
A Comparative Analysis of Open Source
Software Reliability

Cobra Rahmani, Azad Azadmanesh and Lotfollah Najjar
College of Information Science & Technology

University of Nebraska-Omaha, U.S.
E-mail: {crahmani, azad, lnajjar}@unomaha.edu

Abstract— The purpose of this study is to compare the
fitting (goodness-of-fit) and prediction capabilities of three
reliability models using the failure data of five popular open
source software (OSS) products. The failure data are
modeled by Weibull and two other Non Homogenous
Poisson Process (NHPP) models (Yamada S-Shaped and
Schneidewind). The OSS products considered are Eclipse,
Apache HTTP Server 2, Firefox, MPlayer OS X, and
ClamWin Free Antivirus. Weibull is chosen due to its
popularity in lifetime and its flexibility in modeling various
distributions. On the other hand, among many software
reliability models, the NHPP models are prevalent. The
goodness-of-fit is based on the entire failure data collected.
Prediction is accomplished by estimating the models
parameters based on partial failure history and then
applying the estimates to the entire time span for which
failure data is collected. The outcomes show that a
reliability model that fits the failure data well may not
necessarily be a decent forecaster of future failure patterns.

Index Terms-- Software reliability growth model, Non-
homogeneous poisson process (NHPP), Open source
software (OSS), Prequential likelihood ratio (PLR), Weibull
distribution.

I. INTRODUCTION

Open Source Software (OSS) in general refers to any
software whose source code is freely available for
distribution. The success and benefits of OSS can be
attributed to many factors such as code modification by
any party as the needs arise, promotion of software
reliability and quality due to peer review and
collaboration among many volunteer programmers from
different organizations, and the fact that the knowledge-
base is not bound to a particular organization, which
allows for faster development and the likelihood of the
software to be available for different platforms. Eric
Raymond in [1] states that “with enough eye balls, all
bugs are shallow”, which suggests that there exists a
positive relationship between the number of people
involved, bug numbers, and software quality. Some
examples of successful OSS products that are used in this
paper are Apache HTTP server, Eclipse framework and
the Mozilla Firefox internet browser.

For the purpose of this study, five different OSS
products are selected: Eclipse, Apache HTTP Server 2,
Firefox, MPlayer OS X, and ClamWin Free Antivirus.
These projects are chosen because of their high number

of downloads, length of project operation, and sufficient
number of bug reports. MPlayer OS X and ClamWin
Free Antivirus are two projects, which can be found in
sourceforge.net [2]. MPlayer OS X, launched in 2002, is
a project based on MPlayer, which is a movie player for
Linux with more than six million downloads. ClamWin
Free Antivirus was launched in 2004 that has had more
than 19 million downloads. Both of them use
sourceforge.net as their online bug-repository. Eclipse,
Apache 2, and Firefox are the other three OSS projects,
which use Bugzilla [3] as their bug-repository system.
Bugzilla is a popular bug-repository system that allows
users to send information about a detected bug such as
bug description, severity, and reporting time.

Additionally, these projects are well-known and have
been in operation for more than four years. Therefore,
there is a sufficient amount of failure data to provide a
decent picture of software quality, which may otherwise
lead to anomalous reliability estimates [4,5].

This study compares Weibull, S-shaped, and
Schneidewind distribution models in terms of goodness-
of-fit and reliability prediction based on the failure data
collected for the selected OSS products. Weibull
distribution is widely utilized in lifetime data analysis
because of its flexibility in modeling different phases of
bathtub reliability, i.e. decreasing, constant, and
increasing failure rates. The function has been
particularly valuable for situations for which the data
samples are relatively small, such as in maintenance
studies [6]. On the other hand, Non-Homogeneous
Poisson Process (NHPP) has gained much popularity in
the software reliability field. In general NHPP models
are grouped into exponential and non-exponential
models. To cover both groups, one model from each
group is selected. S-shaped model is a non-exponential
NHPP model [7]. Additionally, the per-fault distribution
of S-shaped model follows the Gamma distribution [8],
which is representative of failure patterns whose
distributions are skewed. The S-shaped model reflects the
fact that the cumulative number of failures is often S-
shaped relative to the exponential curve. Among multiple
reasons, it is believed that there is a learning curve during
the testing phase of the software product. Initially, the
testers are becoming familiar with the product and hence
there is a slow increasing curvature in removing faults.
As testers’ skills improve, the rate of uncovering defects

1384 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.12.1384-1394

increases quickly and then levels off as the residual errors
decreases sharply or become more difficult to detect.

On the other hand, if the duration for which the
increase in failure intensity reaches a peak is short, before
a decreasing pattern of failures is observed, an
exponential NHPP might be able to model the failure
pattern more accurately. This observation is also
supported by [9]. For this reason, Schneidewind’s model
which is an exponential model is selected and the failure
intensity is assumed to be decreasing exponentially [10].
Schneidewind’s model has been recommended by IEEE
Reliability Society [11] and the American Institute of
Aeronautics and Astronautics (AIAA) [12] as one of the
models to be attempted for initial fitting failure data. As
reported by Lyu [13], Schneidewind’s model was used on
IBM’s flight control software models with very good
success [14].

The rest of the paper is organized as follows. Section
II provides some definitions and background information.
Section III concentrates on failure data analysis and
comparison study of the selected models in terms of
reliability estimates and reliability prediction. Section IV
concludes the paper with a summary.

II. BACKGROUND

As software products have become increasingly
complex, software reliability is a growing concern, which
is defined as the probability of failure free operation of a
computer program in a specified environment for a
specified period of time [8,15]. Reliability growth
modeling has been one approach to address software
reliability concern, which dates back to early 1970’s [16,
17,18]. Reliability modeling enables the measurement
and prediction of software behaviors such as Mean Time
to Failure (MTTF), future product reliability, testing
period, and planning for product release time.

