project
concentrates on task-oriented work such as brainstorming
meetings and design reviews. They have developed iROS
[11] , a middleware platform for a class of ubicomp
environments, through the use of three guiding principles
- economy of mechanism, client simplicity and levels
of indirection. RCSM [12](Reconfigurable Context- Sen-
sitive Middleware) is designed to facilitate applications
that require context awareness or spontaneous and ad hoc
communication.

In addition, we have obtained some achievements on
how to formalized express component behavior, how to
verify the consistency and compatibility of component
interactive behaviors. Gao [13], Xue [14], and Zhong [15]
have used Pi-calculus to model behavior, but they haven’t
verified the equivalence of different behaviors. Shen [16],
Lucia [17], and Hu [18] have made some research on
the consistency of components’ dynamic evolution, but
it can’t ensure the correctness of internal flow structure
and the in existence of deadlock or inaccessible state. In
order to ensure the stability and normality of the whole
system after creating, deleting, replacing or recombining
components, and improve the self-adaptability of the
dynamic evolution of components, we must ensure the
interactive compatibility of components. Those incompat-
ible components always lead to the collapse of the whole
system. Aiming at this problem, this paper emphatically
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verifies the compatibility of interactive behaviors among
components.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an architecture of ScudWare
middleware. Then for this middleware, we propose the
component dynamic behavior formalization and com-
ponent behavior compatibility verification based on the
higher-order π calculus. Next, a case study is given to
evaluate our methods.

Through the compatibility verification of components’
interactive behavior, we can effectively ensure the stability
and normality of the whole system’s dynamic adap-
tation after increasing, deleting, replacing, transferring,
and recombining of component. Our next work include
that 1) we will make further research on the behavioral
compatibility of component. 2) regarding as component
compatibility degree, the running efficiency and stability
of system should be synthetically considered.
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