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Abstract— The purpose of this study is to compare the 
fitting (goodness-of-fit) and prediction capabilities of three 
reliability models using the failure data of five popular open 
source software (OSS) products. The failure data are 
modeled by Weibull and two other Non Homogenous 
Poisson Process (NHPP) models (Yamada S-Shaped and 
Schneidewind). The OSS products considered are Eclipse, 
Apache HTTP Server 2, Firefox, MPlayer OS X, and 
ClamWin Free Antivirus. Weibull is chosen due to its 
popularity in lifetime and its flexibility in modeling various 
distributions. On the other hand, among many software 
reliability models, the NHPP models are prevalent. The 
goodness-of-fit is based on the entire failure data collected. 
Prediction is accomplished by estimating the models 
parameters based on partial failure history and then 
applying the estimates to the entire time span for which 
failure data is collected.  The outcomes show that a 
reliability model that fits the failure data well may not 
necessarily be a decent forecaster of future failure patterns. 

 
Index Terms-- Software reliability growth model, Non-
homogeneous poisson process (NHPP), Open source 
software (OSS), Prequential likelihood ratio (PLR), Weibull 
distribution. 

I.  INTRODUCTION 

Open Source Software (OSS) in general refers to any 
software whose source code is freely available for 
distribution. The success and benefits of OSS can be 
attributed to many factors such as code modification by 
any party as the needs arise, promotion of software 
reliability and quality due to peer review and 
collaboration among many volunteer programmers from 
different organizations, and the fact that the knowledge-
base is not bound to a particular organization, which 
allows for faster development and the likelihood of the 
software to be available for different platforms. Eric 
Raymond in [1] states that “with enough eye balls, all 
bugs are shallow”, which suggests that there exists a 
positive relationship between the number of people 
involved, bug numbers, and software quality.  Some 
examples of successful OSS products that are used in this 
paper are Apache HTTP server, Eclipse framework and 
the Mozilla Firefox internet browser.  

For the purpose of this study, five different OSS 
products are selected: Eclipse, Apache HTTP Server 2, 
Firefox, MPlayer OS X, and ClamWin Free Antivirus. 
These projects are chosen because of their high number 

of downloads, length of project operation, and sufficient 
number of bug reports. MPlayer OS X and ClamWin 
Free Antivirus are two projects, which can be found in 
sourceforge.net [2]. MPlayer OS X, launched in 2002, is 
a project based on MPlayer, which is a movie player for 
Linux with more than six million downloads. ClamWin 
Free Antivirus was launched in 2004 that has had more 
than 19 million downloads. Both of them use 
sourceforge.net as their online bug-repository. Eclipse, 
Apache 2, and Firefox are the other three OSS projects, 
which use Bugzilla [3] as their bug-repository system. 
Bugzilla is a popular bug-repository system that allows 
users to send information about a detected bug such as 
bug description, severity, and reporting time. 

Additionally, these projects are well-known and have 
been in operation for more than four years. Therefore, 
there is a sufficient amount of failure data to provide a 
decent picture of software quality, which may otherwise 
lead to anomalous reliability estimates [4,5].  

This study compares Weibull, S-shaped, and 
Schneidewind distribution models in terms of goodness-
of-fit and reliability prediction based on the failure data 
collected for the selected OSS products. Weibull 
distribution is widely utilized in lifetime data analysis 
because of its flexibility in modeling different phases of 
bathtub reliability, i.e. decreasing, constant, and 
increasing failure rates. The function has been 
particularly valuable for situations for which the data 
samples are relatively small, such as in maintenance 
studies [6]. On the other hand, Non-Homogeneous 
Poisson Process (NHPP) has gained much popularity in 
the software reliability field.  In general NHPP models 
are grouped into exponential and non-exponential 
models. To cover both groups, one model from each 
group is selected. S-shaped model is a non-exponential 
NHPP model [7]. Additionally, the per-fault distribution 
of S-shaped model follows the Gamma distribution [8], 
which is representative of failure patterns whose 
distributions are skewed. The S-shaped model reflects the 
fact that the cumulative number of failures is often S-
shaped relative to the exponential curve. Among multiple 
reasons, it is believed that there is a learning curve during 
the testing phase of the software product. Initially, the 
testers are becoming familiar with the product and hence 
there is a slow increasing curvature in removing faults. 
As testers’ skills improve, the rate of uncovering defects 
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increases quickly and then levels off as the residual errors 
decreases sharply or become more difficult to detect.  