Different classifications of software reliability models
exist. One way is to categorize the models based on the
deterministic and probabilistic nature of the parameters
used [8]. The deterministic models do not involve
random variables. They attempt to obtain performance
measures by accounting for some software structure and
attribute, such as logical complexity by counting the
decision point in a program [19] and program length by
the number of distinct operators and operands in the
software [20]. On the other hand, a large number of
models belong to the probabilistic category, which place
probabilistic assumptions on the parameters of the
models, such as failure occurrences [7,10,21,22,23]. One
subcategory of probabilistic models is Non-
Homogeneous Poisson Process (NHPP) models [24],
which was originally studied in hardware reliability.
These models assume that the failure process varies with
time and the cumulative number of failures up to time t is
Poisson distributed with a parameter that is the mean
value of failures.

Another classification is to divide the software
reliability models into time-domain and failure-domain
models. The main input parameter to time-domain
models is individual times of each failure. Some models

may require the intervals of successful operations, which
can be obtained by subtracting each time of failure from
the next failure time. As the failures occur and fixed, it is
expected that these intervals to increase. Some examples
that belong to this class of reliability modeling are
Jelinski-Moranda and Littlewood models [17,25].

The failure-domain models labeled as such because the
input parameter of study is the number of failures in a
specified interval of time rather than successful operation
intervals between failures. Normally, the failure intensity
is used as the parameter of a Probability Distribution
Function (PDF). Like the first class, as the fault counts
drop, the reliability is expected to increase [8,26,27].
Examples of this class are Goel-Okumoto, S-shaped, and
Musa-Okumoto models [7,15,21]. As it will be seen, the
input to the Weibull model is time-domained, whereas S-
shaped and Schneidewind models belong to the failure-
domain category.

White-box and black-box models are two approaches
for predication of software reliability. The white-box
models attempt to measure the quality of a software
system based on its structure that is normally architected
during the specification and design of the product.
Relationship of software components and their
correlation are thus the focus for software reliability
measurement [28,29,30,31]. In the black-box approach,
the entire software system is treated as a single entity,
thus ignoring software structures and components
interdependencies. These models tend to measure and
predict software quality in the later phases of software
development, such as testing or operation phase. The
models rely on the testing data collected over an observed
time period. Some popular examples are: Yamada S-
Shape, Littlewood-Verrall, Jelinski-Moranda, Musa-
Okumoto, and Goel-Okumoto [7,15,21,25,32]. This study
is concentrated on the black-box reliability approach to
measure and compare the reliability of the selected OSS
projects.

A. General Distribution Functions
A fault or bug is a defect in software that has the

potential to cause the software to fail. An error is a
measured value or condition that deviates from the
correct state of software during operation. A failure is the
inability of the software product to deliver one of its
services. Therefore, a fault is the cause for an error, and
software that has a bug may not encounter an error that
leads to a failure. Failure behavior can be reflected in
various ways such as Probability Density Function (PDF)
and Cumulative Distribution Function (CDF). PDF,
denoted as f(t), shows the relative concentration of data
samples at different points of measurement scale, such
that the area under the graph is unity. CDF, denoted as
F(t), is another way to present the pattern of observed
data under study. CDF describes the probability
distribution of the random variable, T, i.e. the probability
that the random variable T assumes a value less than or
equal to the specified value t. In other words,

)()()()()(' tFtfdxxftTPtF
t

=⇒=≤= ∫ ∞−

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1385

© 2010 ACADEMY PUBLISHER

Therefore, f(t) is the rate of change of F(t). If the
random variable T denotes the failure time, F(t), or
unreliability, is the probability that the system will fail by
time t.

Weibull Distribution – The PDF of Weibull function is

βα
β

β

α
β)/(

1

)(tettf −
−

= (1)

where α is the scale parameter and β represents the shape
parameter of the distribution. The effect of the scale
parameter is to squeeze or stretch the distribution. The
Weibull PDF is monotone decreasing, if ߚ 1 . The
smaller β, the more rapid the decrease is. It becomes bell
shaped when β > 2, and the larger β, the steeper the bell
shape will be. Furthermore, it becomes the Rayleigh
distribution function when β = 2 and reduces to the
exponential distribution function when β = 1. Fig. 1 shows
the Weibull PDF for several values of the shape parameter
when α = 1 [26].

Figure 1. Weibull PDF for several shape values when α =1.

The mean function of Weibull, i.e. the expected

number of failures in interval [0, t], is

 ݉ሺݐሻ ൌ ሻ (2)ݐሺܨܰ

where N is the total number of failures in the software
product. The failure rate at t, denoted as λ(t), which is the
rate at which failures occur per interval, is

ሻݐሺߣ ൌ ݉ᇱሺݐሻ ൌ ݂ܰሺݐሻ

Schneidewind’s Model – This model assumes that the
cumulative number of failures is NHPP. The model is
built on the belief that the failure frequency changes over
time and that the recent failures are more beneficial to
predicting the future behavior than the past failures. Based
on this, the model provides for three forms of failure
models [11]. For instance, it allows for the early failure
counts to be dropped if those failures are believed to
contribute little to the future forecasts of failures. This
study assumes that all failures are important and thus no
failures are discarded.

The model assumes that the failures are independent.
The mean value of failures is [11]:

 ݉ሺݐሻ ൌ ఈ
ఉ

ሺ1 െ ݁ିఉ௧ሻ (3)

where α is the initial failure rate and β is the negative of
derivative of failure rate. The model places an upper
bound on the number of failures, i.e. lim௧՜ஶ ݉ሺݐሻ ൌ .ߚ/ߙ
The failure rate, ሻݐሺߣ is an exponentially decreasing
function,

ሻݐሺߣ ൌ ݉ᇱሺݐሻ ൌ ఉ௧ି݁ߙ

Therefore, a large (small) ߚ implies a small (large) failure
rate, and the initial failure rate, i.e. the failure rate at t = 0
is ߙ.

S-shaped Model – Experience has shown that the
cumulative number of faults is often S-shaped, rather than
exponentially shaped. This means that the curve
representing the cumulative number of faults shows a dip
in the early part of the graph and then follows an
exponential growth. The two common S-shaped NHPP
models are the inflection and the delayed models. The
latter, herein referred to as the S-shaped model is
characterized by its S-shaped mean value m(t) [8],

])1(1[)(btebtatm −+−= (4)

where a denotes the number of faults in the software
product and b is the failure rate in the steady state, also
referred to as the constant of proportionality. The model
assumes that the faults in the software product are
independent of each other, and all detected faults are
immediately removed without introducing any new fault.

Since the failure rate, ߣሺݐሻ, is the derivative of m(t),

ሻݐሺߣ ൌ ݉ᇱሺݐሻ ൌ ܾଶି݁ݐ௧ (5)

If α and β are the scale and shape parameters, (5) is
representative of the Gamma function with parameters α =
1/b and β = 2. In this function, the shape parameter ߚ ൌ 2
is indicative of skewed distribution, as shown in Fig. 1.

For each of the three models described, the estimated
failure intensity during the time interval ℓ ൌ ሺݐ െ ,ିଵሻݐ
ݐ ିଵ, isݐ

 ෝ݉ ሺℓሻ ൌ ෝ݉ሺݐሻ െ ෝ݉ሺݐିଵሻ (6)

where ෝ݉ሺݐሻ is the model’s estimated mean value of
failures for the interval [0, ݐ].

B. Prequential Likelihood Ratio (PLR)
The PLR function [33,34] compares predictions from

two models based on the same data source in order to
determine the model with the most likelihood accurate
prediction. Given two models A and B and equal
probability of prior belief for both models, the prequential
likelihood values ܲܮሺܣሻ and ܲܮሺܤሻ of the models are
computed for n predictions. If the ratio ܲܮሺܣሻ/ܲܮሺܤሻ
shows overall growth as n increases with the possibility of
some fluctuations, then model A provides better prediction
than model B [33].

More precisely, assume the prior observed failure
intensities for ℓ , 1 ݅ ݇ . The prequential likelihood
 is defined as followsܮܲ

0
0
0.5

1
1.5
2

2.5

3

3.5

4

 1 2 3
t

β = 0.5
β = 1
β = 2
β = 4
β = 10

β = 0.5

β = 10

β = 1
β = 4

β = 2

 f(t)

1386 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

ܮܲ ൌ ෑ ෝ݉൫ℓ൯
ା

ୀାଵ

A comparison of predictions for the two models A and B
can be found by the ratio of their ܲܮ as follows

ܴܮܲ ൌ ሺሻ
ሺሻ

.

Dawid in [33] shows that if ܴܲܮ ՜ ∞, as ݊ ՜ ∞, then
model A is favored over model B.

III. EXPERIMENTAL ANALYSIS

Prior to analyzing the performance estimates of the
reliability growth models, i.e. Weibull, S-shaped, and
Schneidewind, the failure data for the five selected OSS
products must first be collected and filtered. Therefore,
the reliability estimate process is partitioned into three
steps: bug-gathering, bug-filtering, and bug-analysis. In
the bug-filtering step, the raw failure data from each
software product is collected using an online bug-
repository system. The online system is capable of
archiving failure information reported by users who
experience flaws or failure in the product. The quality of
reliability estimation highly depends on sufficient error
reports and the accuracy of reports provided by the users.
Although, the bug reports may differ among software
products, each bug report normally contains the
appropriate fields to signify the following: 1) a unique
identification value for the report, 2) the time/date the bug
is reported, 3) some information about the user reporting
the bug, 4) the product name, and 5) the status of the bug-
report filled by the organization in charge of the product
development, such as whether the bug is fixed, valid,
deleted, or fixed. The duration for which the failure data is
collected for the five OSS products is listed in Table I. As
indicated, the bug-reports are collected from
sourceforge.net and bugzilla.

TABLE I.
DURATIONS OF COLLECTED FAILURE DATA1

Project name Start date End date

Firefox 03/19992 10/2006
Eclipse 10/20013 12/2007
Apache 2 03/2002 12/2008
ClamWin Free Antivirus 03/2004 08/2008
MPlayer 09/2002 06/2006

During the bug-filtering step, the reports collected in

the first step are filtered out to remove the unwanted
reports. For example, some reports might be duplicates,
not represent a real defect, or the information provided
may not be complete. Among the bug-reports for MPlayer
and ClamWin, those reports with status other than
“Deleted” (not a valid bug-report) are collected. The bug-

1 The start date of collected bug reports is the earliest date wherein a
bug is reported.
2 The failure data collected prior to the official release date of Firefox
are obtained from Mozilla bug reports.
3 This date is prior to the official release date.

reports for the other three products, i.e. Eclipse, Apache,
and Firefox, are initially in XML format. A Java program
has been developed to gather the relevant data from the
XML format of each report. The resultant bug-reports are
then filtered out. Those bug-reports with the following
status values are accepted and the rest are discarded:
FIXED (bug is fixed), WONTFIX (bug will not be fixed),
LATER (bug won’t be fixed in the current product
version), and REMIND (bug probably won’t be fixed in
the current product version).

Finally, in the bug-analysis step, the dates of the
filtered bug-reports are used to organize the reports into
two-week intervals for further analysis. Fig. 2-64 exhibit
the failure intensities for the five OSS products. The x-
axis and y-axis represent each biweekly period and its
corresponding failure intensity, respectively. Also, each
graph shows the interval for which the failure reports are
collected. For instance, x-axis in Fig. 2 contains 115
points, which is equivalent to about 4.4 years of collected
failure data for ClamWin operation. The failure patterns
of these graphs are used in the next section in terms of
goodness-of-fit and failure forecasts (prediction) by the
three models, i.e. Weibull, S-shaped, and Schneidewind
models.