On the other hand, if the duration for which the 
increase in failure intensity reaches a peak is short, before 
a decreasing pattern of failures is observed, an 
exponential NHPP might be able to model the failure 
pattern more accurately. This observation is also 
supported by [9]. For this reason, Schneidewind’s model 
which is an exponential model is selected and the failure 
intensity is assumed to be decreasing exponentially [10]. 
Schneidewind’s model has been recommended by IEEE 
Reliability Society [11] and the American Institute of 
Aeronautics and Astronautics (AIAA) [12] as one of the 
models to be attempted for initial fitting failure data. As 
reported by Lyu [13], Schneidewind’s model was used on 
IBM’s flight control software models with very good 
success [14]. 

The rest of the paper is organized as follows. Section 
II provides some definitions and background information. 
Section III concentrates on failure data analysis and 
comparison study of the selected models in terms of 
reliability estimates and reliability prediction. Section IV 
concludes the paper with a summary.  

II.  BACKGROUND 

As software products have become increasingly 
complex, software reliability is a growing concern, which 
is defined as the probability of failure free operation of a 
computer program in a specified environment for a 
specified period of time [8,15]. Reliability growth 
modeling has been one approach to address software 
reliability concern, which dates back to early 1970’s [16, 
17,18]. Reliability modeling enables the measurement 
and prediction of software behaviors such as Mean Time 
to Failure (MTTF), future product reliability, testing 
period, and planning for product release time. 

Different classifications of software reliability models 
exist. One way is to categorize the models based on the 
deterministic and probabilistic nature of the parameters 
used [8]. The deterministic models do not involve 
random variables. They attempt to obtain performance 
measures by accounting for some software structure and 
attribute, such as logical complexity by counting the 
decision point in a program [19] and program length by 
the number of distinct operators and operands in the 
software [20]. On the other hand, a large number of 
models belong to the probabilistic category, which place 
probabilistic assumptions on the parameters of the 
models, such as failure occurrences [7,10,21,22,23]. One 
subcategory of probabilistic models is Non-
Homogeneous Poisson Process (NHPP) models [24], 
which was originally studied in hardware reliability.  
These models assume that the failure process varies with 
time and the cumulative number of failures up to time t is 
Poisson distributed with a parameter that is the mean 
value of failures. 

Another classification is to divide the software 
reliability models into time-domain and failure-domain 
models. The main input parameter to time-domain 
models is individual times of each failure. Some models 

may require the intervals of successful operations, which 
can be obtained by subtracting each time of failure from 
the next failure time. As the failures occur and fixed, it is 
expected that these intervals to increase. Some examples 
that belong to this class of reliability modeling are 
Jelinski-Moranda and Littlewood models [17,25].  

The failure-domain models labeled as such because the 
input parameter of study is the number of failures in a 
specified interval of time rather than successful operation 
intervals between failures. Normally, the failure intensity 
is used as the parameter of a Probability Distribution 
Function (PDF). Like the first class, as the fault counts 
drop, the reliability is expected to increase [8,26,27]. 
Examples of this class are Goel-Okumoto, S-shaped, and 
Musa-Okumoto models [7,15,21]. As it will be seen, the 
input to the Weibull model is time-domained, whereas S-
shaped and Schneidewind models belong to the failure-
domain category.  

White-box and black-box models are two approaches 
for predication of software reliability. The white-box 
models attempt to measure the quality of a software 
system based on its structure that is normally architected 
during the specification and design of the product. 
Relationship of software components and their 
correlation are thus the focus for software reliability 
measurement [28,29,30,31]. In the black-box approach, 
the entire software system is treated as a single entity, 
thus ignoring software structures and components 
interdependencies. These models tend to measure and 
predict software quality in the later phases of software 
development, such as testing or operation phase. The 
models rely on the testing data collected over an observed 
time period. Some popular examples are: Yamada S-
Shape, Littlewood-Verrall, Jelinski-Moranda, Musa-
Okumoto, and Goel-Okumoto [7,15,21,25,32]. This study 
is concentrated on the black-box reliability approach to 
measure and compare the reliability of the selected OSS 
projects.   