Figure 2. Filtered bug frequency for ClamWin Free Antivirus
product.

Figure 3. Filtered bug frequency for MPlayer OS X product.

4 The intensities of bug reports are connected to form smoother plots.
The purpose is to better visualize the pattern of failure reports.

0

4

8

12

16

20

1 21 41 61 81 101
Biweekly Time

Fa
ilu
re

In
te
ns
ity

 (F
I)

0

5

10

15

20

25

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Biweekly Time

Fa
ilu
re

In
te
ns
ity

 (F
I)

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1387

© 2010 ACADEMY PUBLISHER

Figur

Figu

Figu

A. Goodness
Weibull Mod
projects, i.e.
Free Antivir
represented b
example, Fi
superimposed
pattern is sup
that software
by Rayleigh
distribution
considered a
stabilizes at a

In closed
usually an in
software to th

0

10

20

30

40

50

60
1 11

Fa
ilu
re
 In
te
ns
ity

 (F
I)

0
200
400
600
800
1000
1200
1400
1600
1800

1 10

Fa
ilu
re

In
te
ns
ity

 (F
I)

0
10
20
30
40
50
60
70
80
90

100

1 6

Fa
ilu
re

In
te
ns
ity

 (F
I)

re 4. Filtered bug

ure 5. Filtered bu

ure 6. Filtered bu

-of-fit Estima
del - The bug
 Apache 2, M

rus, appear to
by the Weibu
ig. 7 shows
d on the bug
pported by lar
e projects follo
h distribution

with shape p
a desirable pa
a very low lev
source softw

ndicator of end
he field [26]. T

11 21 31 41 51 61

10 19 28 37 46 55

Biwe

6 11 16 21 26

B

g frequency for Ap

ug frequency for E

ug frequency for F

ate
g frequencies
MPlayer OS
o follow a pa
ull distribution

this pattern
frequencies f

rge body of em
ow a life cycle

function, wh
parameter =β

attern since th
vel.
ware, the stabi
ding test effor
This pattern is

61 71 81 91 10
1

11
1

Biweekly Time

64 73 82 91 10
0

eekly time

31 36 41 46 51

Biweekly Time

pache 2 product.

Eclipse product.

Firefox product.

for three of
X, and Clam

attern that ca
n function. A

n that is vis
for Apache 2.
mpirical studi
e pattern desc
hich is a We

2= . This is
he bug arrival

ilizing behavi
rt and releasin
s also supporte

11
1

12
1

13
1

14
1

15
1

16
1

10
9

11
8

12
7

13
6

14
5

51 56 61 66 71

these
mWin
an be
As an
sually

This
ies in
ribed
eibull

also
l rate

ior is
ng the
ed by

Mus
easil
bugs
exam
rate
cont

F

O
follo
bug
the r
the p
simi
Clam
frequ
in on
in Fi

R
with
anal
frequ
vers
beca
vers

A
mult
lack
repo
Ther
unif
rates
hind

16
1

17
1

15
4

76

Fr
eq

ue
n
cy
 I
nt
en

si
ty
 (F
I)

1

1

1

1

1

Bu
g
Fr

eq
ue

nc
y

sa-Okumoto m
ly at the begin
s tend to be
mple, they are

of undetecte
tinues [27].

Figure 7. A curve

On a quick gla
ow this patter
reports includ

reports for eac
pattern of failu
ilar pattern as
mWin Free
uencies for in
ne diagram, in
ig. 5.

Figure 8. Filtered

Rather than de
h similar patte
lyzed for relia
uencies for E
ion will be

ause of its hi
ions.

A similar case
tiple peaks in

k the version n
ort contains
refore, differe

fied version. A
s seem not to
ders the accura

0

10

20

30

40

50

60

1 11 21 31

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43

model in that t
nning of testin

more difficu
 not exercised

ed bugs drop

e fitted onto bug f

ance at Fig. 5
rn. Further inv
de failures abo
ch version are
ure intensities
those of Apa
Antivirus. Fi

ndividual Ecli
nstead of lum

d bug frequencies
different versio

ealing with m
erns, one sing
ability estimat

Eclipse V2.0 e
used in relia

igh bug repor

e could be tru
Fig. 6. Howev

numbers. The
the phrase “

ent versions of
Another observ

have stabilize
acy of reliabili

31 41 51 61 71 81

Biweekly Tim

43 49 55 61 67 73 79 85 91 97

Biweekly Time

the simple bu
ng phase and t
ult to detect
d frequently. T
s exponential

frequencies for A

, Eclipse doe
vestigation rev
out multiple ve
 extracted, it i

s for each vers
ache 2, MPlay
ig. 8 illustra
ipse releases

mping them in

s of Eclipse produ
ons.

multiple versio
gle version is
tion. Fig. 9 sh
extracted from
ability analysi
rts in compar

ue for Firefo
ver, the Firefo
version field

“Trunk” for
f Firefox are t
vation is that th
ed at a low lev
ity estimates.

81 91 10
1

11
1

12
1

13
1

me

97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

ugs are caught
the remaining
because, for

Therefore, the
lly as testing

Apache 2 product.

s not seem to
veals that the
ersions. When
is noticed that
sion follows a
yer OS X, and
ates the bug
superimposed
one graph as

uct for

ons of Eclipse
extracted and
hows the bug

m Fig. 8. This
is of Eclipse
rison to other

ox because of
ox bug reports

of each bug-
all versions.

treated as one
he bug arrival
vel yet, which

13
1

14
1

15
1

16
1

17
1

15
7

Eclipse V2.0

Eclipse V2.1

Eclipse V3.0

Eclipse V3.1

Eclipse V3.2

Eclipse V3.3

t
g
r
e
g

o
e
n
t
a
d
g
d
s

e
d
g
s
e
r

f
s
-
.
e
l
h

1388 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 9. Filtered bug frequencies for Eclipse V2.0 product.