A. General Distribution Functions 
A fault or bug is a defect in software that has the 

potential to cause the software to fail. An error is a 
measured value or condition that deviates from the 
correct state of software during operation. A failure is the 
inability of the software product to deliver one of its 
services. Therefore, a fault is the cause for an error, and 
software that has a bug may not encounter an error that 
leads to a failure.  Failure behavior can be reflected in 
various ways such as Probability Density Function (PDF) 
and Cumulative Distribution Function (CDF). PDF, 
denoted as f(t), shows the relative concentration of data 
samples at different points of measurement scale, such 
that the area under the graph is unity. CDF, denoted as 
F(t), is another way to present the pattern of observed 
data under study.  CDF describes the probability 
distribution of the random variable, T, i.e. the probability 
that the random variable T assumes a value less than or 
equal to the specified value t.  In other words, 

)()()()()( ' tFtfdxxftTPtF
t

=⇒=≤= ∫ ∞−
 

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1385

© 2010 ACADEMY PUBLISHER



Therefore, f(t) is the rate of change of F(t). If the 
random variable T denotes the failure time, F(t), or 
unreliability, is the probability that the system will fail by 
time t.  

 
Weibull Distribution – The PDF of Weibull function is 

βα
β

β

α
β )/(

1

)( tettf −
−

=                        (1) 

where α is the scale parameter and β represents the shape 
parameter of the distribution. The effect of the scale 
parameter is to squeeze or stretch the distribution. The 
Weibull PDF is monotone decreasing, if ߚ ൑ 1 . The 
smaller β, the more rapid the decrease is. It becomes bell 
shaped when β > 2, and the larger β, the steeper the bell 
shape will be. Furthermore, it becomes the Rayleigh 
distribution function when β = 2 and reduces to the 
exponential distribution function when β = 1. Fig. 1 shows 
the Weibull PDF for several values of the shape parameter 
when α = 1 [26]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Weibull PDF for several shape values when α =1. 

 
The mean function of Weibull, i.e. the expected 

number of failures in interval [0, t], is 

  ݉ሺݐሻ ൌ  ሻ                   (2)ݐሺܨܰ

where N is the total number of failures in the software 
product.  The failure rate at t, denoted as λ(t), which is the 
rate at which failures occur per interval, is 

ሻݐሺߣ ൌ ݉ᇱሺݐሻ ൌ ݂ܰሺݐሻ 

Schneidewind’s Model – This model assumes that the 
cumulative number of failures is NHPP. The model is 
built on the belief that the failure frequency changes over 
time and that the recent failures are more beneficial to 
predicting the future behavior than the past failures. Based 
on this, the model provides for three forms of failure 
models [11]. For instance, it allows for the early failure 
counts to be dropped if those failures are believed to 
contribute little to the future forecasts of failures. This 
study assumes that all failures are important and thus no 
failures are discarded.   

The model assumes that the failures are independent. 
The mean value of failures is [11]: 

                ݉ሺݐሻ ൌ ఈ
ఉ

ሺ1 െ ݁ିఉ௧ሻ                 (3) 

where α is the initial failure rate and β is the negative of 
derivative of failure rate. The model places an upper 
bound on the number of failures, i.e. lim௧՜ஶ ݉ሺݐሻ ൌ  .ߚ/ߙ
The failure rate, ሻݐሺߣ  is an exponentially decreasing 
function, 

ሻݐሺߣ ൌ ݉ᇱሺݐሻ ൌ  ఉ௧ି݁ߙ 

Therefore, a large (small) ߚ implies a small (large) failure 
rate, and the initial failure rate, i.e. the failure rate at t = 0 
is ߙ. 

 
S-shaped Model – Experience has shown that the 
cumulative number of faults is often S-shaped, rather than 
exponentially shaped. This means that the curve 
representing the cumulative number of faults shows a dip 
in the early part of the graph and then follows an 
exponential growth. The two common S-shaped NHPP 
models are the inflection and the delayed models. The 
latter, herein referred to as the S-shaped model is 
characterized by its S-shaped mean value m(t) [8], 

           ])1(1[)( btebtatm −+−=                    (4) 

where a denotes the number of faults in the software 
product and b is the failure rate in the steady state, also 
referred to as the constant of proportionality. The model 
assumes that the faults in the software product are 
independent of each other, and all detected faults are 
immediately removed without introducing any new fault.   

Since the failure rate, ߣሺݐሻ, is the derivative of m(t), 

ሻݐሺߣ   ൌ ݉ᇱሺݐሻ ൌ ܾଶି݁ݐ௕௧                 (5) 

If α and β are the scale and shape parameters, (5) is 
representative of the Gamma function with parameters α = 
1/b and β = 2. In this function, the shape parameter  ߚ ൌ 2 
is indicative of skewed distribution, as shown in Fig. 1.   

For each of the three models described, the estimated 
failure intensity during the time interval ℓ௜ ൌ ሺݐ௜ െ  ,௜ିଵሻݐ
௜ݐ ൐  ௜ିଵ, isݐ

                             ෝ݉ ሺℓ௜ሻ ൌ ෝ݉ሺݐ௜ሻ െ ෝ݉ሺݐ௜ିଵሻ                    (6) 

where ෝ݉ሺݐ௜ሻ  is the model’s estimated mean value of 
failures for the interval [0, ݐ௜]. 

B. Prequential Likelihood Ratio (PLR) 
The PLR function [33,34] compares predictions from 

two models based on the same data source in order to 
determine the model with the most likelihood accurate 
prediction. Given two models A and B and equal 
probability of prior belief for both models, the prequential 
likelihood values ܲܮ௡ሺܣሻ and ܲܮ௡ሺܤሻ of the models are 
computed for n predictions. If the ratio ܲܮ௡ሺܣሻ/ܲܮ௡ሺܤሻ 
shows overall growth as n increases with the possibility of 
some fluctuations, then model A provides better prediction 
than model B [33].  

More precisely, assume the prior observed failure 
intensities for ℓ௜ , 1 ൑ ݅ ൑ ݇ . The prequential likelihood 
 ௡ is defined as followsܮܲ
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A comparison of predictions for the two models A and B 
can be found by the ratio of their  ܲܮ௡ as follows 

௡ܴܮܲ                               ൌ ௉௅೙ሺ஺ሻ
௉௅೙ሺ஻ሻ

. 

Dawid in [33] shows that if ܴܲܮ௡ ՜ ∞, as  ݊ ՜ ∞, then 
model A is favored over model B.   

III.  EXPERIMENTAL ANALYSIS 

Prior to analyzing the performance estimates of the 
reliability growth models, i.e. Weibull, S-shaped, and 
Schneidewind, the failure data for the five selected OSS 
products must first be collected and filtered. Therefore, 
the reliability estimate process is partitioned into three 
steps: bug-gathering, bug-filtering, and bug-analysis. In 
the bug-filtering step, the raw failure data from each 
software product is collected using an online bug-
repository system. The online system is capable of 
archiving failure information reported by users who 
experience flaws or failure in the product. The quality of 
reliability estimation highly depends on sufficient error 
reports and the accuracy of reports provided by the users. 
Although, the bug reports may differ among software 
products, each bug report normally contains the 
appropriate fields to signify the following: 1) a unique 
identification value for the report, 2) the time/date the bug 
is reported, 3) some information about the user reporting 
the bug, 4) the product name, and 5) the status of the bug-
report filled by the organization in charge of  the product 
development, such as whether the bug is fixed, valid, 
deleted, or fixed. The duration for which the failure data is 
collected for the five OSS products is listed in Table I. As 
indicated, the bug-reports are collected from 
sourceforge.net and bugzilla.  

TABLE I.  
DURATIONS OF COLLECTED FAILURE DATA1 

Project name Start date End date

Firefox 03/19992 10/2006
Eclipse 10/20013 12/2007
Apache 2 03/2002 12/2008
ClamWin Free Antivirus 03/2004 08/2008
MPlayer 09/2002 06/2006

 
During the bug-filtering step, the reports collected in 

the first step are filtered out to remove the unwanted 
reports. For example, some reports might be duplicates, 
not represent a real defect, or the information provided 
may not be complete. Among the bug-reports for MPlayer 
and ClamWin, those reports with status other than 
“Deleted” (not a valid bug-report) are collected.  The bug-

                                                           
1 The start date of collected bug reports is the earliest date wherein a 
bug is reported. 
2 The failure data collected prior to the official release date of Firefox 
are obtained from Mozilla bug reports.  
3 This date is prior to the official release date. 

reports for the other three products, i.e.  Eclipse, Apache, 
and Firefox, are initially in XML format. A Java program 
has been developed to gather the relevant data from the 
XML format of each report. The resultant bug-reports  are 
then filtered out. Those bug-reports with the following 
status values are accepted and the rest are discarded: 
FIXED (bug is fixed), WONTFIX (bug will not be fixed), 
LATER (bug won’t be fixed in the current product 
version), and REMIND (bug probably won’t be fixed in 
the current product version). 