The R Project [35] is a freely available package that is
used for a wide variety of statistical computing and
graphics techniques. R is able to apply the Maximum
Likelihood Estimation (MLE) technique [8] for estimating
the parameters of Weibull distribution. Since R requires
time-domain data, the relative frequency of bug reports
needs to be converted to occurrence times of failure.
Therefore, each bug report is mapped to its corresponding
biweekly period. For example, 4 bugs reported in the 1st
biweekly and 3 bugs reported in the 2nd biweekly periods
are converted to: 1,1,1,1,2,2,2. This further illustrates that
the total number of failures at the kth position in the list is
k, which implies that the input provided to R is
cumulative.

The computed shape and scale values for all filtered
failure reports for each OSS product are listed in Table II.
As indicated previously, the effect of the scale parameter
is to squeeze or stretch the PDF graphs. The larger the
scale value, the greater the stretching will be. In addition,
using SPSS 17 [36], the coefficient of determination ݎଶ is
computed in order to approximate the linear relationship
between the estimated and the actual bug frequency
pattern. The coefficient of determination provides a
measure of the goodness-of-fit for the approximated
linearship, which takes a value between zero and one. The
closer the coefficient value is to one, the stronger the
relationship is.

TABLE II.
PARAMETER ESTIMATES FOR ALL FAILURE REPORTS

Product Scale Shape ݎଶ
ClamWin Free Antivirus 31.36 1.23 0.55

MPlayer OS X 31.50 1.33 0.28
Apache 2 67.93 1.77 0.08

Eclipse V2.0 49.88 0.94 0.34
Firefox 52.35 3.06 0.43

Among these graphs, Apache has the lowest coefficient
value. After some experimental analysis, the reason is due
to a sharp increase of bug reports over a few periods of
time in comparison to the measurement scale, which is
about 170 biweekly periods. Since the increase and span
of failures are correspondent to the shape and scale
parameters, respectively, Weibull has attempted to fit the
first few periods, which causes the shape to lean toward
the Rayleigh distribution instead of exponential
distribution.

In Fig. 10, the “Fitted FI” graphs are obtained using (6).
The expected cumulative failures at each biweekly period
are calculated by inserting the scale and shape values from
Table II in (2). The corresponding estimated failure for
each biweekly period is then obtained from (6). The figure
also shows other graphs, which will be explained in the
next section when failure forecasting is discussed. These
graphs are included in this section to lessen the number of
figures.

Figure 10a. Estimated FI for ClamWin Free Antivirus product.

Figure 10b. Estimated FI for MPlayer OS X product.

Figure 10c. Estimated FI for Apache 2 product.

0

200

400

600

800

1000

1200

1400

1600

1800

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

Biweekly Time

Bu
g
Fr

eq
ue

nc
y

0
2
4
6
8

10
12
14
16
18

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

Fa
ilu

re
 In

te
ns

ity
 (F

I)
Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0

5

10

15

20

25

1 9 17 25 33 41 49 57 65 73 81 89 97

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0

10

20

30

40

50

60

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1389

© 2010 ACADEMY PUBLISHER

Figure 10d. Estimated FI for Eclipse V2.0 product.

Figure 10e. Estimated FI for Firefox product.

Yamada’s S-shaped Model – In the second analysis, Fig.
11 shows the estimated, biweekly, failure intensities
against the actual failure intensities for the five software
products obtained by Yamada’s S-shaped model. The
estimated failure intensities, i.e. ෝ݉ሺℓሻ, are obtained using
an interactive, public domain program called Statistical
Modeling and Estimation of Reliability Functions for
Software (SMERFS) [37]. The figure also shows some
diagrams that use partial data. As indicated before, these
will be explained in the next section.

Figure 11a. Estimated FI for ClamWin Free Antivirus product.

Figure 11b. Estimated FI for MPlayer OS X product.

Figure 11c. Estimated FI for Apache 2 product.

Figure 11d. Estimated FI for Eclipse V2.0 product.

0
200
400
600
800

1000
1200
1400
1600
1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

0
10
20
30
40
50
60
70
80
90

100

1 9 17 25 33 41 49 57 65 73

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0
2
4
6
8

10
12
14
16
18

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI

0

5

10

15

20

25

1 9 17 25 33 41 49 57 65 73 81 89 97

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted PDF
Fitted 1-Year PDF
Fitted 2-Year PDF

0

10

20

30

40

50

60

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

0

200

400

600

800

1000

1200

1400

1600

1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

1390 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

Figure 11e. Estimated FI for Firefox product.

Table III shows the estimated parameters and the
coefficient values for the S-shaped model. Similar to the
Weibull distribution, the model exhibits a similar pattern
of graph estimates among the products.

TABLE III.
ESTIMATED PARAMTERS AND COEFFICEINT VALUES FOR THE OSS

PRODUCTS BASED ON S-SHAPED MODEL
Product

 ଶݎ ܾ ܽ

ClamWin Free Antivirus 334 0.07 0.44
MPlayer 214 0.07 0.26

Apache 2 1770 0.03 0.08
Eclipse V.2 22200 0.04 0.07

Firefox 6230 0.02 0.38

Schneidewind’s Model - This model is a concave shaped
NHPP, an IEEE standard model for software reliability
analysis. The diagrams for the real and estimated failure
intensities are presented in Fig. 12. Similar to the S-
shaped model, the estimated failure intensities are
obtained using SMERFS.

Figure 12a. Estimated FI for ClamWin Free Antivirus product.

Figure 12b. Estimated FI for MPlayer OS X product.

Figure 12c. Estimated FI for Apache 2 product.

Figure 12d. Estimated FI for Eclipse V2.0 product.

Schneidewind’s model could not fit the Firefox failure
data. As mentioned previously, one possible reason can be
related to the fact that failure data has not stabilized yet
and thus the available data is not sufficient for fitting.
Table IV lists the estimated parameters and the coefficient
values for the other products.