Finally, in the bug-analysis step, the dates of the 
filtered bug-reports are used to organize the reports into 
two-week intervals for further analysis. Fig. 2-64 exhibit 
the failure intensities for the five OSS products. The x-
axis and y-axis represent each biweekly period and its 
corresponding failure intensity, respectively. Also, each 
graph shows the interval for which the failure reports are 
collected. For instance, x-axis in Fig. 2 contains 115 
points, which is equivalent to about 4.4 years of collected 
failure data for ClamWin operation.  The failure patterns 
of these graphs are used in the next section in terms of 
goodness-of-fit and failure forecasts (prediction) by the 
three models, i.e. Weibull, S-shaped, and Schneidewind 
models. 

 

 
 

Figure 2. Filtered bug frequency for ClamWin Free Antivirus 
product. 

 

 
 

Figure 3. Filtered bug frequency for MPlayer OS X product. 
 

                                                           
4 The intensities of bug reports are connected to form smoother plots. 
The purpose is to better visualize the pattern of failure reports.  
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Figure 9. Filtered bug frequencies for Eclipse V2.0 product. 
 

The R Project [35] is a freely available package that is 
used for a wide variety of statistical computing and 
graphics techniques. R is able to apply the Maximum 
Likelihood Estimation (MLE) technique [8] for estimating 
the parameters of Weibull distribution. Since R requires 
time-domain data, the relative frequency of bug reports 
needs to be converted to occurrence times of failure. 
Therefore, each bug report is mapped to its corresponding 
biweekly period. For example, 4 bugs reported in the 1st 
biweekly and 3 bugs reported in the 2nd biweekly periods 
are converted to: 1,1,1,1,2,2,2. This further illustrates that 
the total number of failures at the kth position in the list is 
k, which implies that the input provided to R is 
cumulative. 

The computed shape and scale values for all filtered 
failure reports for each OSS product are listed in Table II. 
As indicated previously, the effect of the scale parameter 
is to squeeze or stretch the PDF graphs. The larger the 
scale value, the greater the stretching will be. In addition, 
using SPSS 17 [36], the coefficient of determination  ݎଶ is 
computed in order to approximate the linear relationship 
between the estimated and the actual bug frequency 
pattern. The coefficient of determination provides a 
measure of the goodness-of-fit for the approximated 
linearship, which takes a value between zero and one. The 
closer the coefficient value is to one, the stronger the 
relationship is.  

TABLE II.  
PARAMETER ESTIMATES FOR ALL FAILURE REPORTS 

Product Scale Shape ݎଶ 
ClamWin Free Antivirus 31.36 1.23 0.55

MPlayer OS X 31.50 1.33 0.28
Apache 2 67.93 1.77 0.08

Eclipse V2.0 49.88 0.94 0.34
Firefox 52.35 3.06 0.43

  

Among these graphs, Apache has the lowest coefficient 
value. After some experimental analysis, the reason is due 
to a sharp increase of bug reports over a few periods of 
time in comparison to the measurement scale, which is 
about 170 biweekly periods. Since the increase and span 
of failures are correspondent to the shape and scale 
parameters, respectively, Weibull has attempted to fit the 
first few periods, which causes the shape to lean toward 
the Rayleigh distribution instead of exponential 
distribution.  

In Fig. 10, the “Fitted FI” graphs are obtained using (6).  
The expected cumulative failures at each biweekly period 
are calculated by inserting the scale and shape values from 
Table II in (2). The corresponding estimated failure for 
each biweekly period is then obtained from (6). The figure 
also shows other graphs, which will be explained in the 
next section when failure forecasting is discussed. These 
graphs are included in this section to lessen the number of 
figures.  

 

 
 
 
 

Figure 10a. Estimated FI for ClamWin Free Antivirus product. 
 
 

 
 

Figure 10b. Estimated FI for MPlayer OS X product. 
 

 
 

Figure 10c. Estimated FI for Apache 2 product. 
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Figure 10d. Estimated FI for Eclipse V2.0 product. 

 

 
 

 
Figure 10e. Estimated FI for Firefox product. 

 
Yamada’s S-shaped Model – In the second analysis, Fig. 
11 shows the estimated, biweekly, failure intensities 
against the actual failure intensities for the five software 
products obtained by Yamada’s S-shaped model. The 
estimated failure intensities, i.e. ෝ݉ሺℓ௜ሻ, are obtained using 
an interactive, public domain program called Statistical 
Modeling and Estimation of Reliability Functions for 
Software (SMERFS) [37]. The figure also shows some 
diagrams that use partial data. As indicated before, these 
will be explained in the next section. 
 

 
 

Figure 11a. Estimated FI for ClamWin Free Antivirus product. 
  

 
 

Figure 11b. Estimated FI  for MPlayer OS X product. 
 
 

 
 

Figure 11c. Estimated FI for Apache 2 product. 
 
 

 
 

Figure 11d. Estimated FI for Eclipse V2.0 product. 
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Figure 11e. Estimated FI for Firefox product. 
 

Table III shows the estimated parameters and the 
coefficient values for the S-shaped model. Similar to the 
Weibull distribution, the model exhibits a similar pattern 
of graph estimates among the products. 

TABLE III.  
ESTIMATED PARAMTERS AND COEFFICEINT VALUES FOR THE OSS 

PRODUCTS BASED ON S-SHAPED MODEL 
Product 

 
 ଶݎ ܾ ܽ

ClamWin Free Antivirus 334 0.07 0.44
MPlayer 214 0.07 0.26

Apache 2 1770 0.03 0.08
Eclipse V.2 22200 0.04 0.07

Firefox 6230 0.02 0.38
 
Schneidewind’s Model - This model is a concave shaped 
NHPP, an IEEE standard model for software reliability 
analysis. The diagrams for the real and estimated failure 
intensities are presented in Fig. 12. Similar to the S-
shaped model, the estimated failure intensities are 
obtained using SMERFS. 

 

 
 

Figure 12a. Estimated FI for ClamWin Free Antivirus product. 
 
 

 
 

Figure 12b. Estimated FI for MPlayer OS X product. 
 
 

 
 

Figure 12c. Estimated FI for Apache 2 product. 
 
 

 
 

Figure 12d. Estimated FI for Eclipse V2.0 product. 
 

Schneidewind’s model could not fit the Firefox failure 
data. As mentioned previously, one possible reason can be 
related to the fact that failure data has not stabilized yet 
and thus the available data is not sufficient for fitting. 
Table IV lists the estimated parameters and the coefficient 
values for the other products.   
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TABLE IV.  
ESTIMATED PARAMTERS AND COEEFICIENTS VALUES OF THE OSS 

PRODUCTS BASED ON SCHNEIDEWID’S MODEL 
Product ݎ ߚ ߙଶ 

ClamWin Free Antivirus 10 0.03 0.52
MPlayer 6 0.03 0.24
Apache 2 20 0.01 0.50

Eclipse V.2 360 0.02 0.30

 
Using Tables II, III, and IV, Table V presents the 

overall best and worst fits for the five products when the 
entire failure data is used. Visual comparison of the 
graphs in Fig. 10-12 supports the results in Table V.  For 
the Apache product, since the beginning failure intervals 
before reaching a peak is very short and the rest of failure 
data forms a decreasing exponential graph, 
Schneidewind’s model, which is an exponential model, 
was able to obtain a much better fitting compared to 
Weibull.  

TABLE V.   
BEST AND WORST FITTING MODELS FOR THE SELECTED OSS 

PRODUCTS 
Product Best model Worst model

ClamWin Free 
Antivirus 

Weibull Schneidewind

MPlayer Weibull Schneidewind
Apache 2 Schneidewind S-Shape, Weibull

Eclipse V.2 Weibull S-shaped
Firefox Weibull S-shaped

(Schneidewind not able to 
model)

 

B. Reliability Prediction 
In general, software reliability prediction attempts to 

forecast the quality of the software system based on the 
current knowledge such as the failure history. One of the 
main goals of software reliability prediction is not 
necessarily determining the future reliability of the 
product, but rather what needs to be done to achieve a 
particular level of reliability at a future point of time or 
whether that level of reliability would be feasible to reach.  