0
10
20
30
40
50
60
70
80
90

100
1 9 17 25 33 41 49 57 65 73

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0
2
4
6
8

10
12
14
16
18

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0

5

10

15

20

25

1 9 17 25 33 41 49 57 65 73 81 89 97

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 1-Year FI
Fitted 2-Year FI

0

10

20

30

40

50

60

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

0
200
400
600
800

1000
1200
1400
1600
1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

Fa
ilu

re
 In

te
ns

ity
 (F

I)

Biweekly Time

Filtered Bug Pattern
Fitted FI
Fitted 2-Year FI
Fitted 4-Year FI

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1391

© 2010 ACADEMY PUBLISHER

TABLE IV.
ESTIMATED PARAMTERS AND COEEFICIENTS VALUES OF THE OSS

PRODUCTS BASED ON SCHNEIDEWID’S MODEL
Product ݎ ߚ ߙଶ

ClamWin Free Antivirus 10 0.03 0.52
MPlayer 6 0.03 0.24
Apache 2 20 0.01 0.50

Eclipse V.2 360 0.02 0.30

Using Tables II, III, and IV, Table V presents the

overall best and worst fits for the five products when the
entire failure data is used. Visual comparison of the
graphs in Fig. 10-12 supports the results in Table V. For
the Apache product, since the beginning failure intervals
before reaching a peak is very short and the rest of failure
data forms a decreasing exponential graph,
Schneidewind’s model, which is an exponential model,
was able to obtain a much better fitting compared to
Weibull.

TABLE V.
BEST AND WORST FITTING MODELS FOR THE SELECTED OSS

PRODUCTS
Product Best model Worst model

ClamWin Free
Antivirus

Weibull Schneidewind

MPlayer Weibull Schneidewind
Apache 2 Schneidewind S-Shape, Weibull

Eclipse V.2 Weibull S-shaped
Firefox Weibull S-shaped

(Schneidewind not able to
model)

B. Reliability Prediction
In general, software reliability prediction attempts to

forecast the quality of the software system based on the
current knowledge such as the failure history. One of the
main goals of software reliability prediction is not
necessarily determining the future reliability of the
product, but rather what needs to be done to achieve a
particular level of reliability at a future point of time or
whether that level of reliability would be feasible to reach.

Since no metric parameter other than the failure history
of the selected products is available, the goal of this
section is to decide which of the three reliability models
predict the future behavior of failures that is closer to the
truth based on the partial failure history of the products.
Among all reliability models, there is no reliability model
to be always superior over the other models. But the
failure pattern can be used as a simple way to decide on
some models believed to provide a decent prediction. The
three models, i.e. Weibull, S-shaped, and Schneidewind
are chosen based on this understanding.

Other than the graph estimates for the entire failure
data, Fig. 10 also shows the forecasts of failure intensities
by Weibull based on partial failure reports. Depending on
the interval of collected reports, the prediction length
might be different for each product. For example, in Fig.
10a, there are 116 biweekly periods, which is divided into
two prediction periods. The first prediction uses the
failure data for the first year that is fed into R to arrive at
the estimated parameters, i.e. shape and scale. To obtain

the estimated predicted values for the rest of the biweekly
periods, the values of these parameters are then used in (6)
with the time periods ranging between 1 and 116.
Similarly, to predict the future failure for the second
prediction period, the failure data for the first two years
are used in estimating the parameters. Therefore, the
partial failure data for predicting a longer period is lower
than that of predicting future failure pattern for a shorter
time. For a product like Apache, for which the number of
failure reports stretches over a much longer time, i.e. 176
biweekly periods in Fig. 10c, the partial failure data is
based on two and four years. So, the first and the second
prediction intervals use the partial data for the first two
years and the first four years of failure data, respectively.
The same approach is used in Fig. 11-12 for the S-shaped
and Schneidewind models. From Fig. 10-12, there exists
the consistent observation that the prediction accuracy
worsens as the prediction intervals are increased. For
example, for the ClamWin product, the future failure
prediction based on one year of failure data is less
accurate in comparison to using two years of failure data.
In either case of prediction, i.e. one and two years or two
and four years of partial failure data, the remaining
interval for predicting the failure pattern is at least one and
two years or two and four years, respectively.

One general way to compare the models is to determine
which one provides the least difference between the
predicted and the actual number of failures. This can be
presented in the predicted relative error form (PRE). PRE
is the ratio between the difference of failures (observed
versus predicted) and the predicted number of failures.
Specifically,

݀݁ݒݎ݁ݏܾሺܵܤܣ െ ሻ݀݁ݐܿ݅݀݁ݎ

݀݁ݐܿ݅݀݁ݎ .

 Table VI shows the PRE values using the cumulative
number of failures at the final biweekly period. To
produce the observed and predicted values, the early
portion of failure data of actual and estimated failures are
subtracted from the total number of actual and estimated
failures, respectively. The early portion of failures
removed from the total number of failures for ClamWin,
MPlayer, and Firefox is one year and for Apache and
Eclipse is two years. Table VII is similar to Table VI
except the early number of failures removed is based on
two years (ClamWin, MPlayer, Firefox) and four years
(Apache, Eclipse). As the tables show, Schneidewind’s
model consistently shows superiority. The next best
model is S-shaped.

TABLE VI.
PRE VALUES BASED ON 1 (CLAMWIN, MPLAYER, FIREFOX) AND 2

(APACHE, ECLIPSE) YEARS OF FAILURE DATA
Product S-shaped Weibull Schneidewind

ClamWin Free
Antivirus

2.51 12.54 0.57

MPlayer 1.36 11.12 0.70
Apache 2 10.94 19.29 1.26

Eclipse V.2 56.47 1542.03 7.90
Firefox 0.73 171.33 Not able to model

1392 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

TABLE VII.
PRE VALUES BASED ON 2 (CLAMWIN, MPLAYER, FIREFOX) AND 4

(APACHE, ECLIPSE) YEARS OF FAILURE DATA
Product S-shaped Weibull Schneidewind

ClamWin Free
Antivirus

2.15 6.96 0.29

MPlayer 1.345 6.49 0.37
Apache 2 4.45 5.53 0.55

Eclipse V.2 364.06 125.59 32.06
Firefox 0.21 9.03 Not able to model

Although the PRE approach is a decent way to realize

which model offers a better prediction, it does not capture
the trend of prediction over time. PLR is a valuable tool
that exhibits the relative trend of prediction of one model
versus another, instead of depending on singular values.
When comparing two models, as indicated in the
Background section, the numerator model is favored over
the denominator model if the graph of the PLR values is
ascending. Otherwise, the denominator model is favored.
Although there might be fluctuations in predictions, the
overall trend of the graph will show which model is
favored. Fig. 13 presents the PLR graphs for MPlayer
when comparing the three models. Between S-shaped and
Weibull, the ascending graphs ascertain that the S-shaped
model provides better prediction. However, when
comparing S-shaped and Schneidewind models, the
Schneidewind’s model is favored. This implies that the
Schneidewind’s model provides the best prediction. When
using PLR for the other products, Schneidewind’s model
again exhibits the best accuracy of prediction among the
three models. The PLR graphs for the other products are
not shown because the trend of graphs is similar and in
some instances the denominator values are very small, so
that the PLR ratios become undefined. The undefined
PLR is the indication that the numerator model is favored.

Figure 13. Comparing failure prediction of Weibull, S-shaped, and

Schneidewind models for MPlayer using PLR.

Based on the PLR graphs of all products, Table VIII
displays the best and worst prediction models.

IV. CONCLUSION

This study has attempted to compare three prominent
reliability models with respect to estimates of failures
intensities and failure forecasts against the actual failure
data. For the sake of accuracy, rather than depending on a

single failure data source, the bug reports of five popular
OSS products are collected and used as input to the three
models. The quality of bug analysis heavily depends on
comprehensive and accurate recording of bug reports.
Also, the lack of a commonly accepted data format for
archiving bug reports and efficient algorithms for data
filtering have added to the complexity of failure data
analysis.

TABLE VIII.
BEST AND WORST PREDICTION MODES FOR THE SELECTED OSS

PRODUCTS

Product Best prediction
model

Worst prediction
model

ClamWin Free Antivirus Schneidewind Weibull
MPlayer Schneidewind Weibull
Apache 2 Schneidewind Weibull

Eclipse V.2 Schneidewind Weibull
Firefox S-shaped Weibull

Schneidewind not
able to model

The study has further used three metrics for

comparison purposes among the models. The
determination coefficient is an easy metric for initial
understanding of goodness-of-it. The coefficient values
are used to compare the accuracy estimates of the three
models based on the entire failure data of each selected
OSS product. The second metric, i.e. PRE value, is used
to determine which model predicts the best, accurate
estimation of accumulative failures at the final biweekly
report. As the third metric, PLR has been adopted to
compare the prediction accuracy of the three selected
models over time.

For the selected products, Weibull has shown to be the
best model overall for goodness-of-fit among the three
models. This can be visually observed when comparing
the Fig. 10–12. But Weibull prediction capability fell
below that of S-shaped and Schneidewind models.
Specifically, Schneidewind’s model provided the best
prediction model for future failures followed by the S-
shaped model. Therefore, a model that is able to provide
a good fit may not be a good predictor of future failures.

Although there are many reliability growth models, no
single model is believed to be a feasible choice for all
forms of bug-failure patterns. The selected OSS products
all show similar patterns when analyzing their failure
data, in that a trend of increasing failure, once reached a
peak, is followed by a long, continuous decreasing tail.
Therefore, the three models chosen shown to be viable
candidates for this study5.

The knowledge gained from this research can be
expanded in different directions. One avenue of research
is to include other potential statistical models such as
Bayesian and Lognormal [8]. Furthermore, it is
reasonable to believe that some failure intensities can be
considered as outliers [38] that may have tangible effect
on the estimated values of model parameters. Hence, an

5 The reader is referred to [9] for further information on deciding a
possible reliability model for a specific failure pattern.

-150
-100

-50
0

50
100
150
200
250

27 35 43 51 59 67 75 83 91

Lo
g

(P
LR

)

Biweekly Time

2 Years FI, S-shape/Weibull
1 Year FI, S-shape/Weibull
2 Years FI, S-shape/Schneidewind
1 Year FI, S-shape/Schneidewind

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1393

© 2010 ACADEMY PUBLISHER

interesting research direction is to analyze the impact of
outliers on goodness-of-fit and prediction of failures.
Finally it is worth to investigate the recalibration of some
reliability models, as some studies have shown that
model recalibration can be an effective approach to better
accuracy of prediction [39].

ACKNOWLEDGMENT

This research is funded in part by Department of Defense
(DoD)/Air Force Office of Scientific Research (AFOSR),
NSF Award Number FA9550-07-1-0499, under the title
“High Assurance Software”.

REFERENES

[1] E.S. Raymond, “The cathedral and the bazaar: musings on
linux and open source by an accidental revolutionary”, 2nd
Ed., O’Reilly, 2001.

[2] SourceForge, http://sourceforge.net..
[3] Bugzilla, http://www.bugzilla.org.
[4] A. Mockus, T.R. Fielding, and J.D. Herbsleb, “Two case

studies of open source software development: Apache and
Mozilla”, ACM Transactions on Software Engineering and
Methodology, vol. 11, no. 3, July 2002, pp. 309-346.

[5] Y. Zhou and J. Davis, “Open source software reliability
model: an empirical approach”, The 5th Workshop on Open
Source Software Engineering, May 2005, pp. 1-6.