Since no metric parameter other than the failure history 
of the selected products is available, the goal of this 
section is to decide which of the three reliability models 
predict the future behavior of failures that is closer to the 
truth based on the partial failure history of the products. 
Among all reliability models, there is no reliability model 
to be always superior over the other models. But the 
failure pattern can be used as a simple way to decide on 
some models believed to provide a decent prediction. The 
three models, i.e. Weibull, S-shaped, and Schneidewind 
are chosen based on this understanding.  

Other than the graph estimates for the entire failure 
data, Fig. 10 also shows the forecasts of failure intensities 
by Weibull based on partial failure reports. Depending on 
the interval of collected reports, the prediction length 
might be different for each product. For example, in Fig. 
10a, there are 116 biweekly periods, which is divided into 
two  prediction periods. The first prediction uses the 
failure data for the first year that is fed into R to arrive at 
the estimated parameters, i.e. shape and scale. To obtain 

the estimated predicted values for the rest of the biweekly 
periods, the values of these parameters are then used in (6) 
with the time periods ranging between 1 and 116. 
Similarly, to predict the future failure for the second 
prediction period, the failure data for the first two years 
are used in estimating the parameters. Therefore, the 
partial failure data for predicting a longer period is lower 
than that of predicting  future failure pattern for a shorter 
time. For a product like Apache, for which the number of 
failure reports stretches over a much longer time, i.e. 176 
biweekly periods in Fig. 10c, the partial failure data is 
based on two and four years. So, the first and the second 
prediction intervals use the partial data for the first two 
years and the first four years of failure data, respectively.  
The same approach is used in Fig. 11-12 for the S-shaped 
and Schneidewind models. From Fig. 10-12, there exists 
the consistent observation that the prediction accuracy 
worsens as the prediction intervals are increased. For 
example, for the ClamWin product, the future failure 
prediction based on one year of failure data is less 
accurate in comparison to using two years of failure data.  
In either case of prediction, i.e. one and two years or two 
and four years of partial failure data, the remaining 
interval for predicting the failure pattern is at least one and 
two years or two and four years, respectively. 

One general way to compare the models is to determine 
which one provides the least difference between the 
predicted and the actual number of failures. This can be 
presented in the predicted relative error form (PRE). PRE 
is the ratio between the difference of failures (observed 
versus predicted) and the predicted number of failures. 
Specifically, 

 
݀݁ݒݎ݁ݏܾ݋ሺܵܤܣ െ ሻ݀݁ݐܿ݅݀݁ݎ݌

݀݁ݐܿ݅݀݁ݎ݌ . 
 

 Table VI shows the PRE values using the cumulative 
number of failures at the final biweekly period. To 
produce the observed and predicted values, the early 
portion of failure data of actual and estimated failures are 
subtracted from the total number of  actual and estimated 
failures, respectively. The early portion of failures 
removed from the total number of failures  for ClamWin, 
MPlayer, and Firefox is one year and for Apache and 
Eclipse is two years. Table VII is similar to Table VI 
except the early number of failures removed is based on 
two years (ClamWin, MPlayer, Firefox) and four years 
(Apache, Eclipse). As the tables show, Schneidewind’s 
model consistently shows superiority. The next best 
model is S-shaped.  

TABLE VI.   
PRE VALUES BASED ON 1 (CLAMWIN, MPLAYER, FIREFOX) AND 2 

(APACHE, ECLIPSE) YEARS OF FAILURE DATA 
Product S-shaped Weibull Schneidewind

ClamWin Free 
Antivirus

2.51 12.54 0.57

MPlayer 1.36 11.12 0.70
Apache 2 10.94 19.29 1.26

Eclipse V.2 56.47 1542.03 7.90
Firefox 0.73 171.33 Not able to model
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TABLE VII.   
PRE VALUES BASED ON 2 (CLAMWIN, MPLAYER, FIREFOX) AND 4 