[6] T.R. Moss, The Reliability Data Handbook, ASME 2005.
[7] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability

growth modeling for software error detection”, IEEE
Transactions on Reliability, vol. R-32, 1983, pp. 475-478.

[8] H. Pham, “System Software Reliability”, Springer, 2006.
[9] P. Lakey, A. Neufelder, “System and Software Reliability

Assurance Notebook”, Rome Laboratory, 1997.
[10] N.F. Schneidewind, "Analysis of Error Processes in

Computer Software”, Sigplan Note, vol. 10, no. 6, 1975,
pp. 337-346.

[11] IEEE Reliability Society, “IEEE recommended practice on
software reliability”, IEEE Std 1633-2008, June 2008.

[12] American Institute of Aeronautics and Astronautics,
Recommended Practice for Software Reliability,
ANSI/AIAA R-013-1992, Feb 1993.

[13] M.R. Lyu, Handbook of Software ReliabilityEengineering,
McGraw Hills, 1996.

[14] N.F. Schneidewind, T.W. Keller, "Application of
Reliability Models to the Space Shuttle," IEEE Software,
July 1992, pp. 28-33.

[15] J.D. Musa and K. Okumoto, “A logarithmic poisson
execution time model for software reliability
measurement”, 7th Int’l Conference on Software
Engineering (ICSE), 1984, pp. 230-238.

[16] J.De.S. Coutinho, “Software reliability growth”. IEEE
Symp. Computer Software Reliability, 1973, pp. 58-64.

[17] Z. Jelinski and P.B. Moranda,”Software reliability
research”, in Statistical Computer Performance Evaluation,
W. Freiberger, Ed., Academic Press, 1972, pp. 465-484.

[18] M.L. Shooman, “Probabilistic models for software
reliability prediction”, in Statistical Computer Performance
Evaluation, W. Freidberger, Ed., New York: Academic
Press, 1972, pp. 485-502.

[19] McCabe, T.J, “A Complexity Measure”, IEEE Trans Soft
Engineering, vol. SE-2, no. 4, 1976.

[20] M.H. Halstead, “Elements of Software Science”, Elsevier,
New York, 1977.

[21] A.L. Goel and K. Okumoto, “A time-dependent error-
detection rate model for software reliability and other

performance measure”, IEEE Transactions on Reliability,
vol. R-28, 1979, pp. 206-211.

[22] M. Ohba, “Software reliability analysis models”, IBM. J.
Research Development, vol. 21, no. 4, 1984.

[23] H. Pham, L. Nordmann, “A generalized NHPP software
reliability model”, 3rd Int’l Conference on Reliability and
Quality in Design, 1997.

[24] K.S. Trivedi, Probability and Statistics with Reliability,
Queuing and Computer Science Applications, 2nd Ed., John
Wiley, 2002.

[25] B. Littlewood and J.L. Verrall, “A bayesian reliability
model with a stochastically monotone failure rate”, IEEE
Trans on Reliability, vol. R-23, June 1974, pp. 108-114.

[26] H.S. Kan, Metrics and Models in Software Quality
Engineering, 2nd Ed., Addison-Wesley, 2003.

[27] I. Koren and C.M. Krishna, Fault-Tolerant Systems,
Morgan Kaufmann, 2007.

[28] R.C. Cheung, “A user-oriented software reliability model”,
IEEE Trans Software Eng., vol. 6, no. 2,1980, pp. 118-125.

[29] S.S. Gokhale, M.R. Lyu, and K.S. Trivedi, “Reliability
simulation of component-based software systems”,
Proceedings of 9th Int’l Symposium on Software
Reliability Engineering, 1998.

[30] W.L. Wang, Y. Wu and M.H. Chen, “An architecture-
based software reliability model”, Proceedings of Pacific
Rim Int’l Symposium on Dependable Computing, 1999.

[31] S. Yacoub, B. Cukic and H.H. Ammar, “A software-based
reliability analysis approach for component-based
software”, IEEE Trans on Reliability, vol. 53, no. 4, 2004.

[32] B. Littlewood and J.L. Verrall, “A bayesian reliability
growth model for computer software”, Applied Statistics,
vol. 22, 1973, pp. 332-346.

[33] A.P. Dawid, "Present position and potential developments:
Some personal views: Statistical theory: The prequential
approach",Journal of the Royal Statistical Society, vol.
147, no. 2, 1984, pp. 278-292.

[34] B. Littlewood, A. Ghaly, P.Y. Chan, “Tools for the
Analysis of the Accuracy of Software Reliability
Predictions”, in Soft. Sys. Design Methods, J.K.
Skwirznski, Ed., NATO ASI Series, vol. F22, 1986, pp.
299-335.

[35] R Project, http://www.r-project.org/.
[36] SPSS, http://www.spss.com/statistics.
[37] SMERFS, http://www.slingcode.com/smerfs/.
[38] W.J. Conover, Practical Nonparametric Statistics, 3rd Ed.,

John Wiley, 1999.
[39] S. Brocklehurst, B. Littlewood, “New ways to get accurate

reliability measures”, IEEE Soft., 1992, pp. 34-42.

Cobra Rahmani received her MS degree in Software
Engineering from Iran University of Science and Technology.
She is a PhD student in Information Technology at University
of Nebraska-Omaha, USA. Her research interests are Software
Architecture, Reliability, and Requirement Formalization.

Azad Azadmanesh received the PhD degree in Computer
Science from University of Nebraska-Lincoln, USA. He is a
professor at University of Nebraska-Omaha. His research
interests include Network Survivability, Fault-Tolerance,
Reliability Modeling, and Distributed Agreement.

Lotfi Najjar holds a PhD in Industrial Engineering with minor
in MIS from University of Nebraska-Lincoln. He is currently
with the Information Systems and Quantitative Analysis
Department at University of Nebraska-Omaha. His research
interests are in the areas of Quality Information Systems,
Software Quality, Systems Reliability, BPR, and Data Mining.

1394 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