(APACHE, ECLIPSE) YEARS OF FAILURE DATA 
Product S-shaped Weibull Schneidewind

ClamWin Free 
Antivirus 

2.15 6.96 0.29

MPlayer 1.345 6.49 0.37
Apache 2 4.45 5.53 0.55

Eclipse V.2 364.06 125.59 32.06
Firefox 0.21 9.03 Not able to model

 
Although the PRE approach is a decent way to realize 

which model offers a better prediction, it does not capture 
the trend of prediction over time. PLR is a valuable tool 
that exhibits the relative trend of prediction of one model 
versus another, instead of depending on singular values. 
When comparing two models, as indicated in the 
Background section, the numerator model is favored over 
the denominator model if the graph of the PLR values is 
ascending. Otherwise, the denominator model is favored. 
Although there might be fluctuations in predictions, the 
overall trend of the graph will show which model is 
favored. Fig. 13 presents the PLR graphs for MPlayer 
when comparing the three models. Between S-shaped and 
Weibull, the ascending graphs ascertain that the S-shaped 
model provides better prediction.  However, when 
comparing S-shaped and Schneidewind models, the 
Schneidewind’s model is favored. This implies that the 
Schneidewind’s model provides the best prediction. When 
using PLR for the other products, Schneidewind’s model 
again exhibits the best accuracy of prediction among the 
three models. The PLR graphs for the other products are 
not shown because the trend of graphs is similar and in 
some instances the denominator values are very small, so 
that the PLR ratios become undefined. The undefined 
PLR is the indication that the numerator model is favored.  

 

 
 
Figure 13. Comparing failure prediction of Weibull, S-shaped, and 

Schneidewind models for MPlayer using PLR. 
 

Based on the PLR graphs of all products, Table VIII 
displays the best and worst prediction models. 

IV.  CONCLUSION 

This study has attempted to compare three prominent 
reliability models with respect to estimates of failures 
intensities and failure forecasts against the actual failure 
data. For the sake of accuracy, rather than depending on a 

single failure data source, the bug reports of five popular 
OSS products are collected and used as input to the three 
models. The quality of bug analysis heavily depends on 
comprehensive and accurate recording of bug reports. 
Also, the lack of a commonly accepted data format for 
archiving bug reports and efficient algorithms for data 
filtering have added to the complexity of failure data 
analysis. 

TABLE VIII.  
BEST AND WORST PREDICTION MODES FOR THE SELECTED OSS 

PRODUCTS 

Product Best prediction 
model 

Worst prediction 
model 

ClamWin Free Antivirus Schneidewind Weibull
MPlayer Schneidewind Weibull
Apache 2 Schneidewind Weibull

Eclipse V.2 Schneidewind Weibull
Firefox S-shaped Weibull

Schneidewind not 
able to model

 
The study has further used three metrics for 

comparison purposes among the models. The 
determination coefficient is an easy metric for initial 
understanding of goodness-of-it. The coefficient values 
are used to compare the accuracy estimates of the three 
models based on the entire failure data of each selected 
OSS product. The second metric, i.e.  PRE value, is used 
to determine which model predicts the best, accurate 
estimation of accumulative failures at the final  biweekly 
report.  As the third metric, PLR has been adopted to 
compare the prediction accuracy of the three selected 
models over time.   

For the selected products, Weibull has shown to be the 
best model overall for goodness-of-fit among the three 
models. This can be visually observed when comparing 
the Fig. 10–12.  But Weibull prediction capability fell 
below that of S-shaped and Schneidewind models. 
Specifically, Schneidewind’s model provided the best 
prediction model for future failures followed by the S-
shaped model.  Therefore, a model that is able to provide 
a good fit may not be a good predictor of future failures. 

Although there are many reliability growth models, no 
single model is believed to be a feasible choice for all 
forms of bug-failure patterns. The selected OSS products 
all show similar patterns when analyzing their failure 
data, in that a trend of increasing failure, once reached a 
peak, is followed by a long, continuous decreasing tail. 
Therefore, the three models chosen shown to be viable 
candidates for this study5.  

The knowledge gained from this research can be 
expanded in different directions. One avenue of research 
is to include other potential statistical models such as 
Bayesian and Lognormal [8]. Furthermore, it is 
reasonable to believe that some failure intensities can be 
considered as outliers [38] that may have tangible effect 
on the estimated values of model parameters. Hence, an 

                                                           
5 The reader is referred to [9] for further information on deciding a 
possible reliability model for a specific failure pattern.  
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interesting research direction is to analyze the impact of 
outliers on goodness-of-fit and prediction of failures. 
Finally it is worth to investigate the recalibration of some 
reliability models, as some studies have shown that 
model recalibration can be an effective approach to better 
accuracy of prediction [39]. 
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